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CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE

DERIVATIONS ON TRIANGULAR ALGEBRAS

Jiankui Li and Qihua Shen

Abstract. In this paper, we show that under certain conditions every
Lie higher derivation and Lie triple derivation on a triangular algebra are
proper, respectively. The main results are then applied to (block) upper

triangular matrix algebras and nest algebras.

1. Introduction

Let R be a commutative ring with identity. A triangular algebra is an
algebra of the form (

A M
B

)
where A and B are unital algebras over R and M is an (A,B)-bimodule which
is faithful as a left A-module as well as a right B-module. Basic examples
of triangular algebras are upper triangular matrix algebras and nest algebras.
Many authors have made important contributions to the related topics, see
[2, 4, 5, 6, 13]. Cheung in [5] initiated the study of linear mappings of abstract
triangular algebras and obtained a number of elegant results. He described
automorphisms, derivations, commuting mappings and Lie derivations of tri-
angular algebras in [4, 5, 6]. Benkovič [1] studied biderivations of triangular
algebras and showed that under certain conditions every biderivation on a trian-
gular algebra is the sum of an extremal biderivation and an inner biderivation.
Zhang and Yu [16] proved that any Jordan derivation on a triangular algebra
is a derivation. Xiao and Wei [14] developed this result to the case of Jor-
dan higher derivations and obtained that every Jordan higher derivation on a
triangular algebra is a higher derivation.

Let A be an algebra over a commutative ring R and Z(A) be its center.
Let N denote the set of non-negative integers. Further, let [x, y] = xy − yx be
the commutator (the Lie product) of the elements x, y ∈ A. Let D = (Li)i∈N
be a sequence of linear maps on A such that L0 = idA. D is called a higher
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derivation if Ln(xy) =
∑

i+j=n Li(x)Lj(y) for each n ∈ N and x, y ∈ A; D

is called a Lie higher derivation if Ln([x, y]) =
∑

i+j=n[Li(x), Lj(y)] for each
n ∈ N and x, y ∈ A. It is clear that all higher derivations are Lie higher
derivations and the converse is not true in general. Assume that D = (Di)i∈N
is a higher derivation on A. For any n ∈ N, let

Ln = Dn + hn,

where hn : A → Z(A) is a linear map such that hn([x, y]) = 0 for each x, y ∈ A.
It is easily checked that (Ln)n∈N is a Lie higher derivation, and not a higher
derivation if hn ̸= 0 for some n. Lie higher derivations of the above form are
called proper. The natural problem that one considers in this context is whether
or not every Lie higher derivation is proper. In [10], the author discussed the
properties of Lie higher derivations. In [11], Qi and Hou showed that each Lie
higher derivation is proper on nest algebras. In Section 3, we show that under
certain conditions every Lie higher derivation on a triangular algebra is proper.
An immediate application recaptures the main result in [11].

Let A be an algebra over a commutative ring R and Z(A) be its cen-
ter. A linear map L on A is called a Lie triple derivation if L([[x, y], z]) =
[[L(x), y], z] + [[x, L(y)], z] + [[x, y], L(z)] for all x, y, z ∈ A. Lie triple deriva-
tions have received a fair amount of attention in recent years, see for example
[7, 12, 15] and references therein. A central problem is whether a Lie triple
derivation can be decomposed into a sum of a derivation and a linear map
h : A → Z(A) such that h([[x, y], z]) = 0 for all x, y, z ∈ A. Lie triple deriva-
tions of the above form are called proper. It was shown in [9] that each Lie
triple derivation on a von Neumann algebra which has no commutative direct
summand into itself is proper. Results related to Lie triple derivations on prime
algebras were considered in [3]. Lu [7] considered similar questions on nest alge-
bras. In Section 4, we characterize Lie triple derivations on triangular algebras
and give necessary and sufficient conditions such that every Lie triple deriva-
tion is proper. We then apply the main results to (block) triangular matrix
algebras and (continuous) nest algebras.

2. Triangular algebras

Let A and B be unital algebras over a commutative ring R, and let M be
a unital (A,B)-bimodule, which is faithful as a left A-module and also a right
B-module. Recall that a left (respectively, right) A-module M is faithful if
aM = 0 (respectively, Ma = 0) implies that a = 0 for every a ∈ A. The
R-algebra

A = Tri(A,M,B) =
{(

a m
b

)
: a ∈ A,m ∈ M, b ∈ B

}
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under the usual matrix operations is called a triangular algebra. We define two
natural projections πA : A → A and πB : A → B by

πA

(
a m

b

)
= a and πB

(
a m

b

)
= b.

By [6, Proposition 3] we know that the center Z(A) of A coincides with{(
a 0

b

)
: am = mb for all m ∈ M

}
.

Moreover, πA(Z(A)) ⊆ Z(A) and πB(Z(A)) ⊆ Z(B), and there exists a unique
algebra isomorphism τ : πA(Z(A)) → πB(Z(A)) such that am = mτ(a) for all
m ∈ M.

Let 1A and 1B be identities of the algebras A and B, respectively, and let
1 be the identity of the triangular algebra A. Throughout this paper we shall
use the following notation

e =

(
1A 0

0

)
, f = 1− e =

(
0 0

1B

)
.

Then e and f are orthogonal idempotents of A and so A may be represented
as

A = 1A1 = (e+ f)A(e+ f) = eAe+ eAf + fAf,

where eAe is a subalgebra of A isomorphic to A, fAf is a subalgebra of A
isomorphic to B and eAf is a (eAe, fAf)-bimodule isomorphic to the bimodule
M. To simplify the notation we will use the following convention: a = eae ∈
A = eAe, b = fbf ∈ B = fAf and m = emf ∈ M = eAf . Then each element
x = exe+ exf + fxf ∈ A can be represented in the form

x = exe+ exf + fxf = a+m+ b,

where a ∈ A, b ∈ B and m ∈ M.

3. Characterizations of Lie higher derivations

In this section, we characterize Lie higher derivations on triangular algebras.
The main result is stated as follows.

Theorem 3.1. Let A = Tri(A,M,B) be a triangular algebra such that Z(A) =
πA(Z(A)) and Z(B) = πB(Z(A)). Then every Lie higher derivation on A is
proper. That is to say, D = (Ln)n∈N is a Lie higher derivation on A if and
only if Ln has the form

Ln(x) = δn(x) + hn(x), x ∈ A,

where (δn)n∈N is a higher derivation and hn : A → Z(A) is a sequence of linear
mappings satisfying

hn([x, y]) = 0, x, y ∈ A, n ∈ N.
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Remark 3.2. By the definition of Lie higher derivation, it is clear that L1 is in
fact a Lie derivation. Hence we have by [5, Theorem 3.3.3] that there exist a
derivation δ1 on A and a linear mapping h1 : A → Z(A) with

h1([x, y]) = 0 x, y ∈ A

such that

L1(x) = δ1(x) + h1(x) x ∈ A.

Moreover, L1 and δ1 have the following properties:

P1

L1(e) ∈ M+ Z(A); L1(M) ⊆ M;

L1(A) ⊆ A+M+ Z(A); L1(B) ⊆ B +M+ Z(A);

δ1(e) ∈ M; δ1(A) ⊆ A+M; δ1(B) ⊆ B +M.

Proof of Theorem 3.1. We only need to check the “only if” part. Assume that

D = (Ln)n∈N

is a Lie higher derivation of A. We proceed by induction on n ∈ N.
When n = 1, the conclusion is true by Remark 3.2. Now we assume that

Lm(x) = δm(x) + hm(x)

holds for all x ∈ A and for all m < n ∈ N, where hm : A → Z(A) is such that

hm([x, y]) = 0 for all x, y ∈ A,

and

δm(xy) =
∑

i+j=m

δi(x)δj(y) for all x, y ∈ A.

Moreover, Lm and δm have the following properties:

Pm

Lm(e) ∈ M+ Z(A); Lm(M) ⊆ M;

Lm(A) ⊆ A+M+ Z(A); Lm(B) ⊆ B +M+ Z(A);

δm(e) ∈ M; δm(A) ⊆ A+M; δm(B) ⊆ B +M.

Our aim is to show that Ln also satisfies the similar properties.

Claim 1. Ln(M) ⊆ M and Ln(e) ∈ M+ Z(A).

For any m ∈ M, let

Ln(e) = a1 +m1 + b1, Ln(m) = a2 +m2 + b2.

Then by Pm, we have

Ln(m) = Ln([e,m])

=
∑

i+j=n

[Li(e), Lj(m)]

= [Ln(e),m] + [e, Ln(m)]

= a1m−mb1 +m2 ∈ M,
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and so
a2 = b2 = 0.

This implies that Ln(m) ∈ M. Hence

Ln(m) = m2 = a1m−mb1 +m2,

which implies a1m = mb1.
Therefore, a1 + b1 ∈ Z(A) and Ln(e) = a1 +m1 + b1 ∈ M+ Z(A).

Claim 2. Ln(A) ⊆ A+M+ Z(A); Ln(B) ⊆ B +M+ Z(A).

For any a ∈ A and b ∈ B, let
Ln(a) = a1 +m1 + b1, Ln(b) = a2 +m2 + b2.

Then

0 = Ln([a, b])

=
∑

i+j=n

[Li(a), Lj(b)]

= [Ln(a), b] +
∑

i+j=n
i ̸=0,n

[Li(a), Lj(b)] + [a, Ln(b)]

= [m1, b] + [b1, b] + [a, a2] + [a,m2] +
∑

i+j=n
i ̸=0,n

[Li(a), Lj(b)].

Since Li(a) ∈ A+M+Z(A) and Li(b) ∈ B+M+Z(A) for 1 ≤ i ≤ n− 1, we
have ∑

i+j=n
i ̸=0,n

[Li(a), Lj(b)] ∈ M.

Hence
[b1, b] = [a, a2] = 0,

which implies
b1 ∈ Z(B), a2 ∈ Z(A).

Therefore, our assumptions on A yield

Ln(a) = (a1 − τ−1(b1)) +m1 + (τ−1(b1) + b1) ∈ A+M+ Z(A),

Ln(b) = (a2 + τa2) +m2 + (b2 − τa2) ∈ B +M+ Z(A).

Now, for any x = a+m+ b, where a ∈ A, b ∈ B and m ∈ M, suppose

Ln(a) = a1 +m1 + b1, Ln(b) = a2 +m2 + b2 and Ln(m) = m3.

Let
hn(a) = τ−1(b1) + b1, hn(b) = a2 + τa2, hn(m) = 0,

hn(x) = hn(a) + hn(m) + hn(b),

and let
δn(x) = Ln(x)− hn(x).
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Clearly hn : A → Z(A). By the linearity of Ln and τ , it is easy to verify that
hn and δn are linear. Also from the definition of δn, it follows from Claims 1
and 2 that

δn(M) ⊆ M, δn(A) ⊆ A+M, δn(B) ⊆ B +M.

Claim 3. δn has the following properties:

(1) δn(am) =
∑

i+j=n δi(a)δj(m) for all a ∈ A and m ∈ M.

(2) δn(mb) =
∑

i+j=n δi(m)δj(b) for all m ∈ M and b ∈ B.
(3) δn(ab) =

∑
i+j=n δi(a)δj(b) for all a ∈ A and b ∈ B.

(4) δn(a1a2) =
∑

i+j=n δi(a1)δj(a2) for all a1, a2 ∈ A.

(5) δn(b1b2) =
∑

i+j=n δi(b1)δj(b2) for all b1, b2 ∈ B.
In fact, for any a ∈ A and m ∈ M, we have

(3.1)

δn(am) = Ln([a,m])

=
∑

i+j=n

[Li(a), Lj(m)]

=
∑

i+j=n

[δi(a) + hi(a), δj(m) + hj(m)]

=
∑

i+j=n

[δi(a), δj(m)].

Since

δi(a) ∈ A+M, δi(m) ∈ M, 1 ≤ i ≤ n

the equation (3.1) becomes

δn(am) =
∑

i+j=n

δi(a)δj(m).

(2) and (3) may go similarly.
For any a1, a2 ∈ A and m ∈ M, by (1) we have

δn(a1a2m) =
∑

i+j=n

δi(a1a2)δj(m) =
∑

i+j=n
j ̸=0

δi(a1a2)δj(m) + δn(a1a2)m

and

δn(a1a2m) =
∑

i+j=n

δi(a1)δj(a2m) =
∑

i+j+k=n

δi(a1)δj(a2)δk(m)

=
∑

i+j+k=n
k ̸=0

δi(a1)δj(a2)δk(m) +
∑

i+j=n

δi(a1)δj(a2)m.

By our assumption on δm(m < n), the above equation yields

δn(a1a2)m =
∑

i+j=n

δi(a1)δj(a2)m
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for any m ∈ M. By faithfulness of M, we obtain

δn(a1a2)|A = (
∑

i+j=n

δi(a1)δj(a2))|A.(3.2)

Similarly, for any a1, a2 ∈ A and b ∈ B, it follows from (3) that

δn(a1a2)b =
∑

i+j=n

δi(a1)δj(a2)b,

taking b = IB yields

δn(a1a2)|M = (
∑

i+j=n

δi(a1)δj(a2))|M.(3.3)

Now the equations (3.2) and (3.3) give (4) of Claim 3.
Similarly, one can check that (5) of Claim 3 holds for all b1, b2 ∈ B.

Claim 4. δn(xy) =
∑

i+j=n δi(x)δj(y) for all x, y ∈ A.

For any x, y ∈ A,

x = a1 +m1 + b1, y = a2 +m2 + b2,

where a1, a2 ∈ A, m1,m2 ∈ M and b1, b2 ∈ B. By Claim 3, it is easy to check
that

δn(xy) =
∑

i+j=n

δi(x)δj(y).

Claim 5. hn([x, y]) = 0 for all x, y ∈ A.

For any x, y ∈ A,

hn([x, y]) = Ln([x, y])− δn([x, y])

=
∑

i+j=n

[Li(x), Lj(y)]− δn(xy) + δn(yx)

=
∑

i+j=n

[δi(x) + hi(x), δj(y) + hj(y)]

−
∑

i+j=n

δi(x)δj(y) +
∑

i+j=n

δi(y)δj(x)

=
∑

i+j=n

[δi(x), δj(y)]−
∑

i+j=n

δi(x)δj(y) +
∑

i+j=n

δi(y)δj(x)

= 0.

The proof of the theorem is completed. □
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Let N be the set of all positive integers and let n ∈ N. For every positive
integers m, m ≤ n, we denote by k̄ = (k1, k2, . . . , km) ∈ Nm an ordered m-
vector of positive integers such that n = k1 + k2 + · · · + km. The block upper
triangular matrix algebra Bk̄

n(R) is a subalgebra of Mn(R) of the form

Bk̄
n(R) =


Mk1(R) Mk1×k2(R) · · · Mk1×km(R)

0 Mk2
(R) · · · Mk2×km

(R)
...

...
. . .

...
0 0 · · · Mkm(R)

 .

LetMk×m(R) denote the set of all k×mmatrices and Tn(R) denote the algebra
of all n×n upper triangular matrices over R, then it is easily seen that Mn(R)
and Tn(R) are two special cases of block upper triangular matrix algebras. If

we have n ≥ 2 and Bk̄
n(R) ̸= Mn(R), then Bk̄

n(R) is a triangular algebra and
can be represented as

Bk̄
n(R) =

(
Bk̄1

l (R) Ml×(n−l)(R)

Bk̄2

n−l(R)

)
=

(
A M

B

)
,

where l ∈ {k1, k1+k2, . . . , k1+k2+ · · ·+km−1} and k̄1 ∈ Nl, k̄2 ∈ Nm−l. Since

Z(Bk̄
n) = R1, Z(A) = R1A and Z(B) = R1B, as an corollary to our main

theorem, we have:

Corollary 3.3. Let R be a commutative ring with identity. Every Lie higher
derivation on Bk̄

n(R)( ̸= Mn(R)) is proper. In particular, every Lie higher
derivation on Tn(R) is proper.

Let N be a nest on a Banach space X over the real or complex field F and
algN be the associated algebra. Suppose there exists a non-trivial element
N1 ∈ N which is complemented in X, that is, there exists an idempotent
P ∈ algN such that ranP = N1. Let A = PalgNP , M = PalgN (I − P )
and B = (I − P )algN (I − P ). Then M is a faithful (A, B)-bimodule, and alg
N=Tri(A, M, B) is an upper triangular algebra. Note that Z(algN ) = FI.
Thus the following corollary is immediate.

Corollary 3.4 ([11]). Let N be a nest on a Banach space X over the real or
complex field F. If there exists a non-trivial element in N which is comple-
mented in X, then D = (Ln)n∈N is a Lie higher derivation of the nest algebra
algN if and only if Ln has the form

Ln(x) = δn(x) + hn(x)I, x ∈ A,

where (δn)n∈N is a higher derivation and (hn)n∈N is a sequence of linear func-
tionals satisfying

hn([x, y]) = 0, x, y ∈ A, n ∈ N.
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4. Characterizations of Lie triple derivations

In this section, we characterize Lie triple derivations on triangular algebras.
For a subset B of an algebra A, we denote B′ the commutant of B in A. In
other words,

B′ = {a ∈ A : ab = ba for every b ∈ B}.

Proposition 4.1. A Lie triple derivation on A = Tri(A,M,B) is of the form

L

(
a m

b

)
=

(
A11(a) +B11(b) an0 − n0b+ C12(m)

A22(a) +B22(b)

)
,

where n0 ∈ M, A11 : A → A, B22 : B → B, A22 : A → [B,B]′, B11 : B →
[A,A]′, C12 : M → M are linear mappings satisfying

(i) A11 is a Lie triple derivation on A, [[A22(a), b1], b2] = 0, A22([[a1, a2], a3])
= 0, C12(am) = A11(a)m−mA22(a) + aC12(m);

(ii) B22 is a Lie triple derivation on B, [[B11(b), a1], a2] = 0, B11([[b1, b2], b3])
= 0, C12(mb) = C12(m)b+mB22(b)−B11(b)m.

Proof. Write

L

(
a m

b

)
=

(
A11(a) +B11(b) + C11(m) A12(a) +B12(b) + C12(m)

A22(a) +B22(b) + C22(m)

)
and we consider L([[x, y], z]) = [[L(x), y], z] + [[x, L(y)], z] + [[x, y], L(z)] entry-
wise.

Take x = IA, y = m and z = IA, we have(
−C11(m) −C12(m)

−C22(m)

)
= L([[x, y], z])

= [[L(x), y], z] + [[x, L(y)], z] + [[x, y], L(z)]

=

(
0 2(mA22(IA)−A11(IA))m− C12(m)

0

)
.

Hence, C11(m) = 0, C22(m) = 0 and mA22(IA) = A11(IA)m. Similarly, if we
take x = IA, y = m and z = IB, we obtain mB22(IB) = B11(IB)m for every
m ∈ M.

Take x = a1, y = a2 and z = a3, we have
(4.1)(

A11([[a1, a2], a3]) A12([[a1, a2], a3])
A22([[a1, a2], a3])

)
= L([[x, y], z])

= [[L(x), y], z] + [[x, L(y)], z] + [[x, y], L(z)]

=

 [[A11(a1), a2], a3] + [[a1, A11(a2)], a3] a3a2A12(a1)− a3a1A12(a2)
+[[a1, a2], A11(a3)] +[a1, a2]A12(a3)

0

 ,
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from which we see that A11 is a Lie triple derivation on A and A22([[a1, a2], a3])
= 0. By taking a1 = a3 = IA in (4.1), we have A12(a) = aA12(IA) = an0,
where we set n0 = A12(IA). Symmetrically, take x = b1, y = b2 and z = b3, we
obtain B22 is a Lie triple derivation on B and B11([[b1, b2], b3]) = 0.

Taking x = a, y = b1 and z = b2 yields [[A22(a), b1], b2] = 0 and A12(a)b1b2+
aB12(b1)b2 = 0, from which by taking a = IA and b2 = IB we obtain B12(b) =
−n0b. Similarly, we have [[B11(b), a1], a2] = 0.

Furthermore, consider x = a1, y = a2 and z = b, we obtain B11(b) ∈ [A,A]′.
Similarly, by considering x = b1, y = b2 and z = a, we obtain A22(a) ∈ [B,B]′.

Finally, let x = a, y = m and z = IB, we obtain C12(am) = A11(a)m −
mA22(a) + aC12(m). Symmetrically, let x = IA, y = m and z = b, we obtain
C12(mb) = C12(m)b+mB22(b)−B11(b)m.

Conversely, suppose L is a linear map on A = Tri(A,M,B) of the form

L

(
a m

b

)
=

(
A11(a) +B11(b) an0 − n0b+ C12(m)

A22(a) +B22(b)

)
with conditions (i) and (ii) holding, it is elementary though tedious to check
chat L satisfies the relation

L(([x, y], z]) = [[L(x), y], z] + [[x, L(y)], z] + [[x, y], L(z)]

for all x, y, z ∈ A. We leave it to the readers and the proof is complete. □

Remark 4.2. Since M is faithful, the conditions that A22([[a1, a2], a3]) = 0 and
B11([[b1, b2], b3]) = 0 in Theorem 4.1 are actually not necessary. In fact, for
any a1, a2, a3 ∈ A and m ∈ M, we have

C12(a1a2a3m) = A11(a1)a2a3m− a2a3mA22(a1) + a1C12(a2a3m)

= A11(a1)a2a3m− a2a3mA22(a1) + a1A11(a2)a3m

+ a1a2A11(a3)m− a1a3mA22(a2)− a1a2mA22(a3)

+ a1a2a3C12(m),

from which we obtain

A11([[a1, a2], a3])m−mA22([[a1, a2], a3]) + [[a1, a2], a3]C12(m)

= C12([[a1, a2], a3]m)

= C12((a1a2a3 − a2a1a3 − a3a1a2 + a3a2a1)m)

= [[A11(a1), a2], a3]m+ [[a1, A11(a2)], a3]m+ [[a1, a2], A11(a3)]m

+ [[a1, a2], a3]C12(m),

whence A22([[a1, a2], a3]) = 0 since M is faithful. Similarly, we have

B11([[b1, b2], b3]) = 0.

Theorem 4.3. Given a triangular algebra A = Tri(A,M,B) with faithful M.
A Lie triple derivation L on A is proper if and only if πAL(B) ⊆ πA(Z(A))
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and πBL(A) ⊆ πB(Z(A)), where A and B are identified as subalgebras of A.
That is to say that a Lie triple derivation L on A given by

L

(
a m

b

)
=

(
A11(a) +B11(b) an0 − n0b+ C12(m)

A22(a) +B22(b)

)
is proper if and only if B11(B) ⊆ πA(Z(A)) and A22(A) ⊆ πB(Z(A)).

Proof. Suppose that L is proper and is written as δ+h, where δ is a derivation
and h(A) ⊆ Z(A). By [5, Theorem 2.2.1],

δ

(
a m

b

)
=

(
P (a) an− nb+ F (m)

Q(b)

)
with F (am) = P (a)m+ aF (m) and F (mb) = mQ(b) + F (m)b, whereas by the
structure of Z(A),

h

(
a m

b

)
=

(
G1(a) +G2(m) +G3(b) 0

H1(a) +H2(m) +H3(b)

)
.

Since L = δ + h, we have n = n0, F = C12, G2 = 0, H2 = 0, A11 = P + G1,
A22 = H1, B11 = G3 and B22 = Q+H3. Hence

B11(b) = G3(b) = πA(h(b)) ⊆ πA(Z(A)),

A22(a) = H1(a) = πB(h(a)) ⊆ πB(Z(A)).

Conversely, suppose B11(B) ⊆ πA(Z(A)) and A22(A) ⊆ πB(Z(A)). Define

δ

(
a m

b

)
=

(
A11(a)− τ−1(A22(a)) an0 − n0b+ C12(m)

B22(b)− τB11(b)

)
,

h

(
a m

b

)
=

(
B11(b) + τ−1(A22(a)) 0

A22(a) + τB11(b)

)
.

It is easy to verify that h(A) ⊆ Z(A) and h([[x, y], z]) = 0 for all x, y, z ∈ A.
Since

C12(am) = A11(a)m−mA22(a) + aC12(m)

= (A11(a)− τ−1(A22(a)))m+ aC12(m) and

C12(mb) = C12(m)b+mB22(b)−B11(b)m

= C12(m)b+m(B22(b)− τB11(b)),

δ is a derivation by [5, Corollary 2.2.2]. □

Remark 4.4. In Theorem 4.3, the condition that M is faithful is not necessary
for the necessity part of the proof, where in fact, we didn’t use this condition.
That is, without the condition M is faithful, if a Lie triple derivation L on A
given by

L

(
a m

b

)
=

(
A11(a) +B11(b) an0 − n0b+ C12(m)

A22(a) +B22(b)

)
is proper, then we have B11(B) ⊆ πA(Z(A)) and A22(A) ⊆ πB(Z(A)).



430 JIANKUI LI AND QIHUA SHEN

Clearly, every Lie derivation is a Lie triple derivation. In [6, Example 8],
Cheung gave an example of a triangular algebra which has an improper Lie
derivation. In the following, we give an example of a triangular algebra which
has an improper Lie triple derivation that is not a Lie derivation.

Example 4.5. Let

A = B = M =


0 t1 p

0 t2
0

 : t1, t2, p ∈ C

 .

Then the map

L :


0 t1 p 0 a b

0 t2 0 c
0 0

0 s1 q
0 s2

0

 −→


0 s1 q 0 0 0

0 s2 0 0
0 0

0 t1 p
0 t2

0


on A = Tri(A,M,B) is an improper Lie triple derivation that is not a Lie
derivation.

Proof. For any x, y, z ∈ A, L is a Lie triple derivation since L([[x, y], z]) = 0 =
[[L(x), y], z] + [[x, L(y)], z] + [[x, y], L(z)]. If we take

x =


0 2 0 0 0 0

0 1 0 0
0 0

0 1 0
0 1

0

 and y =


0 1 0 0 0 0

0 2 0 0
0 0

0 1 0
0 1

0

 ,

then

L([x, y]) =


0 0 0 0 0 0

0 0 0 0
0 0

0 0 3
0 0

0

 ,

while

[L(x), y] + [x, L(y)] =


0 0 2 0 0 0

0 0 0 0
0 0

0 0 2
0 0

0

 ̸= L([x, y]),
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that is, L is not a Lie derivation. Note that

πA(Z(A)) = πB(Z(A)) =


 0 0 p

0 0
0

 : p ∈ C

 .

Since

B11

 0 s1 q
0 s2

0

 =

 0 s1 q
0 s2

0

 /∈ πA(Z(A)),

we have B11(B) ⊈ πA(Z(A)), and thus L is improper by Theorem 4.3 and
Remark 4.4. □

For an algebra A, we denote W (A) the subalgebra of A generated by com-
mutators and idempotents.

Theorem 4.6. Every Lie triple derivation of A = Tri(A,M,B) with faithful
M is proper if

(1) W (A)′
∩
A ⊆ πA(Z(A)),

(2) W (B)′
∩

B ⊆ πB(Z(A)).

Proof. By Proposition 4.1 and Theorem 4.3, we only need to show that for any
idempotent e ∈ A and b ∈ B, B11(b)e = eB11(b).

For any a1, a2 ∈ A and b ∈ B, Proposition 4.1 gives [[B11(b), a1], a2] = 0,
from which we have

a2B11(b)a1 + a1B11(b)a2 = B11(b)a1a2 + a2a1B11(b).(4.2)

Taking a1 = a2 = e in (4.2) gives B11(b)e = eB11(b). The proof for the other
case is similar. □

Two corollaries describing Lie triple derivations of (block) upper triangular
matrix algebras and (continuous) nest algebras follow directly from our main
theorem.

Corollary 4.7. Let R be a commutative ring with identity. Every Lie triple
derivation on Bk̄

n(R)( ̸= Mn(R)) is proper. In particular, every Lie triple
derivation on Tn(R) is proper.

Proof. It is trivial when n = 1.
Suppose n ≥ 2. Let eij be the n×n matrix with its (i, j)-entry equals 1 and

other entries equal 0. Then eij is an idempotent if i = j and eij = [eii, eij ] is
a commutator if i ̸= j. Thus if we regard the block upper triangular matrix
algebra as a triangular algebra of the form

Bk̄
n(R) =

(
Bk̄1

l (R) Ml×(n−l)(R)

Bk̄2

n−l(R)

)
=

(
A M

B

)
,

where l ∈ {k1, k1 + k2, . . . , k1 + k2 + · · · + km−1} and k̄1 ∈ Nl, k̄2 ∈ Nm−l,

then W (A) = A and W (B) = B. Since Z(Bk̄
n) = R1, Z(A) = R1A and

Z(B) = R1B, our conclusion follows immediately from Theorem 4.6. □
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Let N be a nest on a Hilbert space H and algN be the associated algebra. If
N is trivial, then algN is B(H). If N is nontrivial, take a nontrivial projection
P ∈ N . Let A = PalgNP , M = PalgN (I −P ) and B = (I −P )algN (I −P ).
Then M is a faithful (A, B)-bimodule, and algN=Tri(A, M, B) is an upper
triangular algebra. A nest N is said to be continuous if for every N ∈ N ,
inf{M ∈ N : N ⊊ M} = N . For instance, let Ht = {f ∈ L2[0, 1] : f(x) =
0 for 0 ≤ x ≤ t}, then {Ht : 0 ≤ t ≤ 1} is a continuous nest. By [8, Proposition
2.6], every element of the nest algebra of a continuous nest is a sum of two
commutators. Hence the following corollary is obvious.

Corollary 4.8 ([15]). Let N be a continuous nest on a Hilbert space H and
algN be the associated algebra. Then every Lie triple derivation on algN is
proper.
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