ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

Sen Zhu

Abstract

An operator T on a complex Hilbert space \mathcal{H} is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for \mathcal{H}. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.

1. Introduction

Throughout this paper, we denote by \mathcal{H} a complex separable infinite dimensional Hilbert space endowed with the inner product $\langle\cdot, \cdot\rangle$, and by $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}. Recall that a map C on \mathcal{H} is called a conjugation if C is conjugate-linear, $C^{-1}=C$ and $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in \mathcal{H}$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be skew symmetric if $C T C=-T^{*}$ for some conjugation C on \mathcal{H}. We remark that $T \in \mathcal{B}(\mathcal{H})$ is skew symmetric if and only if T admits a skew symmetric matrix representation with respect to some orthonormal basis (ONB, for short) of \mathcal{H}. Thus skew symmetric operators can be viewed as an infinite dimensional analogue of skew symmetric matrices

Skew symmetric operators have been studied for many years in the finite dimensional setting. The most obvious examples of skew symmetric operators on finite dimensional spaces are those Jordan blocks with even ranks (see [14, Ex. 1.7]). Recently, there has been growing interest in skew symmetric operators in the infinite dimensional case, and some interesting results have been obtained $[13,14,15,16,17,18,20]$. In particular, skew symmetric normal operators, partial isometries, compact operators and weighted shifts are classified [13, 14, 18].

[^0]The primary motivation for the study of skew symmetric operators lies in its connections to complex symmetric operators, which have received much attention in the last decade $[4,7,8,9,10,11,12,19]$. Recall that an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be complex symmetric if $C T C=T^{*}$ for some conjugation C on \mathcal{H}. The following lemma, whose proof is omitted, summarizes some basic facts about complex symmetric operators and skew symmetric operators.

Lemma 1.1. Let $T \in \mathcal{B}(\mathcal{H})$ and C be a conjugation on \mathcal{H}. Then
(i) there exist $A, B \in \mathcal{B}(\mathcal{H})$ such that $T=A+B, C A C=-A^{*}$ and $C B C=B^{*}$;
(ii) if $C T C=-T^{*}$, then $T^{2 n}$ is complex symmetric with respect to C for all $n \geq 1$;
(iii) if T is complex symmetric, then $T \oplus(-T)$ and $T^{*} T-T T^{*}$ are both skew symmetric.

By Lemma 1.1, one can use complex symmetric operators to construct new skew symmetric operators. In particular, if T is complex symmetric, then $T^{*} T-T T^{*}$ is skew symmetric. In view of the description of skew symmetric normal operators [14, Thm. 1.10], this provides a new approach to describing complex symmetric operators. In a recent paper [12], one can see such an application to Toeplitz operators. The study of skew symmetric operators has applications to some special operators on function spaces [2, 3]. In particular, any commutator of two truncated Toplitz operators is skew symmetric.

Another motivation for the study of skew symmetric operators lies in the connection between skew symmetric operators and anti-automorphisms of singly generated C^{*}-algebras. Recall that an anti-automorphism of a C^{*}-algebra \mathcal{A} is a vector space isomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ with $\varphi\left(a^{*}\right)=\varphi(a)^{*}$ and $\varphi(a b)=\varphi(b) \varphi(a)$ for $a, b \in \mathcal{A}$. It is proved that each C^{*}-algebra generated by a skew symmetric operator admits an involutory anti-automorphism on it (see [17, Cor. 3.2]).

The present aim of this paper is to explore the structure of skew symmetric operators with eigenvalues. For skew symmetric operators with nonzero eigenvalues, we give an upper-triangular operator matrix representation to describe their structure (see Theorem 2.5). An application to Foguel operators will be provided. On the other hand, we give a geometric description of certain skew symmetric triangular operators (see Theorems 3.4 and 3.7), which is based on the geometric relationship between eigenvectors.

2. Upper triangular representation

In this section, we shall provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues and describe their structure. The main results of this section are Theorems 2.2 and 2.5.

We first make some preparation.
Definition 2.1 ([1], page 95). Let $T \in \mathcal{B}(\mathcal{H})$. An operator $A \in \mathcal{B}(\mathcal{H})$ is called a transpose of T, if $A=C T^{*} C$ for some conjugation C on \mathcal{H}.

Note that if $T \in \mathcal{B}(\mathcal{H})$ is skew symmetric, then $-T=C T^{*} C$ for some conjugation C on \mathcal{H}; so $-T$ is a transpose of T. In general, an operator has more than one transpose [17, Ex. 2.2]. However, any two transposes of an operator are unitarily equivalent.

Recall that a map C on \mathcal{H} is called an antiunitary operator if C is conjugatelinear, invertible and $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in \mathcal{H}$. Thus a conjugation is an involutory antiunitary operator.

If $T \in \mathcal{B}(\mathcal{H})$ and \mathcal{N} is a subspace of \mathcal{H}, then $T_{\mathcal{N}}$ will denote the compression of T to \mathcal{N}, that is, the restriction of $P_{\mathcal{N}} T$ to \mathcal{N}, where $P_{\mathcal{N}}$ denotes the orthogonal projection of \mathcal{H} onto \mathcal{N}. It \mathcal{N} is invariant under T, then $T_{\mathcal{N}}=\left.T\right|_{\mathcal{N}}$. We write $\operatorname{ker} T$ for the kernel of T.

Theorem 2.2. Let $T \in \mathcal{B}(\mathcal{H})$ and $\Gamma \subset \mathbb{C}$. Assume that

$$
\mathcal{M}=\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(T-\lambda)^{n}, \quad \mathcal{N}=\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(T+\lambda)^{* n}
$$

where \vee denotes closed linear span. If T is skew symmetric, then $\left.T\right|_{\mathcal{M}} \cong$ $\left(-T_{\mathcal{N}}^{t}\right)$, where \cong denotes unitary equivalence.
Proof. Assume that C is a conjugation on \mathcal{H} and $C T C=-T^{*}$. Since $C(T-\lambda)^{n}=(-1)^{n}(T+\lambda)^{* n} C$ for $\lambda \in \mathbb{C}$, it follows that $C\left(\operatorname{ker}(T-\lambda)^{n}\right)=$ $\operatorname{ker}(T+\lambda)^{* n}$. Thus

$$
\begin{aligned}
C(\mathcal{M}) & =C\left(\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(T-\lambda)^{n}\right) \\
& =\bigvee_{\lambda \in \Gamma, n \geq 1} C\left(\operatorname{ker}(T-\lambda)^{n}\right) \\
& =\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(T+\lambda)^{* n}=\mathcal{N} .
\end{aligned}
$$

It follows that $C(\mathcal{N})=\mathcal{M}$.
Note that \mathcal{M} is invariant under T and \mathcal{N} is invariant under T^{*}. Denote $A=\left.T\right|_{\mathcal{M}}$ and $B=T_{\mathcal{N}}$. Thus $\left.T^{*}\right|_{\mathcal{N}}=\left(T_{\mathcal{N}}\right)^{*}=B^{*}$.

Define $D: \mathcal{M} \rightarrow \mathcal{N}$ as $D x=C x$ for $x \in \mathcal{M}$. Then D is an antiunitary operator and $D^{-1} y=C y$ for all $y \in \mathcal{N}$.

Since $C T=-T^{*} C$, for given $x \in \mathcal{M}$, we have

$$
D A x=C A x=C T x=-T^{*} C x=-T^{*} D x=-B^{*} D x .
$$

So $D A=-B^{*} D$. Choose a conjugation E on \mathcal{N} and set $U=E D$. Then $U: \mathcal{M} \rightarrow \mathcal{N}$ is unitary and

$$
U A=E D A=-E B^{*} D=-\left(E B^{*} E\right)(E D)=-\left(E B^{*} E\right) U .
$$

That is, $A \cong\left(-B^{t}\right)$.
Lemma 2.3. Let $T \in \mathcal{B}(\mathcal{H})$ and $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an orthonormal subset of \mathcal{H}. Assume that $T e_{n} \in \vee\left\{e_{i}: 1 \leq i \leq n\right\}$ and $\left\langle T e_{n}, e_{n}\right\rangle=\lambda_{n}$ for all $n \geq 1$,
where $\lambda_{i} \in \mathbb{C}$ and $\lambda_{i} \neq-\lambda_{j}$ for all $i, j \geq 1$. If C is a conjugation on \mathcal{H} and $C T C=-T^{*}$, then
(i) $\left\langle T C e_{i}, C e_{i}\right\rangle=-\lambda_{i}$ for all $i \geq 1$, and
(ii) $\left\langle C e_{i}, e_{j}\right\rangle=0$ for all $i, j \geq 1$.

Proof. For each $i \geq 1$, compute to see

$$
\left\langle T C e_{i}, C e_{i}\right\rangle=\left\langle C e_{i}, T^{*} C e_{i}\right\rangle=-\left\langle C e_{i}, C T e_{i}\right\rangle=-\left\langle T e_{i}, e_{i}\right\rangle=-\lambda_{i} .
$$

The rest is devoted to the proof of (ii). For $m_{1}, m_{2} \in \mathbb{N}$, we say that (m_{1}, m_{2}) satisfies property (P) if

$$
\left\langle C e_{i}, e_{j}\right\rangle=0, \quad \forall 1 \leq i \leq m_{1}, 1 \leq j \leq m_{2}
$$

Noting that $\langle C x, y\rangle=\langle C y, x\rangle$ for all x, y, one can see that $\left(m_{1}, m_{2}\right)$ satisfies property (P) if and only $\left(m_{2}, m_{1}\right)$ satisfies (P). Since

$$
\begin{equation*}
\left\langle C e_{i}, T e_{j}\right\rangle=\left\langle C T e_{j}, e_{i}\right\rangle=-\left\langle T^{*} C e_{j}, e_{i}\right\rangle=-\left\langle C e_{j}, T e_{i}\right\rangle, \tag{2.1}
\end{equation*}
$$

it follows readily that

$$
\begin{equation*}
\left\langle C e_{i}, T e_{i}\right\rangle=0, \quad \forall i \geq 1 \tag{2.2}
\end{equation*}
$$

We shall proceed by induction.
Claim 1. For $m \geq 1$, if $(1, m)$ satisfies (P), then $(1, m+1)$ satisfies (P).
Noting that $T e_{m+1} \in \vee\left\{e_{i}: 1 \leq i \leq m+1\right\}$ and $\left\langle T e_{m+1}, e_{m+1}\right\rangle=\lambda_{m+1}$, we may assume

$$
T e_{m+1}=\lambda_{m+1} e_{m+1}+\sum_{i=1}^{m} \alpha_{i} e_{i} .
$$

Since $\left\langle C e_{1}, e_{j}\right\rangle=0$ for all $1 \leq j \leq m$, it follows that $\left\langle C e_{1}, T e_{m+1}\right\rangle=$ $\left\langle C e_{1}, \lambda_{m+1} e_{m+1}\right\rangle$. On the other hand, one can see from (2.1) that

$$
\left\langle C e_{1}, T e_{m+1}\right\rangle=-\left\langle C e_{m+1}, T e_{1}\right\rangle=-\left\langle C e_{m+1}, \lambda_{1} e_{1}\right\rangle=-\left\langle C e_{1}, \lambda_{1} e_{m+1}\right\rangle
$$

Since $-\lambda_{1} \neq \lambda_{m+1}$, we obtain $\left\langle C e_{1}, e_{m+1}\right\rangle=0$. This implies that $(1, m+1)$ satisfies (P).

Claim 2. For $n \geq 2$ and $m \geq 1$, if both (n, m) and $(n-1, m+1)$ satisfy (P), then $(n, m+1)$ satisfy (P).

Assume that

$$
T e_{m+1}=\lambda_{m+1} e_{m+1}+\sum_{i=1}^{m} \alpha_{i} e_{i}, \quad T e_{n}=\lambda_{n} e_{n}+\sum_{j=1}^{n-1} \beta_{j} e_{j} .
$$

Noting that (n, m) satisfies (P), we obtain $\left\langle C e_{n}, T e_{m+1}\right\rangle=\left\langle C e_{n}, \lambda_{m+1} e_{m+1}\right\rangle$. On the other hand, since $(m+1, n-1)$ satisfies (P), it follows from (2.1) that

$$
\left\langle C e_{n}, T e_{m+1}\right\rangle=-\left\langle C e_{m+1}, T e_{n}\right\rangle=-\left\langle C e_{m+1}, \lambda_{n} e_{n}\right\rangle=-\left\langle C e_{n}, \lambda_{n} e_{m+1}\right\rangle
$$

Since $-\lambda_{n} \neq \lambda_{m+1}$, we obtain $\left\langle C e_{n}, e_{m+1}\right\rangle=0$. So $(n, m+1)$ satisfies (P).
Now we shall show that $\left\langle C e_{i}, e_{j}\right\rangle=0$ for all $i, j \geq 1$.

By (2.2), $\left\langle C e_{1}, \lambda_{1} e_{1}\right\rangle=\left\langle C e_{1}, T e_{1}\right\rangle=0$, that is, $(1,1)$ satisfies (P). In view of Claim 1, one can deduce recursively that $(1, n)$ satisfies (P) for all $n \geq 1$. Thus $(n, 1)$ satisfies (P) for all $n \geq 1$.

Since $(2,1)$ and $(1,2)$ satisfy (P), it follows from Claim 2 that $(2,2)$ satisfies (P). On the other hand, noting that $(1,3)$ satisfies (P), it follows from Claim 2 again that $(2,3)$ satisfies (P). Recursively we can prove that $(2, n)$ satisfies (P) for all $n \geq 1$.

Since $(2,3)$ and $(3,2)$ satisfy (P), it follows from Claim 2 that $(3,3)$ satisfies (P). On the other hand, noting that $(2,4)$ satisfies (P), it follows from Claim 2 again that $(3,4)$ satisfies (P). We can recursively prove that $(3, n)$ satisfies (P) for all $n \geq 1$.

For any $m \geq 1$, just we have done above, one can prove that (m, n) satisfies (P) for all $n \geq 1$. That is, $\left\langle C e_{i}, e_{j}\right\rangle=0$ for all $i, j \geq 1$.

Remark 2.4. Let $A \in \mathcal{B}(\mathcal{H})$ and D be a conjugation on \mathcal{H} satisfying $D A D=$ $-A^{*}$. If $e \in \operatorname{ker} A$ and $e \neq 0$, then it is possible that $\langle D e, e\rangle \neq 0$. Here is an example:

$$
T=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & N & 0 \\
0 & 0 & -N
\end{array}\right] \begin{gathered}
\mathbb{C} \\
\mathcal{H} \\
\mathcal{H}
\end{gathered}
$$

where N is an invertible normal operator on \mathcal{H}. By [14, Thm. 1.10], T is skew symmetric. Assume that C is a conjugation on $\mathbb{C} \oplus \mathcal{H} \oplus \mathcal{H}$ satisfying $C T C=-T^{*}$. Then $C(\operatorname{ker} T)=\operatorname{ker} T^{*}$. Since $\operatorname{ker} T=\operatorname{ker} T^{*}=\mathbb{C}$ is of dimension 1, it follows that $\langle C e, e\rangle \neq 0$ for all nonzero $e \in \operatorname{ker} T$.

Given a conjugation C on \mathcal{H}, we denote by $S_{C}(\mathcal{H})$ the set of all skew symmetric operators on \mathcal{H} with respect to C, that is,

$$
S_{C}(\mathcal{H})=\left\{X \in \mathcal{B}(\mathcal{H}): C X C=-X^{*}\right\} .
$$

The following result shows that each skew symmetric operator with nonzero eigenvalues admits an upper-triangular operator matrix representation.
Theorem 2.5. Let $T \in \mathcal{B}(\mathcal{H})$ and $\Gamma \subset \mathbb{C}$ with $\Gamma \cap(-\Gamma)=\emptyset$. Denote

$$
\mathcal{M}=\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(T-\lambda)^{n}, \quad \mathcal{N}=\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(T+\lambda)^{* n}
$$

If T is skew symmetric, then \mathcal{M} is orthogonal to \mathcal{N} and

$$
T=\left[\begin{array}{ccc}
A & E & G \tag{2.3}\\
0 & R & F \\
0 & 0 & B
\end{array}\right] \begin{gathered}
\mathcal{M} \\
\mathcal{L} \\
\mathcal{N}
\end{gathered}
$$

where
(i) $\mathcal{L}=(\mathcal{M}+\mathcal{N})^{\perp}$;
(ii) $A \cong\left(-B^{t}\right)$ and R is skew symmetric;
(iii) all the following operators are skew symmetric

$$
\left[\begin{array}{cc}
A & G \\
0 & B
\end{array}\right], \quad\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right], \quad\left[\begin{array}{cc}
0 & G \\
0 & 0
\end{array}\right]
$$

with respect to the same conjugation on $\mathcal{M}+\mathcal{N}$;
(iv) all the following operators are skew symmetric

$$
\left[\begin{array}{ccc}
0 & E & 0 \\
0 & 0 & F \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 0 & G \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & R & 0 \\
0 & 0 & B
\end{array}\right]
$$

with respect to the same conjugation on \mathcal{H}.
Moreover, there exist a conjugation C on $\mathcal{M}, G_{1} \in S_{C}(\mathcal{M})$ and a conjugation D on \mathcal{L} such that

$$
D R D=-R^{*}, \quad T \cong\left[\begin{array}{ccc}
A & E & G_{1} \\
0 & R & -D E^{*} C \\
0 & 0 & -C A^{*} C
\end{array}\right]
$$

Proof. It is obvious that \mathcal{M} is invariant under T. Denote $A=\left.T\right|_{\mathcal{M}}$. Then

$$
\mathcal{M}=\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(T-\lambda)^{n}=\bigvee_{\lambda \in \Gamma, n \geq 1} \operatorname{ker}(A-\lambda)^{n}
$$

Without loss of generality, we assume that $\operatorname{dim} \mathcal{M}=\infty$. Then there exists an ONB $\left\{e_{i}\right\}_{i=1}^{\infty}$ of \mathcal{M} with respect to which A admits the following uppertriangular matrix representation

$$
A=\left[\begin{array}{cccc|c}
\lambda_{1} & * & * & \cdots & e_{1} \\
& \lambda_{2} & * & \cdots & e_{2} \\
& & \lambda_{3} & \cdots & e_{3} \\
& & & \ddots
\end{array}\right] \begin{gathered}
\\
\\
\end{gathered}
$$

where $\lambda_{n} \in \Gamma$ for all $n \geq 1$. Note that $T e_{n}=A e_{n} \in \vee\left\{e_{i}: 1 \leq i \leq n\right\}$ for all $n \geq 1$.

Since T is skew symmetric, we assume that \widehat{C} is a conjugation on \mathcal{M} so that $\widehat{C} T \widehat{C}=-T^{*}$. It can be seen from the proof of Theorem 2.2 that $\widehat{C}(\mathcal{M})=\mathcal{N}$ and $\widehat{C}(\mathcal{N})=\mathcal{M}$. Thus $\left\{\widehat{C} e_{i}\right\}_{i=1}^{\infty}$ is an ONB of \mathcal{N}. Noting that $\lambda_{i} \neq-\lambda_{j}$ for all $i, j \geq 1$, it follows from Lemma 2.3 that $\left\langle\widehat{C} e_{i}, e_{j}\right\rangle=0$ for all $i, j \geq 1$. So \mathcal{M} is orthogonal to \mathcal{N}. Since \mathcal{M} is invariant under T and \mathcal{N} is invariant under T^{*}, we may assume that

$$
T=\left[\begin{array}{ccc}
A & E & G \\
0 & R & F \\
0 & 0 & B
\end{array}\right] \underset{\mathcal{N}}{\mathcal{L}},
$$

where $\mathcal{L}=(\mathcal{M}+\mathcal{N})^{\perp}$.

Noting that $\widehat{C}(\mathcal{M})=\mathcal{N}$ and $\widehat{C}(\mathcal{N})=\mathcal{M}$, we deduce that $\widehat{C}(\mathcal{L})=\mathcal{L}$ and \widehat{C} can be written as

$$
\widehat{C}=\left[\begin{array}{ccc}
0 & 0 & C_{3} \\
0 & C_{2} & 0 \\
C_{1} & 0 & 0
\end{array}\right] \begin{gathered}
\mathcal{M} \\
\mathcal{L} . \\
\mathcal{N}
\end{gathered}
$$

It follows from $\widehat{C}^{2}=I$ that C_{2} is a conjugation on $\mathcal{L}, C_{1}: \mathcal{M} \rightarrow \mathcal{N}$ is an antiunitary operator and $C_{1}^{-1}=C_{3}$.

Since $T \widehat{C}=-\widehat{C} T^{*}$, a direct matrical calculation shows that
$A C_{3}=-C_{3} B^{*}, B C_{1}=-C_{1} A^{*}, R C_{2}=-C_{2} R^{*}, G C_{1}=-C_{3} G^{*}, F C_{1}=-C_{2} E^{*}$.
Set $D=C_{2}$. Then $D R D=-R^{*}$, which implies that R is skew symmetric. Also one can easily check that all the following operators are skew symmetric

$$
\left[\begin{array}{ccc}
0 & E & 0 \\
0 & 0 & F \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 0 & G \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & R & 0 \\
0 & 0 & B
\end{array}\right]
$$

with respect to the same conjugation \widehat{C}. Define

$$
\widehat{D}=\left[\begin{array}{cc}
0 & C_{3} \\
C_{1} & 0
\end{array}\right] \begin{gathered}
\mathcal{M} \\
\mathcal{N}
\end{gathered}
$$

Then \widehat{D} is a conjugation on $\mathcal{M}+\mathcal{N}$ and

$$
\widehat{D}\left[\begin{array}{cc}
A & G \\
0 & B
\end{array}\right]=\left[\begin{array}{cc}
0 & C_{3} B \\
C_{1} A & C_{1} G
\end{array}\right]=\left[\begin{array}{cc}
0 & -A^{*} C_{3} \\
-B^{*} C_{1} & -G^{*} C_{3}
\end{array}\right]=-\left[\begin{array}{cc}
A^{*} & 0 \\
G^{*} & B^{*}
\end{array}\right] \widehat{D}
$$

Similarly one can check that

$$
\widehat{D}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]=-\left[\begin{array}{cc}
A^{*} & 0 \\
0 & B^{*}
\end{array}\right] \widehat{D}, \quad \widehat{D}\left[\begin{array}{cc}
0 & G \\
0 & 0
\end{array}\right]=-\left[\begin{array}{cc}
0 & 0 \\
G^{*} & 0
\end{array}\right] \widehat{D} .
$$

Then the following operators are skew symmetric

$$
\left[\begin{array}{cc}
A & G \\
0 & B
\end{array}\right], \quad\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right], \quad\left[\begin{array}{cc}
0 & G \\
0 & 0
\end{array}\right]
$$

with respect to the same conjugation \widehat{D}.
Choose a conjugation C on \mathcal{M} and set $U=C_{1} C$. Then $U: \mathcal{M} \rightarrow \mathcal{N}$ is unitary and $U^{-1}=C C_{3}$. Thus

$$
B U=B C_{1} C=-C_{1} A^{*} C=-\left(C_{1} C\right)\left(C A^{*} C\right)=-U\left(C A^{*} C\right),
$$

which implies $B \cong\left(-A^{t}\right)$ and, equivalently, $A \cong\left(-B^{t}\right)$.
Define $V: \mathcal{M} \oplus \mathcal{L} \oplus \mathcal{M} \rightarrow \mathcal{H}$ as $V(x, y, z)=x+y+U z$. Then V is unitary and V can be written as

$$
V=\left[\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & U
\end{array}\right] \underset{\mathcal{M}}{\mathcal{M}}
$$

Then

$$
T V=\left[\begin{array}{ccc}
A & E & G U \\
0 & R & F U \\
0 & 0 & B U
\end{array}\right]=\left[\begin{array}{ccc}
A & E & G U \\
0 & R & -C_{2} E^{*} C \\
0 & 0 & -U\left(C A^{*} C\right)
\end{array}\right]=V\left[\begin{array}{ccc}
A & E & G U \\
0 & R & -D E^{*} C \\
0 & 0 & -C A^{*} C
\end{array}\right]
$$

Set $G_{1}=G U$. Then $G_{1} \in \mathcal{B}(\mathcal{M})$ and

$$
C G_{1} C=C G U C=C G C_{1}=-C C_{3} G^{*}=-U^{*} G^{*}=-(G U)^{*}=-G_{1}^{*} .
$$

That is, $G_{1} \in S_{C}(\mathcal{M})$. This completes the proof.
Remark 2.6. One can see from the proof of Theorem 2.5 that A, B^{*} in (2.3) are both triangular, that is, A, B^{*} can be written as upper-triangular matrices with respect to suitably chosen orthonormal bases.

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral shift defined by $S e_{i}=e_{i+1}$ for $i \geq 1$, where $\left\{e_{i}\right\}_{i=1}^{\infty}$ is an ONB of \mathcal{H}. Assume that $T \in \mathcal{B}(\mathcal{H})$ and $n \in \mathbb{N}$. Define

$$
R_{T}=\left[\begin{array}{cc}
S^{* n} & T \\
0 & S^{n}
\end{array}\right] \begin{gathered}
\mathcal{H}_{1} \\
\mathcal{H}_{2}
\end{gathered}
$$

where $\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}$. Such an operator R_{T} is called a Foguel operator of order n. Since $S^{* n}$ is a Cowen-Douglas operator with index n on $\mathbb{D}=\{z \in \mathbb{C}:|z|<$ $1\}$, we have

$$
\bigvee_{k \geq 1} \operatorname{ker}\left(S^{* n}-\frac{1}{2}\right)^{k}=\mathcal{H}=\bigvee_{k \geq 1} \operatorname{ker}\left(S^{* n}+\frac{1}{2}\right)^{k}
$$

Then one can check that

$$
\bigvee_{k \geq 1} \operatorname{ker}\left(R_{T}-\frac{1}{2}\right)^{k}=\mathcal{H}_{1}, \quad \bigvee_{k \geq 1} \operatorname{ker}\left(R_{T}^{*}+\frac{1}{2}\right)^{k}=\mathcal{H}_{2}
$$

In view of Theorem 2.5, if R_{T} is skew symmetric, then there exist a conjugation C on \mathcal{H} and $G \in S_{C}(\mathcal{H})$ such that

$$
R_{T} \cong\left[\begin{array}{cc}
S^{* n} & G \\
0 & -C S^{n} C
\end{array}\right]
$$

3. Skew symmetric triangular operators

This section is devoted to describing certain skew symmetric triangular operators. The main results of this section are Theorems 3.4 and 3.7. To proceed, we first introduce some notation and terminology.

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be triangular if

$$
\bigvee_{\lambda \in \mathbb{C}, n \geq 1} \operatorname{ker}(T-\lambda)^{n}=\mathcal{H}
$$

We remark that T is triangular if and only if T admits an upper triangular matrix representation

$$
T=\left[\begin{array}{cccc}
\lambda_{1} & * & * & \cdots \\
& \lambda_{2} & * & \cdots \\
& & \lambda_{3} & \cdots \\
& & & \ddots
\end{array}\right]
$$

with respect to some orthonormal basis of \mathcal{H}, where each omitted entry is zero. The well-known Cowen-Douglas operators, which are closely related to complex geometry [5], are triangular.

When an operator T and its adjoint T^{*} are both triangular (in general, with respect to different orthonormal bases), T is called bitriangular. This class contains all algebraic operators, diagonal normal operators and block diagonal operators. Obviously, every operator on finite-dimensional Hilbert space is bitriangular. There exist triangular operators which are not bitriangular. The adjoint of the forward unilateral shift is such an example. However, each skew symmetric triangular operator must be bitriangular.

Lemma 3.1. If $T \in \mathcal{B}(\mathcal{H})$ is skew symmetric and triangular, then T is bitriangular.

Proof. Since T is skew symmetric, there is a conjugation C on \mathcal{H} such that $T^{*} C=-C T$. Hence $(-1)^{n}\left(T^{*}+\bar{\lambda}\right)^{n} C=C(T-\lambda)^{n}$ and $C\left(\operatorname{ker}(T-\lambda)^{n}\right)=$ $\operatorname{ker}\left(T^{*}+\bar{\lambda}\right)^{n}$ for all $\lambda \in \mathbb{C}$ and $n \geq 1$.

Note that

$$
\bigvee_{\lambda \in \mathbb{C}, n \geq 1} \operatorname{ker}(T-\lambda)^{n}=\mathcal{H}
$$

Since C is a conjugation, it follows that

$$
\mathcal{H}=C(\mathcal{H})=\bigvee_{\lambda \in \mathbb{C}, n \geq 1} C\left(\operatorname{ker}(T-\lambda)^{n}\right)=\bigvee_{\lambda \in \mathbb{C}, n \geq 1} \operatorname{ker}\left(T^{*}+\bar{\lambda}\right)^{n}
$$

Hence T^{*} is triangular and T is bitriangular.
Remark 3.2. Let $T \in \mathcal{B}(\mathcal{H})$ be skew symmetric. From the proof of Lemma 3.1, one can see that $\lambda \in \sigma_{p}(T)$ if and only if $-\bar{\lambda} \in \sigma_{p}\left(T^{*}\right)$, where $\sigma_{p}(\cdot)$ denotes point spectrum. In particular, $\operatorname{dim} \operatorname{ker}(T-\lambda)=\operatorname{dim} \operatorname{ker}(T+\lambda)^{*}$.

Lemma 3.3. Let $T \in \mathcal{B}(\mathcal{H})$. Assume that $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ with $\lambda_{1} \neq \lambda_{2}$ and $u \in \operatorname{ker}\left(T-\lambda_{1}\right), v \in \operatorname{ker}\left(T-\lambda_{2}\right)^{*}$. Then $\langle u, v\rangle=0$.

Proof. Compute to see

$$
\lambda_{1}\langle u, v\rangle=\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle=\lambda_{2}\langle u, v\rangle .
$$

Since $\lambda_{1} \neq \lambda_{2}$, it follows that $\langle u, v\rangle=0$.

Theorem 3.4. Let $T \in \mathcal{B}(\mathcal{H})$. Suppose that $\left\{\lambda_{i}: i \in \mathbb{N}\right\}$ are distinct eigenvalues of T and $u_{i} \in \operatorname{ker}\left(T-\lambda_{i}\right)$ is a unit vector for $i \in \mathbb{N}$. If $\vee\left\{u_{i}: i \in \mathbb{N}\right\}=\mathcal{H}$, then T is skew symmetric if and only if there exist unit vectors $\left\{v_{i}: i \in \mathbb{N}\right\}$ with $v_{i} \in \operatorname{ker}\left(T+\lambda_{i}\right)^{*}$ for $i \in \mathbb{N}$ such that $\vee\left\{v_{j}: j \in \mathbb{N}\right\}=\mathcal{H},\left\langle u_{i}, u_{j}\right\rangle=\left\langle v_{j}, v_{i}\right\rangle$ and $\left\langle u_{i}, v_{j}\right\rangle=\left\langle u_{j}, v_{i}\right\rangle$ for any $i, j \in \mathbb{N}$.

Proof. " \Longrightarrow ". Assume that C is a conjugation on \mathcal{H} satisfying $C T C=-T^{*}$. For each $i \geq 1$, set $v_{i}=C u_{i}$. Note that

$$
T^{*} v_{i}=T^{*} C u_{i}=-C T u_{i}=-\overline{\lambda_{i}} C u_{i}=-\overline{\lambda_{i}} v_{i} .
$$

It follows that each v_{i} is a normalized eigenvector of T^{*} corresponding to $-\overline{\lambda_{i}}$. Moreover, we have

$$
\vee\left\{v_{i}: i \geq 1\right\}=\vee\left\{C u_{i}: i \geq 1\right\}=C\left(\vee\left\{u_{i}: i \geq 1\right\}\right)=C(\mathcal{H})=\mathcal{H}
$$

For $i, j \geq 1$, since C is a conjugation, it follows that

$$
\left\langle v_{j}, v_{i}\right\rangle=\left\langle C u_{j}, C u_{i}\right\rangle=\left\langle u_{i}, u_{j}\right\rangle
$$

and

$$
\left\langle u_{i}, v_{j}\right\rangle=\left\langle C v_{j}, C u_{i}\right\rangle=\left\langle u_{j}, v_{i}\right\rangle .
$$

This proves the necessity.
" $\Longleftarrow "$. Assume that v_{i} is a normalized eigenvector of T^{*} corresponding to $-\overline{\lambda_{i}}$ for $i \geq 1, \vee\left\{v_{i}: i \geq 1\right\}=\mathcal{H}$ and

$$
\left\langle u_{i}, u_{j}\right\rangle=\left\langle v_{j}, v_{i}\right\rangle, \quad\left\langle u_{i}, v_{j}\right\rangle=\left\langle u_{j}, v_{i}\right\rangle, \quad \forall i, j \geq 1
$$

We shall construct a conjugation C on \mathcal{H} such that $C T C=-T^{*}$.
Denote by \mathcal{H}_{0} the set of all finite linear combinations of $u_{i}{ }^{\prime}$'s, and by \mathcal{H}_{1} the set of all finite linear combinations of v_{i} 's. By the hypothesis, \mathcal{H}_{i} is a dense linear manifold of $\mathcal{H}, i=1,2$.

For each $x \in \mathcal{H}_{0}$ with $x=\sum_{i=1}^{n} \alpha_{i} u_{i}$, define $C x=\sum_{i=1}^{n} \overline{\alpha_{i}} v_{i}$. If $y \in \mathcal{H}_{0}$ and $y=\sum_{j=1}^{n} \beta_{j} u_{j}$, one can check that

$$
\begin{aligned}
\langle C x, C y\rangle & =\left\langle\sum_{i=1}^{n} \overline{\alpha_{i}} v_{i}, \sum_{j=1}^{n} \overline{\beta_{j}} v_{j}\right\rangle \\
& =\sum_{i, j=1}^{n} \overline{\alpha_{i}} \beta_{j}\left\langle v_{i}, v_{j}\right\rangle \\
& =\sum_{i, j=1}^{n} \overline{\alpha_{i}} \beta_{j}\left\langle u_{j}, u_{i}\right\rangle \\
& =\left\langle\sum_{j=1}^{n} \beta_{j} u_{j}, \sum_{i=1}^{n} \alpha_{i} u_{i}\right\rangle \\
& =\langle y, x\rangle
\end{aligned}
$$

It follows that the map $C: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}$ is conjugate-linear, isometric and hence well defined. Moreover, C admits a continuous extension to \mathcal{H}, denoted by C
again. It is obvious that C is surjective and hence invertible. In particular, we have

$$
\langle C x, C y\rangle=\langle y, x\rangle, \quad \forall x, y \in \mathcal{H} .
$$

We claim that C is a conjugation. Now it suffices to prove that C is involutive, that is, $C^{2}=I$. Since $\vee\left\{u_{i}: i \geq 1\right\}=\mathcal{H}$, we need only check that $C^{2} u_{i}=u_{i}$ for each $i \geq 1$.

Now fix an $i \geq 1$. Since $\vee\left\{v_{j}: j \geq 1\right\}=\mathcal{H}$ and $u_{i} \neq 0$, there exists some $\tau_{i} \geq 1$ such that $\left\langle u_{i}, v_{\tau_{i}}\right\rangle \neq 0$. By Lemma 3.3, it follows that $\lambda_{i}=-\lambda_{\tau_{i}}$. Since λ_{j} 's are pairwise distinct, such τ_{i} is unique. Thus $u_{i} \in\left\{v_{j}: j \neq \tau_{i}\right\}^{\perp}$. Since $\vee\left\{v_{j}: j \geq 1\right\}=\mathcal{H}$, it follows that $\left\{v_{j}: j \neq \tau_{i}\right\}^{\perp}=\vee\left\{u_{i}\right\}$. For $j \geq 1$ with $j \neq \tau_{i}$, we have

$$
\left\langle C v_{i}, v_{j}\right\rangle=\left\langle C v_{i}, C u_{j}\right\rangle=\left\langle u_{j}, v_{i}\right\rangle=\left\langle u_{i}, v_{j}\right\rangle=0 .
$$

So $C v_{i} \in \vee\left\{u_{i}\right\}$. Since τ is isometric, we obtain $C v_{i}=\alpha u_{i}$ for some unimodular constant α. So

$$
\left\langle u_{\tau_{i}}, v_{i}\right\rangle=\left\langle C v_{i}, C u_{\tau_{i}}\right\rangle=\left\langle\alpha u_{i}, v_{\tau_{i}}\right\rangle=\alpha\left\langle u_{\tau_{i}}, v_{i}\right\rangle .
$$

Noting that $\left\langle u_{i}, v_{\tau_{i}}\right\rangle \neq 0$, we have $\alpha=1$ and hence $C^{2} u_{i}=C v_{i}=u_{i}$. Thus we have proved that C is a conjugation.

For each $i \geq 1$, compute to see that

$$
C T u_{i}=C\left(\lambda_{i} u_{i}\right)=\overline{\lambda_{i}} C u_{i}=\overline{\lambda_{i}} v_{i}=-T^{*} v_{i}=-T^{*} C u_{i},
$$

which implies that $C T=-T^{*} C$. Hence T is skew symmetric.
From the proof for the sufficiency of Theorem 3.4, one can see the following result.

Corollary 3.5. Let $T \in \mathcal{B}(\mathcal{H})$. Suppose that $\left\{\lambda_{i}: i \in \mathbb{N}\right\}$ are distinct eigenvalues of T and $u_{i} \in \operatorname{ker}\left(T-\lambda_{i}\right)$ is a unit vector for $i \geq 1$. If $\vee\left\{u_{i}: i \geq 1\right\}=\mathcal{H}$ and T is skew symmetric, then $\left\{\lambda_{i}: i \in \mathbb{N}\right\}=\left\{-\lambda_{i}: i \in \mathbb{N}\right\}$.

For a general skew symmetric operator $T, \lambda \in \sigma_{p}(T)$ does not imply $-\lambda \in$ $\sigma_{p}(T)$. Here is an example.
Example 3.6. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an ONB of \mathcal{H} and S be the operator on \mathcal{H} defined as

$$
S e_{i}=e_{i+1}, \quad \forall i \geq 1
$$

For $x \in \mathcal{H}$ with $x=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$, define $C x=\sum_{i=1}^{\infty} \overline{\alpha_{i}} e_{i}$. Then C is a conjugation on \mathcal{H} and it is easy to check $C S C=S$. Set

$$
T=\left[\begin{array}{cc}
I-S & 0 \\
0 & S^{*}-I
\end{array}\right] \begin{gathered}
\mathcal{H} \\
\mathcal{H}
\end{gathered} \quad D=\left[\begin{array}{cc}
0 & C \\
C & 0
\end{array}\right] \begin{gathered}
\mathcal{H} \\
\mathcal{H}
\end{gathered}
$$

Then D is a conjugation on $\mathcal{H} \oplus \mathcal{H}$ and one can see $D T D=-T^{*}$. So T is skew symmetric. Note that $\sigma_{p}(T)=\{z \in \mathbb{C}:|z+1|<1\}$.

For certain irreducible triangular operators, the following result provides a geometric characterization of skew symmetry.

Theorem 3.7. Let $T \in \mathcal{B}(\mathcal{H})$ be irreducible. Suppose that $\left\{\lambda_{i}: i \in \mathbb{N}\right\}$ are distinct eigenvalues of T, u_{i} is a normalized eigenvector of T corresponding to λ_{i} and v_{i} is a normalized eigenvector of T^{*} corresponding to $-\overline{\lambda_{i}}$ for $i \in \mathbb{N}$. If

$$
\operatorname{dim} \operatorname{ker}\left(T-\lambda_{i}\right)=1=\operatorname{dim} \operatorname{ker}\left(T+\lambda_{i}\right)^{*}, \quad \forall i \geq 1
$$

and $\vee\left\{u_{i}: i \geq 1\right\}=\mathcal{H}=\vee\left\{v_{i}: i \geq 1\right\}$, then the following are equivalent:
(i) T is skew symmetric;
(ii) there exist unimodular constants $\left\{\alpha_{i}: i \geq 1\right\}$ such that

$$
\alpha_{i}\left\langle u_{i}, u_{j}\right\rangle=\alpha_{j}\left\langle v_{j}, v_{i}\right\rangle, \quad \alpha_{i}\left\langle u_{i}, v_{j}\right\rangle=\alpha_{j}\left\langle u_{j}, v_{i}\right\rangle, \quad \forall i, j \geq 1 ;
$$

(iii) the conditions

$$
\begin{aligned}
& \left\langle u_{i_{1}}, u_{i_{2}}\right\rangle\left\langle u_{i_{2}}, u_{i_{3}}\right\rangle \cdots\left\langle u_{i_{n-1}}, u_{i_{n}}\right\rangle\left\langle u_{i_{n}}, u_{i_{1}}\right\rangle \\
& =\left\langle v_{i_{2}}, v_{i_{1}}\right\rangle\left\langle v_{i_{3}}, v_{i_{2}}\right\rangle \cdots\left\langle v_{i_{n}}, v_{i_{n-1}}\right\rangle\left\langle v_{i_{1}}, v_{i_{n}}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle u_{i_{1}}, u_{i_{2}}\right\rangle\left\langle u_{i_{2}}, u_{i_{3}}\right\rangle \cdots\left\langle u_{i_{n-1}}, u_{i_{n}}\right\rangle\left\langle u_{i_{n}}, v_{i_{1}}\right\rangle \\
& =\left\langle v_{i_{2}}, v_{i_{1}}\right\rangle\left\langle v_{i_{3}}, v_{i_{2}}\right\rangle \cdots\left\langle v_{i_{n}}, v_{i_{n-1}}\right\rangle\left\langle u_{i_{1}}, v_{i_{n}}\right\rangle
\end{aligned}
$$

hold for any $n \in \mathbb{N}$ and any n-tuple $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ in \mathbb{N}.
Proof. "(ii) $\Longrightarrow(\mathrm{i})$ ". Set $w_{i}=\alpha_{i} v_{i}$ for $i \geq 1$. It is easy to see that

$$
\left\langle u_{i}, u_{j}\right\rangle=\left\langle w_{j}, w_{i}\right\rangle, \quad\left\langle u_{i}, w_{j}\right\rangle=\left\langle u_{j}, w_{i}\right\rangle, \quad i, j \geq 1
$$

Note that $w_{i} \in \operatorname{ker}\left(T+\lambda_{i}\right)^{*}$ and $\left\|w_{i}\right\|=1$ for $i \geq 1$. In view of Theorem 3.4, T is skew symmetric.
"(i) $\Longrightarrow\left(\right.$ iii)". Assume that C is a conjugation on \mathcal{H} satisfying $C T C=-T^{*}$.
For each $i \geq 1$, we note that $T^{*} C u_{i}=-C T u_{i}=-\overline{\lambda_{i}} C u_{i}$. Thus $C u_{i} \in$ $\operatorname{ker}\left(T+\lambda_{i}\right)^{*}$. Note that $\operatorname{ker}\left(T+\lambda_{i}\right)^{*}=\vee\left\{v_{i}\right\}$. Thus there exist unimodular α_{i} such that $C u_{i}=\alpha_{i} v_{i}$ for $i \geq 1$.

For $i, j \geq 1$, since C is a conjugation, it follows that

$$
\left\langle u_{i}, u_{j}\right\rangle=\left\langle C u_{j}, C u_{i}\right\rangle=\left\langle\alpha_{j} v_{j}, \alpha_{i} v_{i}\right\rangle=\overline{\alpha_{i}} \alpha_{j}\left\langle v_{j}, v_{i}\right\rangle
$$

and

$$
\left\langle u_{i}, v_{j}\right\rangle=\left\langle C v_{j}, C u_{i}\right\rangle=\left\langle\alpha_{j} u_{j}, \alpha_{i} v_{i}\right\rangle=\alpha_{j} \overline{\alpha_{i}}\left\langle u_{j}, v_{i}\right\rangle
$$

The desired equalities follow readily.
"(iii) \Longrightarrow (ii)". By the hypothesis, one can easily check that

$$
\begin{equation*}
\left|\left\langle u_{i}, u_{j}\right\rangle\right|=\left|\left\langle v_{j}, v_{i}\right\rangle\right|, \quad\left|\left\langle u_{i}, v_{j}\right\rangle\right|=\left|\left\langle u_{j}, v_{i}\right\rangle\right|, \quad \forall i, j \geq 1 . \tag{3.1}
\end{equation*}
$$

For $i, j \in \mathbb{N}$, we define $i \sim j$ if there exist $i_{1}, i_{2}, \ldots, i_{n} \in \mathbb{N}$ such that

$$
\left\langle u_{i}, u_{i_{1}}\right\rangle\left\langle u_{i_{1}}, u_{i_{2}}\right\rangle \cdots\left\langle u_{i_{n-1}}, u_{i_{n}}\right\rangle\left\langle u_{i_{n}}, u_{j}\right\rangle \neq 0
$$

One can verify that \sim is an equivalence relation on \mathbb{N}.
Denote $\Lambda=\{j \in \mathbb{N}: 1 \sim j\}$. Then $\left\langle u_{i}, u_{j}\right\rangle=0$ for all $i \in \Lambda$ and $j \in \mathbb{N} \backslash \Lambda$. It follows that $\mathcal{M}=\vee\left\{u_{i}: i \in \Lambda\right\}$ is orthogonal to $\mathcal{N}=\vee\left\{u_{i}: i \in \mathbb{N} \backslash \Lambda\right\}$. We claim that $\Lambda=\mathbb{N}$. If not, then \mathcal{M}, \mathcal{N} are nonzero subspaces of \mathcal{H}. Noting that
each u_{i} is an eigenvector of T, it follows that \mathcal{M} and \mathcal{N} are both invariant under T. Since $\vee\left\{u_{i}: i \in \mathbb{N}\right\}=\mathcal{H}$, we deduce that T is reducible, a contradiction.

For convenience, we denote

$$
\Phi\left(i_{1}, i_{2}, \ldots, i_{k}\right)=\frac{\left\langle u_{i_{1}}, u_{i_{2}}\right\rangle\left\langle u_{i_{2}}, u_{i_{3}}\right\rangle \cdots\left\langle u_{i_{k-1}}, u_{i_{k}}\right\rangle}{\left\langle v_{i_{2}}, v_{i_{1}}\right\rangle\left\langle v_{i_{3}}, v_{i_{2}}\right\rangle \cdots\left\langle v_{i_{k}}, v_{i_{k-1}}\right\rangle}
$$

for $k \geq 2$ and k-tuple $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ in \mathbb{N}. By the hypothesis, if $\left\langle u_{i_{l}}, u_{i_{l+1}}\right\rangle \neq 0$ for all $1 \leq l \leq k-1$ and $\left\langle u_{i_{k}}, u_{i_{1}}\right\rangle \neq 0$, then $\left|\Phi\left(i_{1}, i_{2}, \ldots, i_{k}\right)\right|=1=$ $\Phi\left(i_{1}, i_{2}, \ldots, i_{k}, i_{1}\right)$ and $\overline{\Phi\left(i_{1}, i_{2}, \ldots, i_{k}\right)}=\Phi\left(i_{k}, i_{k-1}, \ldots, i_{1}\right)$. If, in addition, $\left\langle u_{i_{k}}, v_{i_{1}}\right\rangle \neq 0$, then

$$
\begin{equation*}
\Phi\left(i_{1}, i_{2}, \ldots, i_{k}\right)\left\langle u_{i_{k}}, v_{i_{1}}\right\rangle=\left\langle u_{i_{1}}, v_{i_{k}}\right\rangle . \tag{3.2}
\end{equation*}
$$

For each $i \in \mathbb{N}$, we can find $i_{1}, i_{2}, \ldots, i_{n} \in \mathbb{N}$ such that

$$
\left\langle u_{1}, u_{i_{1}}\right\rangle\left\langle u_{i_{1}}, u_{i_{2}}\right\rangle \cdots\left\langle u_{i_{n-1}}, u_{i_{n}}\right\rangle\left\langle u_{i_{n}}, u_{i}\right\rangle \neq 0 .
$$

Set $\alpha_{i}=\Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i\right)$.
Assume that $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ is a k-tuple in \mathbb{N} satisfying

$$
\left\langle u_{1}, u_{j_{1}}\right\rangle\left\langle u_{j_{1}}, u_{j_{2}}\right\rangle \cdots\left\langle u_{j_{k-1}}, u_{j_{k}}\right\rangle\left\langle u_{j_{k}}, u_{i}\right\rangle \neq 0 .
$$

Since

$$
\begin{aligned}
& \Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i\right) \overline{\Phi\left(1, j_{1}, j_{2}, \ldots, j_{k}, i\right)} \\
= & \Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i\right) \Phi\left(i, j_{k}, j_{k-1}, \ldots, j_{1}, 1\right) \\
= & \Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i, j_{k}, j_{k-1}, \ldots, j_{1}, 1\right)=1 .
\end{aligned}
$$

Thus $\Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i\right)=\Phi\left(1, j_{1}, j_{2}, \ldots, j_{k}, i\right)$. It shows that the definition of α_{i} does not depend on the choice of $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$.

Now it remains to check that

$$
\alpha_{i}\left\langle u_{i}, u_{j}\right\rangle=\alpha_{j}\left\langle v_{j}, v_{i}\right\rangle, \quad \alpha_{i}\left\langle u_{i}, v_{j}\right\rangle=\alpha_{j}\left\langle u_{j}, v_{i}\right\rangle, \quad \forall i, j \geq 1 .
$$

Assume that $\alpha_{i}=\Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i\right)$ and $\alpha_{j}=\Phi\left(1, j_{1}, j_{2}, \ldots, j_{k}, j\right)$. By (3.1), $\left\langle u_{i}, u_{j}\right\rangle=0$ if and only if $\left\langle v_{j}, v_{i}\right\rangle=0$. Thus we may assume that $\left\langle u_{i}, u_{j}\right\rangle\left\langle v_{i}, v_{j}\right\rangle \neq 0$. So

$$
\begin{aligned}
\alpha_{i}\left\langle u_{i}, u_{j}\right\rangle & =\Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i\right)\left\langle u_{i}, u_{j}\right\rangle \\
& =\Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i, j\right)\left\langle v_{j}, v_{i}\right\rangle=\alpha_{j}\left\langle v_{j}, v_{i}\right\rangle .
\end{aligned}
$$

By (3.1), $\left\langle u_{i}, v_{j}\right\rangle=0$ if and only if $\left\langle u_{j}, v_{i}\right\rangle=0$. We may assume that $\left\langle u_{i}, v_{j}\right\rangle\left\langle u_{j}, v_{i}\right\rangle \neq 0$. Then, in view of (3.2), we obtain

$$
\begin{aligned}
\overline{\alpha_{j}} \alpha_{i}\left\langle u_{i}, v_{j}\right\rangle & =\Phi\left(j, j_{k}, j_{k-1}, \ldots, j_{1}, 1\right) \Phi\left(1, i_{1}, i_{2}, \ldots, i_{n}, i\right)\left\langle u_{i}, v_{j}\right\rangle \\
& =\Phi\left(j, j_{k}, j_{k-1}, \ldots, j_{1}, 1, i_{1}, i_{2}, \ldots, i_{n}, i\right)\left\langle u_{i}, v_{j}\right\rangle \\
& =\left\langle u_{j}, v_{i}\right\rangle
\end{aligned}
$$

This completes the proof.
Now we give an example of skew symmetric operators satisfying the conditions in Theorem 2.5.

Example 3.8. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an OnB of \mathcal{H}. Set

$$
A=\sum_{n=1}^{\infty} \frac{e_{n} \otimes e_{n}}{n}, \quad E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}
$$

where $e_{1} \otimes e_{2}(x)=\left\langle x, e_{2}\right\rangle e_{1}$ for $x \in \mathcal{H}$. Then A is a diagonal operator, $A=A^{*}$, $\sigma(A)=\left\{\frac{1}{n}: n \geq 1\right\} \cup\{0\}$ and

$$
\bigvee_{n \geq 1} \operatorname{ker}\left(A-\frac{1}{n}\right)=\mathcal{H}
$$

Also we note that $\operatorname{rank}(A-\lambda)=\infty$ for all $\lambda \in \mathbb{C}$ and A is not an algebraic operator of degree 2. Then, by [6, Main Theorem], we can choose an irreducible $B \in \mathcal{B}(\mathcal{H})$ which is similar to A. It follows readily that B^{*} is also similar to A and

$$
\begin{equation*}
\bigvee_{n \geq 1} \operatorname{ker}\left(B-\frac{1}{n}\right)=\mathcal{H}=\bigvee_{n \geq 1} \operatorname{ker}\left(B^{*}-\frac{1}{n}\right) \tag{3.3}
\end{equation*}
$$

For $x \in \mathcal{H}$ with $x=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$, define $C x=\sum_{i=1}^{\infty} \overline{\alpha_{i}} e_{i}$. Then C is a conjugation on \mathcal{H} and one can check that $C E C=-E^{*}$. Define

$$
T=\left[\begin{array}{cc}
B & E \\
0 & -C B^{*} C
\end{array}\right] \begin{aligned}
& \mathcal{H}_{1} \\
& \mathcal{H}_{2}
\end{aligned}
$$

where $\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}$. In the remaining, we shall prove that T is skew symmetric and satisfies all the conditions stated in Theorem 3.7.

First we claim that T is skew symmetric. Set

$$
D=\left[\begin{array}{cc}
0 & C \\
C & 0
\end{array}\right] \begin{gathered}
\mathcal{H}_{1} \\
\mathcal{H}_{2}
\end{gathered}
$$

Then D is a conjugation on $\mathcal{H}_{1} \oplus \mathcal{H}_{2}$. Compute to see

$$
D T D=\left[\begin{array}{cc}
-B^{*} & 0 \\
C E C & C B C
\end{array}\right]=\left[\begin{array}{cc}
-B^{*} & 0 \\
-E^{*} & C B C
\end{array}\right]=-T^{*}
$$

So T is skew symmetric.
Next we shall check that

$$
\bigvee\left\{\operatorname{ker}\left(T-\frac{1}{n}\right), \operatorname{ker}\left(T+\frac{1}{n}\right): n \geq 1\right\}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

We note that $\sigma(B)=\sigma(A)=\left\{\frac{1}{n}: n \geq 1\right\} \cup\{0\}$ and $\sigma\left(-C B^{*} C\right)=-\sigma(B)$.
For each $n \geq 1$, since $-C B^{*} C-\frac{1}{n}$ is invertible, we have $\operatorname{ker}\left(T-\frac{1}{n}\right)=$ $\operatorname{ker}\left(B-\frac{1}{n}\right)$ and hence

$$
\operatorname{dim} \operatorname{ker}\left(T-\frac{1}{n}\right)=\operatorname{dim} \operatorname{ker}\left(B-\frac{1}{n}\right)=\operatorname{dim} \operatorname{ker}\left(A-\frac{1}{n}\right)=1
$$

In view of (3.3), we obtain

$$
\begin{equation*}
\bigvee_{n \geq 1} \operatorname{ker}\left(T-\frac{1}{n}\right)=\bigvee_{n \geq 1} \operatorname{ker}\left(B-\frac{1}{n}\right)=\mathcal{H}_{1} \tag{3.4}
\end{equation*}
$$

On the other hand, since $B+\frac{1}{n}$ is invertible, each $x \in \operatorname{ker}\left(T+\frac{1}{n}\right)$ has the form

$$
\begin{equation*}
\binom{-\left(B+\frac{1}{n}\right)^{-1} E y}{y} \tag{3.5}
\end{equation*}
$$

where $y \in \operatorname{ker}\left(-C B^{*} C+\frac{1}{n}\right)$. Note that $\operatorname{ker}\left(-C B^{*} C+\frac{1}{n}\right)=C\left(\operatorname{ker}\left(B^{*}-\frac{1}{n}\right)\right)$. Then

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker}\left(T+\frac{1}{n}\right) & =\operatorname{dim} \operatorname{ker}\left(-C B^{*} C+\frac{1}{n}\right)=\operatorname{dim} \operatorname{ker}\left(B^{*}-\frac{1}{n}\right) \\
& =\operatorname{dim} \operatorname{ker}\left(A^{*}-\frac{1}{n}\right)=\operatorname{dim} \operatorname{ker}\left(A-\frac{1}{n}\right)=1
\end{aligned}
$$

Furthermore, in view of (3.4) and (3.5), we have

$$
\bigvee\left\{\operatorname{ker}\left(T-\frac{1}{n}\right), \operatorname{ker}\left(T+\frac{1}{n}\right): n \geq 1\right\}=\mathcal{H}_{1} \oplus \bigvee_{n \geq 1} \operatorname{ker}\left(-C B^{*} C+\frac{1}{n}\right)
$$

Note that

$$
\begin{aligned}
\mathcal{H} & =C(\mathcal{H})=C\left(\bigvee_{n \geq 1} \operatorname{ker}\left(B^{*}-\frac{1}{n}\right)\right) \\
& =\bigvee_{n \geq 1} C\left(\operatorname{ker}\left(B^{*}-\frac{1}{n}\right)\right) \\
& =\bigvee_{n \geq 1} \operatorname{ker}\left(C B^{*} C-\frac{1}{n}\right) \\
& =\bigvee_{n \geq 1} \operatorname{ker}\left(-C B^{*} C+\frac{1}{n}\right)
\end{aligned}
$$

This implies that

$$
\bigvee\left\{\operatorname{ker}\left(T-\frac{1}{n}\right), \operatorname{ker}\left(T+\frac{1}{n}\right): n \geq 1\right\}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

Now it remains to prove that T is irreducible. In view of (3.4), \mathcal{H}_{1} is hyperinvariant under T. Then each orthogonal projection Q on $\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ commuting with T admits the form

$$
Q=\left[\begin{array}{cc}
Q_{1} & Q_{1,2} \\
0 & Q_{2}
\end{array}\right] \begin{gathered}
\mathcal{H}_{1} \\
\mathcal{H}_{2}
\end{gathered}
$$

Since $Q=Q^{*}$, we obtain $Q_{1,2}=0$. Thus Q_{1}, Q_{2} are orthogonal projections commuting with B and $C B^{*} C$ respectively. Note that B and $C B^{*} C$ are irreducible. Hence $Q_{i}=0$ or $I, i=1,2$. From $T Q=Q T$, one can see $Q_{1} E=E Q_{2}$. Since $E \neq 0$, we obtain either $Q_{1}=Q_{2}=0$ or $Q_{1}=Q_{2}=I$. This implies that T is irreducible. By Theorem 3.4, T satisfies all conditions stated in Theorem 3.7.

References

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, Inc., New York, 1993.
[2] Y. Chen, H. Koo, and Y. J. Lee, Ranks of commutators of Toeplitz operators on the harmonic Bergman space, Integral Equations Operator Theory 75 (2013), no. 1, 31-38.
[3] , Ranks of complex skew symmetric operators and applications to Toeplitz operators, J. Math. Anal. Appl. 425 (2015), no. 2, 734-747.
[4] N. Chevrot, E. Fricain, and D. Timotin, The characteristic function of a complex symmetric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877-2886 (electronic).
[5] M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), no. 3-4, 187-261.
[6] C. Fong and C. L. Jiang, Normal operators similar to irreducible operators, Acta Math. Sinica (N.S.) 10 (1994), no. 2, 132-135.
[7] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315 (electronic).
[8] , Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931 (electronic).
[9] S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251-1260.
[10] T. M. Gilbreath and W. R. Wogen, Remarks on the structure of complex symmetric operators, Integral Equations Operator Theory 59 (2007), no. 4, 585-590.
[11] K. Guo, Y. Ji, and S. Zhu, A C^{*}-algebra approach to complex symmetric operators, Trans. Amer. Math. Soc., doi: 10.1090/S0002-9947-2015-06215-1.
[12] K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory 72 (2014), no. 2, 529-547.
[13] C. G. Li and T. T. Zhou, Skew symmetry of a class of operators, Banach J. Math. Anal. 8 (2014), no. 1, 279-294.
[14] C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2755-2762.
[15] S. M. Zagorodnyuk, On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11-36.
[16] , On the complex symmetric and skew-symmetric operators with a simple spectrum, Symmetry Integrability Geom. Methods Appl. 7 (2011), 1-9.
[17] S. Zhu, Approximate unitary equivalence to skew symmetric operators, Complex Anal. Oper. Theory 8 (2014), no. 7, 1565-1580.
[18] 272.
[19] S. Zhu and C. G. Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no. 1, 511-530.
[20] S. Zhu and J. Zhao, The Riesz decomposition theorem for skew symmetric operators, J. Korean Math. Soc. 52 (2015), no. 2, 403-416.

Department of Mathematics
Jilin University
Changlhun 130012, P. R. China
E-mail address: zhusen@jlu.edu.cn

[^0]: Received January 4, 2015.
 2010 Mathematics Subject Classification. Primary 47A66, 47A65; Secondary 47A45.
 Key words and phrases. skew symmetric operator, complex symmetric operator, eigenvalue, triangular operator.

 Supported by the National Science Foundation of China (11101177, 11271150).

