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ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

Sen Zhu

Abstract. An operator T on a complex Hilbert space H is called skew
symmetric if T can be represented as a skew symmetric matrix relative to
some orthonormal basis for H. In this paper, we study skew symmetric
operators with eigenvalues. First, we provide an upper-triangular op-
erator matrix representation for skew symmetric operators with nonzero
eigenvalues. On the other hand, we give a description of certain skew sym-
metric triangular operators, which is based on the geometric relationship
between eigenvectors.

1. Introduction

Throughout this paper, we denote by H a complex separable infinite dimen-
sional Hilbert space endowed with the inner product 〈·, ·〉, and by B(H) the
algebra of all bounded linear operators on H. Recall that a map C on H is
called a conjugation if C is conjugate-linear, C−1 = C and 〈Cx,Cy〉 = 〈y, x〉
for all x, y ∈ H. An operator T ∈ B(H) is said to be skew symmetric if
CTC = −T ∗ for some conjugation C on H. We remark that T ∈ B(H) is skew
symmetric if and only if T admits a skew symmetric matrix representation with
respect to some orthonormal basis (onb, for short) of H. Thus skew symmetric
operators can be viewed as an infinite dimensional analogue of skew symmetric
matrices.

Skew symmetric operators have been studied for many years in the finite
dimensional setting. The most obvious examples of skew symmetric operators
on finite dimensional spaces are those Jordan blocks with even ranks (see [14,
Ex. 1.7]). Recently, there has been growing interest in skew symmetric oper-
ators in the infinite dimensional case, and some interesting results have been
obtained [13, 14, 15, 16, 17, 18, 20]. In particular, skew symmetric normal op-
erators, partial isometries, compact operators and weighted shifts are classified
[13, 14, 18].
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The primary motivation for the study of skew symmetric operators lies in
its connections to complex symmetric operators, which have received much
attention in the last decade [4, 7, 8, 9, 10, 11, 12, 19]. Recall that an operator
T ∈ B(H) is said to be complex symmetric if CTC = T ∗ for some conjugation
C on H. The following lemma, whose proof is omitted, summarizes some basic
facts about complex symmetric operators and skew symmetric operators.

Lemma 1.1. Let T ∈ B(H) and C be a conjugation on H. Then

(i) there exist A,B ∈ B(H) such that T = A + B, CAC = −A∗ and

CBC = B∗;
(ii) if CTC = −T ∗, then T 2n is complex symmetric with respect to C for

all n ≥ 1;
(iii) if T is complex symmetric, then T ⊕ (−T ) and T ∗T − TT ∗ are both

skew symmetric.

By Lemma 1.1, one can use complex symmetric operators to construct new
skew symmetric operators. In particular, if T is complex symmetric, then
T ∗T − TT ∗ is skew symmetric. In view of the description of skew symmetric
normal operators [14, Thm. 1.10], this provides a new approach to describing
complex symmetric operators. In a recent paper [12], one can see such an
application to Toeplitz operators. The study of skew symmetric operators has
applications to some special operators on function spaces [2, 3]. In particular,
any commutator of two truncated Toplitz operators is skew symmetric.

Another motivation for the study of skew symmetric operators lies in the con-
nection between skew symmetric operators and anti-automorphisms of singly
generatedC∗-algebras. Recall that an anti-automorphism of a C∗-algebraA is a
vector space isomorphism ϕ : A → A with ϕ(a∗) = ϕ(a)∗ and ϕ(ab) = ϕ(b)ϕ(a)
for a, b ∈ A. It is proved that each C∗-algebra generated by a skew symmetric
operator admits an involutory anti-automorphism on it (see [17, Cor. 3.2]).

The present aim of this paper is to explore the structure of skew symmetric
operators with eigenvalues. For skew symmetric operators with nonzero eigen-
values, we give an upper-triangular operator matrix representation to describe
their structure (see Theorem 2.5). An application to Foguel operators will be
provided. On the other hand, we give a geometric description of certain skew
symmetric triangular operators (see Theorems 3.4 and 3.7), which is based on
the geometric relationship between eigenvectors.

2. Upper triangular representation

In this section, we shall provide an upper-triangular operator matrix repre-
sentation for skew symmetric operators with nonzero eigenvalues and describe
their structure. The main results of this section are Theorems 2.2 and 2.5.

We first make some preparation.

Definition 2.1 ([1], page 95). Let T ∈ B(H). An operator A ∈ B(H) is called
a transpose of T , if A = CT ∗C for some conjugation C on H.
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Note that if T ∈ B(H) is skew symmetric, then −T = CT ∗C for some
conjugation C on H; so −T is a transpose of T . In general, an operator has
more than one transpose [17, Ex. 2.2]. However, any two transposes of an
operator are unitarily equivalent.

Recall that a map C on H is called an antiunitary operator if C is conjugate-
linear, invertible and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H. Thus a conjugation is
an involutory antiunitary operator.

If T ∈ B(H) and N is a subspace of H, then TN will denote the compression

of T to N , that is, the restriction of PNT to N , where PN denotes the orthog-
onal projection of H onto N . It N is invariant under T , then TN = T |N . We
write kerT for the kernel of T .

Theorem 2.2. Let T ∈ B(H) and Γ ⊂ C. Assume that

M =
∨

λ∈Γ,n≥1

ker(T − λ)n, N =
∨

λ∈Γ,n≥1

ker (T + λ)∗n,

where ∨ denotes closed linear span. If T is skew symmetric, then T |M ∼=
(−T t

N ), where ∼= denotes unitary equivalence.

Proof. Assume that C is a conjugation on H and CTC = −T ∗. Since
C(T − λ)n = (−1)n(T + λ)∗

n
C for λ ∈ C, it follows that C(ker(T − λ)n) =

ker (T + λ)∗
n
. Thus

C(M) = C
( ∨

λ∈Γ,n≥1

ker(T − λ)n
)

=
∨

λ∈Γ,n≥1

C
(
ker(T − λ)n

)

=
∨

λ∈Γ,n≥1

ker (T + λ)∗
n
= N .

It follows that C(N ) = M.
Note that M is invariant under T and N is invariant under T ∗. Denote

A = T |M and B = TN . Thus T ∗|N = (TN )∗ = B∗.
Define D : M → N as Dx = Cx for x ∈ M. Then D is an antiunitary

operator and D−1y = Cy for all y ∈ N .
Since CT = −T ∗C, for given x ∈ M, we have

DAx = CAx = CTx = −T ∗Cx = −T ∗Dx = −B∗Dx.

So DA = −B∗D. Choose a conjugation E on N and set U = ED. Then
U : M → N is unitary and

UA = EDA = −EB∗D = −(EB∗E)(ED) = −(EB∗E)U.

That is, A ∼= (−Bt). �

Lemma 2.3. Let T ∈ B(H) and {ei}∞i=1 be an orthonormal subset of H. As-

sume that Ten ∈ ∨{ei : 1 ≤ i ≤ n} and 〈Ten, en〉 = λn for all n ≥ 1,
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where λi ∈ C and λi 6= −λj for all i, j ≥ 1. If C is a conjugation on H and

CTC = −T ∗, then

(i) 〈TCei, Cei〉 = −λi for all i ≥ 1, and
(ii) 〈Cei, ej〉 = 0 for all i, j ≥ 1.

Proof. For each i ≥ 1, compute to see

〈TCei, Cei〉 = 〈Cei, T
∗Cei〉 = −〈Cei, CT ei〉 = −〈Tei, ei〉 = −λi.

The rest is devoted to the proof of (ii). Form1,m2 ∈ N, we say that (m1,m2)
satisfies property (P) if

〈Cei, ej〉 = 0, ∀1 ≤ i ≤ m1, 1 ≤ j ≤ m2.

Noting that 〈Cx, y〉 = 〈Cy, x〉 for all x, y, one can see that (m1,m2) satisfies
property (P) if and only (m2,m1) satisfies (P). Since

(2.1) 〈Cei, T ej〉 = 〈CTej, ei〉 = −〈T ∗Cej , ei〉 = −〈Cej, T ei〉,

it follows readily that

(2.2) 〈Cei, T ei〉 = 0, ∀i ≥ 1.

We shall proceed by induction.
Claim 1. For m ≥ 1, if (1,m) satisfies (P), then (1,m+ 1) satisfies (P).
Noting that Tem+1 ∈ ∨{ei : 1 ≤ i ≤ m+1} and 〈Tem+1, em+1〉 = λm+1, we

may assume

Tem+1 = λm+1em+1 +

m∑

i=1

αiei.

Since 〈Ce1, ej〉 = 0 for all 1 ≤ j ≤ m, it follows that 〈Ce1, T em+1〉 =
〈Ce1, λm+1em+1〉. On the other hand, one can see from (2.1) that

〈Ce1, T em+1〉 = −〈Cem+1, T e1〉 = −〈Cem+1, λ1e1〉 = −〈Ce1, λ1em+1〉.

Since −λ1 6= λm+1, we obtain 〈Ce1, em+1〉 = 0. This implies that (1,m + 1)
satisfies (P).

Claim 2. For n ≥ 2 and m ≥ 1, if both (n,m) and (n − 1,m + 1) satisfy
(P), then (n,m+ 1) satisfy (P).

Assume that

Tem+1 = λm+1em+1 +
m∑

i=1

αiei, T en = λnen +
n−1∑

j=1

βjej.

Noting that (n,m) satisfies (P), we obtain 〈Cen, T em+1〉 = 〈Cen, λm+1em+1〉.
On the other hand, since (m+ 1, n− 1) satisfies (P), it follows from (2.1) that

〈Cen, T em+1〉 = −〈Cem+1, T en〉 = −〈Cem+1, λnen〉 = −〈Cen, λnem+1〉.

Since −λn 6= λm+1, we obtain 〈Cen, em+1〉 = 0. So (n,m+ 1) satisfies (P).
Now we shall show that 〈Cei, ej〉 = 0 for all i, j ≥ 1.
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By (2.2), 〈Ce1, λ1e1〉 = 〈Ce1, T e1〉 = 0, that is, (1, 1) satisfies (P). In view
of Claim 1, one can deduce recursively that (1, n) satisfies (P) for all n ≥ 1.
Thus (n, 1) satisfies (P) for all n ≥ 1.

Since (2, 1) and (1, 2) satisfy (P), it follows from Claim 2 that (2, 2) satisfies
(P). On the other hand, noting that (1, 3) satisfies (P), it follows from Claim 2
again that (2, 3) satisfies (P). Recursively we can prove that (2, n) satisfies (P)
for all n ≥ 1.

Since (2, 3) and (3, 2) satisfy (P), it follows from Claim 2 that (3, 3) satisfies
(P). On the other hand, noting that (2, 4) satisfies (P), it follows from Claim 2
again that (3, 4) satisfies (P). We can recursively prove that (3, n) satisfies (P)
for all n ≥ 1.

For any m ≥ 1, just we have done above, one can prove that (m,n) satisfies
(P) for all n ≥ 1. That is, 〈Cei, ej〉 = 0 for all i, j ≥ 1. �

Remark 2.4. Let A ∈ B(H) and D be a conjugation on H satisfying DAD =
−A∗. If e ∈ kerA and e 6= 0, then it is possible that 〈De, e〉 6= 0. Here is an
example:

T =



0 0 0
0 N 0
0 0 −N



C

H
H
,

where N is an invertible normal operator on H. By [14, Thm. 1.10], T is
skew symmetric. Assume that C is a conjugation on C ⊕ H ⊕ H satisfying
CTC = −T ∗. Then C(kerT ) = kerT ∗. Since kerT = kerT ∗ = C is of
dimension 1, it follows that 〈Ce, e〉 6= 0 for all nonzero e ∈ kerT .

Given a conjugation C on H, we denote by SC(H) the set of all skew sym-
metric operators on H with respect to C, that is,

SC(H) = {X ∈ B(H) : CXC = −X∗}.

The following result shows that each skew symmetric operator with nonzero
eigenvalues admits an upper-triangular operator matrix representation.

Theorem 2.5. Let T ∈ B(H) and Γ ⊂ C with Γ ∩ (−Γ) = ∅. Denote

M =
∨

λ∈Γ,n≥1

ker(T − λ)n, N =
∨

λ∈Γ,n≥1

ker (T + λ)∗
n
.

If T is skew symmetric, then M is orthogonal to N and

(2.3) T =



A E G

0 R F

0 0 B



M
L
N

,

where

(i) L = (M+N )⊥;
(ii) A ∼= (−Bt) and R is skew symmetric;
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(iii) all the following operators are skew symmetric
[
A G

0 B

]
,

[
A 0
0 B

]
,

[
0 G

0 0

]

with respect to the same conjugation on M+N ;
(iv) all the following operators are skew symmetric



0 E 0
0 0 F

0 0 0


 ,



0 0 G

0 0 0
0 0 0


 ,



A 0 0
0 R 0
0 0 B




with respect to the same conjugation on H.

Moreover, there exist a conjugation C on M, G1 ∈ SC(M) and a conjugation

D on L such that

DRD = −R∗, T ∼=



A E G1

0 R −DE∗C

0 0 −CA∗C


 .

Proof. It is obvious that M is invariant under T . Denote A = T |M. Then

M =
∨

λ∈Γ,n≥1

ker(T − λ)n =
∨

λ∈Γ,n≥1

ker(A− λ)n.

Without loss of generality, we assume that dimM = ∞. Then there exists
an onb {ei}∞i=1 of M with respect to which A admits the following upper-
triangular matrix representation

A =




λ1 ∗ ∗ · · ·
λ2 ∗ · · ·

λ3 · · ·
. . .




e1
e2
e3
...

,

where λn ∈ Γ for all n ≥ 1. Note that Ten = Aen ∈ ∨{ei : 1 ≤ i ≤ n} for all
n ≥ 1.

Since T is skew symmetric, we assume that Ĉ is a conjugation on M so that

ĈT Ĉ = −T ∗. It can be seen from the proof of Theorem 2.2 that Ĉ(M) = N

and Ĉ(N ) = M. Thus {Ĉei}∞i=1 is an onb of N . Noting that λi 6= −λj for all

i, j ≥ 1, it follows from Lemma 2.3 that 〈Ĉei, ej〉 = 0 for all i, j ≥ 1. So M is
orthogonal to N . Since M is invariant under T and N is invariant under T ∗,
we may assume that

T =



A E G

0 R F

0 0 B



M
L
N

,

where L = (M+N )⊥.
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Noting that Ĉ(M) = N and Ĉ(N ) = M, we deduce that Ĉ(L) = L and Ĉ

can be written as

Ĉ =



0 0 C3

0 C2 0
C1 0 0



M
L
N

.

It follows from Ĉ2 = I that C2 is a conjugation on L, C1 : M → N is an
antiunitary operator and C−1

1 = C3.

Since T Ĉ = −ĈT ∗, a direct matrical calculation shows that

AC3=−C3B
∗, BC1=−C1A

∗, RC2=−C2R
∗, GC1=−C3G

∗, FC1=−C2E
∗.

Set D = C2. Then DRD = −R∗, which implies that R is skew symmetric.
Also one can easily check that all the following operators are skew symmetric



0 E 0
0 0 F

0 0 0


 ,



0 0 G

0 0 0
0 0 0


 ,



A 0 0
0 R 0
0 0 B




with respect to the same conjugation Ĉ. Define

D̂ =

[
0 C3

C1 0

]
M
N

.

Then D̂ is a conjugation on M+N and

D̂

[
A G

0 B

]
=

[
0 C3B

C1A C1G

]
=

[
0 −A∗C3

−B∗C1 −G∗C3

]
= −

[
A∗ 0
G∗ B∗

]
D̂.

Similarly one can check that

D̂

[
A 0
0 B

]
= −

[
A∗ 0
0 B∗

]
D̂, D̂

[
0 G

0 0

]
= −

[
0 0
G∗ 0

]
D̂.

Then the following operators are skew symmetric
[
A G

0 B

]
,

[
A 0
0 B

]
,

[
0 G

0 0

]

with respect to the same conjugation D̂.
Choose a conjugation C on M and set U = C1C. Then U : M → N is

unitary and U−1 = CC3. Thus

BU = BC1C = −C1A
∗C = −(C1C)(CA∗C) = −U(CA∗C),

which implies B ∼= (−At) and, equivalently, A ∼= (−Bt).
Define V : M⊕L⊕M → H as V (x, y, z) = x+ y +Uz. Then V is unitary

and V can be written as

V =



I1 0 0
0 I2 0
0 0 U



M
L
M

.
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Then

TV =



A E GU

0 R FU

0 0 BU


 =



A E GU

0 R −C2E
∗C

0 0 −U(CA∗C)


 = V



A E GU

0 R −DE∗C

0 0 −CA∗C


 .

Set G1 = GU . Then G1 ∈ B(M) and

CG1C = CGUC = CGC1 = −CC3G
∗ = −U∗G∗ = −(GU)∗ = −G∗

1.

That is, G1 ∈ SC(M). This completes the proof. �

Remark 2.6. One can see from the proof of Theorem 2.5 that A,B∗ in (2.3)
are both triangular, that is, A,B∗ can be written as upper-triangular matrices
with respect to suitably chosen orthonormal bases.

Let S ∈ B(H) be the unilateral shift defined by Sei = ei+1 for i ≥ 1, where
{ei}∞i=1 is an onb of H. Assume that T ∈ B(H) and n ∈ N. Define

RT =

[
S∗n T

0 Sn

]
H1

H2

,

where H1 = H2 = H. Such an operator RT is called a Foguel operator of order
n. Since S∗n is a Cowen-Douglas operator with index n on D = {z ∈ C : |z| <
1}, we have

∨

k≥1

ker(S∗n −
1

2
)k = H =

∨

k≥1

ker(S∗n +
1

2
)k.

Then one can check that

∨

k≥1

ker(RT −
1

2
)k = H1,

∨

k≥1

ker(R∗
T +

1

2
)k = H2.

In view of Theorem 2.5, if RT is skew symmetric, then there exist a conjugation
C on H and G ∈ SC(H) such that

RT
∼=

[
S∗n G

0 −CSnC

]
.

3. Skew symmetric triangular operators

This section is devoted to describing certain skew symmetric triangular op-
erators. The main results of this section are Theorems 3.4 and 3.7. To proceed,
we first introduce some notation and terminology.

An operator T ∈ B(H) is said to be triangular if
∨

λ∈C,n≥1

ker(T − λ)n = H.
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We remark that T is triangular if and only if T admits an upper triangular
matrix representation

T =




λ1 ∗ ∗ · · ·
λ2 ∗ · · ·

λ3 · · ·
. . .




with respect to some orthonormal basis of H, where each omitted entry is zero.
The well-known Cowen-Douglas operators, which are closely related to complex
geometry [5], are triangular.

When an operator T and its adjoint T ∗ are both triangular (in general, with
respect to different orthonormal bases), T is called bitriangular. This class
contains all algebraic operators, diagonal normal operators and block diagonal
operators. Obviously, every operator on finite-dimensional Hilbert space is
bitriangular. There exist triangular operators which are not bitriangular. The
adjoint of the forward unilateral shift is such an example. However, each skew
symmetric triangular operator must be bitriangular.

Lemma 3.1. If T ∈ B(H) is skew symmetric and triangular, then T is bitri-

angular.

Proof. Since T is skew symmetric, there is a conjugation C on H such that
T ∗C = −CT . Hence (−1)n(T ∗ + λ)nC = C(T − λ)n and C(ker(T − λ)n) =
ker(T ∗ + λ)n for all λ ∈ C and n ≥ 1.

Note that ∨

λ∈C,n≥1

ker(T − λ)n = H.

Since C is a conjugation, it follows that

H = C(H) =
∨

λ∈C,n≥1

C(ker(T − λ)n) =
∨

λ∈C,n≥1

ker(T ∗ + λ)n.

Hence T ∗ is triangular and T is bitriangular. �

Remark 3.2. Let T ∈ B(H) be skew symmetric. From the proof of Lemma 3.1,

one can see that λ ∈ σp(T ) if and only if −λ ∈ σp(T
∗), where σp(·) denotes

point spectrum. In particular, dimker(T − λ) = dimker(T + λ)∗.

Lemma 3.3. Let T ∈ B(H). Assume that λ1, λ2 ∈ C with λ1 6= λ2 and

u ∈ ker(T − λ1), v ∈ ker(T − λ2)
∗. Then 〈u, v〉 = 0.

Proof. Compute to see

λ1〈u, v〉 = 〈Tu, v〉 = 〈u, T ∗v〉 = λ2〈u, v〉.

Since λ1 6= λ2, it follows that 〈u, v〉 = 0. �
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Theorem 3.4. Let T ∈ B(H). Suppose that {λi : i ∈ N} are distinct eigenval-

ues of T and ui ∈ ker(T − λi) is a unit vector for i ∈ N. If ∨{ui : i ∈ N} = H,

then T is skew symmetric if and only if there exist unit vectors {vi : i ∈ N}
with vi ∈ ker(T +λi)

∗ for i ∈ N such that ∨{vj : j ∈ N} = H, 〈ui, uj〉 = 〈vj , vi〉
and 〈ui, vj〉 = 〈uj , vi〉 for any i, j ∈ N.

Proof. “=⇒”. Assume that C is a conjugation on H satisfying CTC = −T ∗.
For each i ≥ 1, set vi = Cui. Note that

T ∗vi = T ∗Cui = −CTui = −λiCui = −λivi.

It follows that each vi is a normalized eigenvector of T ∗ corresponding to −λi.
Moreover, we have

∨{vi : i ≥ 1} = ∨{Cui : i ≥ 1} = C(∨{ui : i ≥ 1}) = C(H) = H.

For i, j ≥ 1, since C is a conjugation, it follows that

〈vj , vi〉 = 〈Cuj , Cui〉 = 〈ui, uj〉

and
〈ui, vj〉 = 〈Cvj , Cui〉 = 〈uj, vi〉.

This proves the necessity.
“⇐=”. Assume that vi is a normalized eigenvector of T ∗ corresponding to

−λi for i ≥ 1 , ∨{vi : i ≥ 1} = H and

〈ui, uj〉 = 〈vj , vi〉, 〈ui, vj〉 = 〈uj , vi〉, ∀i, j ≥ 1.

We shall construct a conjugation C on H such that CTC = −T ∗.
Denote by H0 the set of all finite linear combinations of ui’s, and by H1 the

set of all finite linear combinations of vi’s. By the hypothesis, Hi is a dense
linear manifold of H, i = 1, 2.

For each x ∈ H0 with x =
∑n

i=1
αiui, define Cx =

∑n

i=1
αivi. If y ∈ H0

and y =
∑n

j=1
βjuj , one can check that

〈Cx,Cy〉 =
〈 n∑

i=1

αivi,

n∑

j=1

βjvj

〉

=

n∑

i,j=1

αiβj〈vi, vj〉

=

n∑

i,j=1

αiβj〈uj , ui〉

=
〈 n∑

j=1

βjuj ,

n∑

i=1

αiui

〉

= 〈y, x〉.

It follows that the map C : H0 → H1 is conjugate-linear, isometric and hence
well defined. Moreover, C admits a continuous extension to H, denoted by C
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again. It is obvious that C is surjective and hence invertible. In particular, we
have

〈Cx,Cy〉 = 〈y, x〉, ∀x, y ∈ H.

We claim that C is a conjugation. Now it suffices to prove that C is invo-
lutive, that is, C2 = I. Since ∨{ui : i ≥ 1} = H, we need only check that
C2ui = ui for each i ≥ 1.

Now fix an i ≥ 1. Since ∨{vj : j ≥ 1} = H and ui 6= 0, there exists some
τi ≥ 1 such that 〈ui, vτi〉 6= 0. By Lemma 3.3, it follows that λi = −λτi . Since
λj ’s are pairwise distinct, such τi is unique. Thus ui ∈ {vj : j 6= τi}⊥. Since
∨{vj : j ≥ 1} = H, it follows that {vj : j 6= τi}⊥ = ∨{ui}. For j ≥ 1 with
j 6= τi, we have

〈Cvi, vj〉 = 〈Cvi, Cuj〉 = 〈uj , vi〉 = 〈ui, vj〉 = 0.

So Cvi ∈ ∨{ui}. Since τ is isometric, we obtain Cvi = αui for some unimodular
constant α. So

〈uτi , vi〉 = 〈Cvi, Cuτi〉 = 〈αui, vτi〉 = α〈uτi , vi〉.

Noting that 〈ui, vτi〉 6= 0, we have α = 1 and hence C2ui = Cvi = ui. Thus we
have proved that C is a conjugation.

For each i ≥ 1, compute to see that

CTui = C(λiui) = λiCui = λivi = −T ∗vi = −T ∗Cui,

which implies that CT = −T ∗C. Hence T is skew symmetric. �

From the proof for the sufficiency of Theorem 3.4, one can see the following
result.

Corollary 3.5. Let T ∈ B(H). Suppose that {λi : i ∈ N} are distinct eigenval-

ues of T and ui ∈ ker(T − λi) is a unit vector for i ≥ 1. If ∨{ui : i ≥ 1} = H
and T is skew symmetric, then {λi : i ∈ N} = {−λi : i ∈ N}.

For a general skew symmetric operator T , λ ∈ σp(T ) does not imply −λ ∈
σp(T ). Here is an example.

Example 3.6. Let {ei}∞i=1 be an onb of H and S be the operator on H defined
as

Sei = ei+1, ∀i ≥ 1.

For x ∈ H with x =
∑∞

i=1
αiei, define Cx =

∑∞
i=1

αiei. Then C is a conjuga-
tion on H and it is easy to check CSC = S. Set

T =

[
I − S 0
0 S∗ − I

]
H
H
, D =

[
0 C

C 0

]
H
H
.

Then D is a conjugation on H⊕H and one can see DTD = −T ∗. So T is skew
symmetric. Note that σp(T ) = {z ∈ C : |z + 1| < 1}.

For certain irreducible triangular operators, the following result provides a
geometric characterization of skew symmetry.



1282 S. ZHU

Theorem 3.7. Let T ∈ B(H) be irreducible. Suppose that {λi : i ∈ N} are

distinct eigenvalues of T , ui is a normalized eigenvector of T corresponding to

λi and vi is a normalized eigenvector of T ∗ corresponding to −λi for i ∈ N. If

dimker(T − λi) = 1 = dimker(T + λi)
∗, ∀i ≥ 1,

and ∨{ui : i ≥ 1} = H = ∨{vi : i ≥ 1}, then the following are equivalent:

(i) T is skew symmetric;
(ii) there exist unimodular constants {αi : i ≥ 1} such that

αi〈ui, uj〉 = αj〈vj , vi〉, αi〈ui, vj〉 = αj〈uj , vi〉, ∀i, j ≥ 1;

(iii) the conditions

〈ui1 , ui2〉〈ui2 , ui3〉 · · · 〈uin−1
, uin〉〈uin , ui1〉

= 〈vi2 , vi1〉〈vi3 , vi2〉 · · · 〈vin , vin−1
〉〈vi1 , vin〉

and

〈ui1 , ui2〉〈ui2 , ui3〉 · · · 〈uin−1
, uin〉〈uin , vi1〉

= 〈vi2 , vi1〉〈vi3 , vi2〉 · · · 〈vin , vin−1
〉〈ui1 , vin〉

hold for any n ∈ N and any n-tuple (i1, i2, . . . , in) in N.

Proof. “(ii)=⇒(i)”. Set wi = αivi for i ≥ 1. It is easy to see that

〈ui, uj〉 = 〈wj , wi〉, 〈ui, wj〉 = 〈uj , wi〉, i, j ≥ 1.

Note that wi ∈ ker(T + λi)
∗ and ‖wi‖ = 1 for i ≥ 1. In view of Theorem 3.4,

T is skew symmetric.
“(i)=⇒(iii)”. Assume that C is a conjugation on H satisfying CTC = −T ∗.

For each i ≥ 1, we note that T ∗Cui = −CTui = −λiCui. Thus Cui ∈
ker(T +λi)

∗. Note that ker(T +λi)
∗ = ∨{vi}. Thus there exist unimodular αi

such that Cui = αivi for i ≥ 1.
For i, j ≥ 1, since C is a conjugation, it follows that

〈ui, uj〉 = 〈Cuj , Cui〉 = 〈αjvj , αivi〉 = αiαj〈vj , vi〉

and

〈ui, vj〉 = 〈Cvj , Cui〉 = 〈αjuj, αivi〉 = αjαi〈uj , vi〉.

The desired equalities follow readily.
“(iii)=⇒(ii)”. By the hypothesis, one can easily check that

(3.1) |〈ui, uj〉| = |〈vj , vi〉|, |〈ui, vj〉| = |〈uj , vi〉|, ∀i, j ≥ 1.

For i, j ∈ N, we define i ∼ j if there exist i1, i2, . . . , in ∈ N such that

〈ui, ui1〉〈ui1 , ui2〉 · · · 〈uin−1
, uin〉〈uin , uj〉 6= 0.

One can verify that ∼ is an equivalence relation on N.
Denote Λ = {j ∈ N : 1 ∼ j}. Then 〈ui, uj〉 = 0 for all i ∈ Λ and j ∈ N \ Λ.

It follows that M = ∨{ui : i ∈ Λ} is orthogonal to N = ∨{ui : i ∈ N \ Λ}. We
claim that Λ = N. If not, then M,N are nonzero subspaces of H. Noting that
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each ui is an eigenvector of T , it follows that M andN are both invariant under
T . Since ∨{ui : i ∈ N} = H, we deduce that T is reducible, a contradiction.

For convenience, we denote

Φ(i1, i2, . . . , ik) =
〈ui1 , ui2〉〈ui2 , ui3〉 · · · 〈uik−1

, uik〉

〈vi2 , vi1〉〈vi3 , vi2〉 · · · 〈vik , vik−1
〉

for k ≥ 2 and k-tuple (i1, i2, . . . , ik) in N. By the hypothesis, if 〈uil , uil+1
〉 6= 0

for all 1 ≤ l ≤ k − 1 and 〈uik , ui1〉 6= 0, then |Φ(i1, i2, . . . , ik)| = 1 =

Φ(i1, i2, . . . , ik, i1) and Φ(i1, i2, . . . , ik) = Φ(ik, ik−1, . . . , i1). If, in addition,
〈uik , vi1〉 6= 0, then

(3.2) Φ(i1, i2, . . . , ik)〈uik , vi1 〉 = 〈ui1 , vik 〉.

For each i ∈ N, we can find i1, i2, . . . , in ∈ N such that

〈u1, ui1〉〈ui1 , ui2〉 · · · 〈uin−1
, uin〉〈uin , ui〉 6= 0.

Set αi = Φ(1, i1, i2, . . . , in, i).
Assume that (j1, j2, . . . , jk) is a k-tuple in N satisfying

〈u1, uj1〉〈uj1 , uj2〉 · · · 〈ujk−1
, ujk〉〈ujk , ui〉 6= 0.

Since

Φ(1, i1, i2, . . . , in, i)Φ(1, j1, j2, . . . , jk, i)

= Φ(1, i1, i2, . . . , in, i)Φ(i, jk, jk−1, . . . , j1, 1)

= Φ(1, i1, i2, . . . , in, i, jk, jk−1, . . . , j1, 1) = 1.

Thus Φ(1, i1, i2, . . . , in, i) = Φ(1, j1, j2, . . . , jk, i). It shows that the definition
of αi does not depend on the choice of (i1, i2, . . . , in).

Now it remains to check that

αi〈ui, uj〉 = αj〈vj , vi〉, αi〈ui, vj〉 = αj〈uj , vi〉, ∀i, j ≥ 1.

Assume that αi = Φ(1, i1, i2, . . . , in, i) and αj = Φ(1, j1, j2, . . . , jk, j). By
(3.1), 〈ui, uj〉 = 0 if and only if 〈vj , vi〉 = 0. Thus we may assume that
〈ui, uj〉〈vi, vj〉 6= 0. So

αi〈ui, uj〉 = Φ(1, i1, i2, . . . , in, i)〈ui, uj〉

= Φ(1, i1, i2, . . . , in, i, j)〈vj , vi〉 = αj〈vj , vi〉.

By (3.1), 〈ui, vj〉 = 0 if and only if 〈uj , vi〉 = 0. We may assume that
〈ui, vj〉〈uj , vi〉 6= 0. Then, in view of (3.2), we obtain

αjαi〈ui, vj〉 = Φ(j, jk, jk−1, . . . , j1, 1)Φ(1, i1, i2, . . . , in, i)〈ui, vj〉

= Φ(j, jk, jk−1, . . . , j1, 1, i1, i2, . . . , in, i)〈ui, vj〉

= 〈uj , vi〉.

This completes the proof. �

Now we give an example of skew symmetric operators satisfying the condi-
tions in Theorem 2.5.
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Example 3.8. Let {ei}∞i=1 be an onb of H. Set

A =

∞∑

n=1

en ⊗ en

n
, E = e1 ⊗ e2 − e2 ⊗ e1,

where e1⊗e2(x) = 〈x, e2〉e1 for x ∈ H. Then A is a diagonal operator, A = A∗,
σ(A) = { 1

n
: n ≥ 1} ∪ {0} and

∨

n≥1

ker(A−
1

n
) = H.

Also we note that rank (A − λ) = ∞ for all λ ∈ C and A is not an algebraic
operator of degree 2. Then, by [6, Main Theorem], we can choose an irreducible
B ∈ B(H) which is similar to A. It follows readily that B∗ is also similar to A

and

(3.3)
∨

n≥1

ker(B −
1

n
) = H =

∨

n≥1

ker(B∗ −
1

n
).

For x ∈ H with x =
∑∞

i=1
αiei, define Cx =

∑∞
i=1

αiei. Then C is a
conjugation on H and one can check that CEC = −E∗. Define

T =

[
B E

0 −CB∗C

]
H1

H2

,

whereH1 = H2 = H. In the remaining, we shall prove that T is skew symmetric
and satisfies all the conditions stated in Theorem 3.7.

First we claim that T is skew symmetric. Set

D =

[
0 C

C 0

]
H1

H2

.

Then D is a conjugation on H1 ⊕H2. Compute to see

DTD =

[
−B∗ 0
CEC CBC

]
=

[
−B∗ 0
−E∗ CBC

]
= −T ∗.

So T is skew symmetric.
Next we shall check that

∨{
ker(T −

1

n
), ker(T +

1

n
) : n ≥ 1

}
= H1 ⊕H2.

We note that σ(B) = σ(A) = { 1

n
: n ≥ 1} ∪ {0} and σ(−CB∗C) = −σ(B).

For each n ≥ 1, since −CB∗C − 1

n
is invertible, we have ker(T − 1

n
) =

ker(B − 1

n
) and hence

dimker(T −
1

n
) = dim ker(B −

1

n
) = dimker(A−

1

n
) = 1.

In view of (3.3), we obtain

(3.4)
∨

n≥1

ker(T −
1

n
) =

∨

n≥1

ker(B −
1

n
) = H1.
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On the other hand, since B + 1

n
is invertible, each x ∈ ker(T + 1

n
) has the

form

(3.5)

(
−(B + 1

n
)−1Ey

y

)
,

where y ∈ ker(−CB∗C + 1

n
). Note that ker(−CB∗C + 1

n
) = C(ker(B∗ − 1

n
)).

Then

dimker(T +
1

n
) = dimker(−CB∗C +

1

n
) = dimker(B∗ −

1

n
)

= dimker(A∗ −
1

n
) = dimker(A−

1

n
) = 1.

Furthermore, in view of (3.4) and (3.5), we have

∨{
ker(T −

1

n
), ker(T +

1

n
) : n ≥ 1

}
= H1 ⊕

∨

n≥1

ker(−CB∗C +
1

n
).

Note that

H = C(H) = C(∨n≥1 ker(B
∗ −

1

n
))

=
∨

n≥1

C(ker(B∗ −
1

n
))

=
∨

n≥1

ker(CB∗C −
1

n
)

=
∨

n≥1

ker(−CB∗C +
1

n
).

This implies that

∨{
ker(T −

1

n
), ker(T +

1

n
) : n ≥ 1

}
= H1 ⊕H2.

Now it remains to prove that T is irreducible. In view of (3.4), H1 is hyper-
invariant under T . Then each orthogonal projection Q on H1⊕H2 commuting
with T admits the form

Q =

[
Q1 Q1,2

0 Q2

]
H1

H2

.

Since Q = Q∗, we obtain Q1,2 = 0. Thus Q1, Q2 are orthogonal projections
commuting with B and CB∗C respectively. Note that B and CB∗C are irre-
ducible. Hence Qi = 0 or I, i = 1, 2. From TQ = QT , one can see Q1E = EQ2.
Since E 6= 0, we obtain either Q1 = Q2 = 0 or Q1 = Q2 = I. This implies that
T is irreducible. By Theorem 3.4, T satisfies all conditions stated in Theorem
3.7.
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