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STRONG COMMUTATIVITY PRESERVING MAPS OF
UPPER TRIANGULAR MATRIX LIE ALGEBRAS
OVER A COMMUTATIVE RING

ZHENGXIN CHEN AND YU’E ZHAO

ABSTRACT. Let R be a commutative ring with identity 1, n > 3, and let
Tn(R) be the linear Lie algebra of all upper triangular n x n matrices
over R. A linear map ¢ on T, (R) is called to be strong commutativity
preserving if [p(z), ¢(y)] = [z,y] for any z,y € Tn(R). We show that
an invertible linear map ¢ preserves strong commutativity on 7, (R) if
and only if it is a composition of an idempotent scalar multiplication,
an extremal inner automorphism and a linear map induced by a linear
function on T, (R).

1. Introduction

Let M be a matrix space over a field F. A linear map ¢ on M is said
to be commutativity preserving if ¢(A) commutes with ¢(B) for every pair
of commuting elements A, B € M. It is one of the linear preserver problems
to classify commutativity preserving linear maps on matrix spaces. Several
authors have classified commutativity preserving linear maps on a number of
variations of matrix spaces, see [2,6,8,11]. Mathematicians similarly study
maps that preserve commutativity on rings. Let R be a ring with center Z(R).
Then R is a Lie ring under the Lie product [A, B] = AB— BA. Similarly, a map
¢ : R = R preserves commutativity if [¢(A), ¢(B)] = 0 whenever [4, B] =0
for all A,B € R. The problem of characterizing linear (or additive) bijective
maps preserving commutativity had been studied intensively on various rings
and algebras (see [3-5] and the references therein). The authors in [17, 18]
also determine the linear bijective maps preserving commutativity on finite-
dimensional simple Lie algebras and their Borel subalgebras.

In [1], Bell and Daif gave the conception of strong commutativity preserving
maps. Let S be a subset of a Lie ring R. A bijective map ¢ : S — R
is said to be strong commutativity preserving on S if [p(z),¢(y)] = [z, y]
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for all z,y € S. Note that a strong commutativity preserving map must be
commutativity preserving, but the inverse is not true generally. Bell and Daif
[1] proved that R must be commutative if R is a prime ring and R admits
a derivation or a nonidentity endomorphism which is strong commutativity
preserving on a right ideal of R. Bresar and Miers in [4] proved that every
additive map ¢ which is strong commutativity preserving on a semiprime ring
R has the form ¢(x) = Az + p(x), where A € C, C is the extended centroid
of R, A2 =1 and p: R — R is an additive map. Deng and Ashraf [9] proved
that if R is a prime ring of characteristic not 2 and there exists a nonidentity
endomorphism ¢ of R such that [p(z), p(y)] — [z,y] € Z(R) for all x,y in some
essential right ideal of R, then R is commutative. Let L be a noncentral Lie
ideal of a prime ring R. Recently, Lin and Liu in [13] have proved that every
additive map ¢ : L — R which is strong commutativity preserving has the
form ¢(z) = Az + p(z), where X € C with A2 = 1 and p: R — Z(R) is an
additive map, unless char R = 2 and R satisfies the standard identity of degree
4. Recently, the authors in [7] determined the invertible linear maps preserving
strong commutativity on the Lie algebra N(IF) of the strictly upper triangular
matrices over a field. There are other results about strong commutativity
preserving maps of associative rings or Lie algebras, see [10,12-15] for example.

In this paper, we consider the invertible linear maps preserving strong com-
mutativity on the Lie ring 7 of all upper triangular matrices over a commuta-
tive ring. Note that the ring 7 is not semiprime. So our result about invertible
linear maps preserving strong commutativity on 7 is new. We have tried to
determine such linear maps on 7 through the form of linear maps preserving
commutativity obtained in [16], but it is difficult. In this paper, we determine
the concrete forms of such linear maps through their actions on the basis ele-
ments of 7. In the following, we always assume that R is a commutative ring
with identity 1, n > 2, and R* is the set of all invertible elements in R. Let
T = T.(R) be the Lie ring consisting of all upper triangular n x n matrices over
R, and the Lie multiplication [—, —] is defined by [X,Y] = XY — Y X. Denote
by D the set of the diagonal matrices in 7. Let I be the identity matrix of T,
and E;; the matrix in 7 whose sole nonzero entry is 1 in the (4, ) position,
1<i<j<n. Thecenterof Tis Z(T) ={X e T|[X,Y] =0 forall Y € T}.
It is known that Z(7) = RI. Set d;; to be the Kronecker delta function defined
by 51']' =1 le:]7 and 6'L'j :Olfl#]

2. Certain linear maps preserving strong commutativity

A bijective map ¢ on a Lie algebra g is called strong commutativity preserv-
ing if [¢(z), ¢(y)] = [=,y] for any z,y € g. In this section, we construct certain
maps preserving strong commutativity on 7, which will be used to describe
arbitrary maps preserving strong commutativity.

(A) Extremal inner automorphisms.
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Let a € R. Denote S, = I + aF4,. Then S, is an invertible matrix, and
S ! = I—aFEy,. Recall that the map ¢, : T — T defined by ¢, (X) = S;1 XS,
is an inner automorphism of 7. We call ¢, an extremal inner automorphism

of T.
Lemma 2.1. ForVa € R, g, : T — T preserves strong commutativity.

Proof. For any X = Zlgigjgn zijEi; € T, where z; € R, 1 <1< j <n, we
have p,(X) = S;1XS, = (I —aF1,)X(I+aFEy,) = X +a(x11 — Tpp) E1y. For
any Y = Zlgigjgn Yij Eij, [pa(X), pa(Y)] = [X +a(211 —Tnn) E1n, Y +a(yir —
Ynn)E1n] = [X, Y]+ a(211 — Znn) Unn —y11) Bin +a(y11 — Ynn) (011 — Tnn) E1 =
[X,Y]. So the lemma holds. O

(B) Idempotent scalar multiplications.
Let
U={reR|r*=1}.

For r € U, the map 1, : T — T defined by 1,.(X) = rX is called an idempotent
scalar multiplication. It is easy to see that 7, is an invertible linear map
preserving strong commutativity, and 1, ! = ,.

(C) Linear maps induced by a linear function on 7.

Let f: T — R be a linear function satisfying that 1+ f(I) € R*. Define a
map 0y : T — T by

(X)) =X+ f(X)I, VX eT.

Then 6y is linear and invertible, and 9;1(X) =X — 1{1(;2)1. It is easy to see
that 0; preserves strong commutativity.

3. Strong commutativity preserving maps on T

Lemma 3.1. Let ¢ be an invertible linear map preserving strong commutativity
on T. Then there exists a € R* such that ¢(I) = al.

Proof. For any X € T, there exists X € T such that X = ¢(X). Then
[o(I), X] = [p(I),p(X)] = [I,X] =0, and so p(I) € Z(T) = RI. Then there
exists a € R such that ¢(I) = al. Let ¢! be the inverse map of ¢. Then
¢ is linear, and for any X,Y € T, [p~1(X), o (V)] = [pe 1(X), oo (V)]
= [X,Y]. So for any X € T, we can set o 1(I) = bl, b € R. Thus I =
oo Y(I) = o(bI) = abl, and so ab = 1. Therefore, a € R*. O

Lemma 3.2. Let ¢ be an invertible linear map preserving strong commutativity
onT,n>3. Forany 1 <i<j<n, there exist elements b;j,c;; € R such that
Eij = CijI -+ bw(p(E”)

Proof. Since ¢ is linear and invertible, then the set (D) U {p(Ek) |1 < k <

I <n} spans 7. Assume that
E;; = p(D;;) + Z a,(flj)gp(Ekl), where D;; € D,a,(jlj) € R.
1<k<i<n
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At first we prove that a( W) = 0 for any (k,1) # (i,7). For given (k,1) # (i,7),
1<k<l<n, wecan choose an integer p such that p = k or [, but p,i,j are
distinct. In fact, if k,1, 7, j are distinct, we can choose p=k;if k=17 or k= j,
we can choose p =[; if [ =7 or [ = j, we can choose p = k; then p meets the
requirements. On one hand,

[e(Epp), Eij] = [0(Epp), [Eii, Eij]

= [p(Epp), [0(Ei), o(Eij)]]
[ (Epp), o(Eii)l, o(Eij)] + [p(Eia), [(Epp), ¢(Ei)]]
[[Eppv i, (Eij)] + [(Eii), [Epp, Eijl]

(3.1)

On the other hand,
[o(Epp), Bij] = [p(Epp), 0(Dij) + Y al ()]

1<s<t<n
(3.2) = > dP (B ¢(Ba))
1<s<t<n
= Z (”)[EPP’E]
1<s<t<n
- S e S,
t=p+1

Thenagtj) =0foranyt e {p+1,...,n}, and aglpj =0forany s € {1,2,...,p—
1}. In particular, if p = k, then agjtj) =0 for any t > k; if p = [, then a(i 7 =0
for any s < I. Thus for any k < [ with (k,l) # (4,7), we have a( 7 = 0. So

Eyj = ¢(Dij) + i o(Eyj).

Next we prove that go(Dij) = ¢;;1 for some ¢;; € R.
For i < j, we choose (k,l1) # (i,7), then 4,k [ are distinct or j,k,l are
distinct. Assume that j, k, [ are distinct. On one hand,

[o(Exi), Eij] = —[p(Ex), [Ejj, Eij]]
(Er), [o(Ej;), p(Eij)]]
[e(Bri), o(Es5)), o(Eiy)] — [(Ejj), [p(Er), 0(Ei5)]]
(Exis Eji]s o(Eij)] — [0(Ejj), [Er, Eijl]
©(Ej;), 61 Eij]

(¢(Drj) + brjp(Erj))]
= —0ulp(Ejj), o(Dij)] = dilo(Ejj), brjo(Exj)]
i[Ejj Dij] — 61ibij [Ejj, Ejl

-
-
=
(3.3) =
-
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On the other hand,
[p(Er), Eij] = [0(E), ¢(Dij) + bijo(Eij)]
(3.4) = [Ext, Dij] + bij[Exi, Eij)
= [Ewi, Dij] + 01ibij Eg;-
Thus [Ex, D;;] = 0. Similarly, if ¢, k, [ are distinct, we can obtain that [Ej;, D;;]
= 0. So [Ex, Dj;] = 0 for any (k,1) # (4,7). Since D;; is a diagonal matrix, it

is easy to see that D;; € Z(T) = RI. Then D;; = r;;I for some r;; € R. By
Lemma 3.1, ¢(D;;) = @(ri;I) = ari; 1. Set

(i5)

Cij = arij, bij = a;;7".
Then the lemma holds. O

Lemma 3.3. Let ¢ be an invertible map preserving strong commutativity on
T,n>3. If Bjj = ci;I +bi0(Eij), 1 <i<j<n, then all b;; are equal.

Proof. At first we prove that
(3.5) bij =brj, VI<k<i-—-1
On one hand,

[(Eki), Eij ] ¢(Erki), [Ejj, Eij]
P(Eri), [o(Ejj), p(Eij)]]
[p(Eri), (Ejj)]s o(Eij)] — [(Ejj), [(Eri), o(Eij)]]
[Eki Ejsl, o(Eij)] = [o(Ejs), [Ewi, Eij]
©(Ejj), Ex;l
= —[p(Ejj) cri I + bijo(E;)
—brj [EJJ7EICJ]
— by B
On the other hand,
[o(Eki), Eij] = [p(Eri), cizl + bijo(Eij)]
= bij[0(Ei), p(Eij)]
= bij[Eri, Eij)

!
ol
-
=
-l

= b Ey;.
Then b;; = by;.
Similarly, we can prove that
(3.6) bij = by, VI>j.
Set b1a =r. By (3.6), r =bi3 =--- = by,. Forany (4,7), 2 <i < j<mn, we

have b;; = b;_1; =--- = b1; =7 by (3.5). So the lemma holds. O
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Theorem 3.4. Let R be a commutative ring with identity 1, n > 3, let T, (R)
be the linear Lie algebra of all upper triangular n X n matrices over R, and
let o : T — T be a map. Then ¢ is an invertible linear map preserving
strong commutativity if and only if ¢ is a composition of an idempotent scalar
multiplication n,., an extremal inner automorphism ¢, and a linear map 0y
induced by a linear function f, i.e., there exist ¢ € R, r € R* with r?> =1, and
a linear function f : T — R with 1 + f(I) € R*, such that
© =g -1 b5
Proof. The sufficient direction is obvious. We prove the necessity. By Lemmas
3.1-3.3, there exist r € R and ¢;; € R, 1 <i < j < n, such that
Eij = CijI + T‘(p(Eij).

By computations, Fi13 = [Eia, Eas] = [c12] + 1¢o(E12),co3] + r¢(FEa3)] =
r2[p(E12), ¢(Fa3)] = r?[E1a, Fa3] = r?Ey3. Then r? = 1, ie.,, r € U. Fur-
thermore, rE;; = rc;; I + ¢(E;;), and so

(p(E”) = TEij 7T‘CijI, 1<q <] <n.
Next we will prove that for any 1 < k < n, ¢(Ex;) = rExi + bl + arE1, for
some by, ar, € R. Fix k € {1,2,...,n}. Assume that

k
P(Egr) = Z Cpp Epp"‘ Z gt)Est-

1<s<t<n
Forany1<i<n—1

[ (Ekk i z+1 Z Cpp Epp + Z st Estv E; z+1]

1<s<t<n

k k k k
(3.7) (51) e i) B + > W B, — > ), B

1<s<i i+l<t<n
On the other hand,
[p(Ekk), Eiiv1] = [p(Ekk), ciiv1] + ro(Eiit1)]
r[o(Ekk), p(Eiit1)]
= r[Ekk, Ei i+1]
=7(0ki — Ok,it1)Fiiv1-
By the equalities (3.7) and (3.8), we have
(3.9) M =0, vi<s<i,

(3.8)

(3.10) e =0, Vitl<t<n.

Assume that (s,t) # (1,n), s < t. If s > 1, then by the equality (3.10),
g’f) —cgk)lﬂt =0, where s —1 € {1,2,...,n —1}. If s = 1, then t # n, and
by the equality (3.9), ¢, (k) = 0. Thus c(t) =0 for any (s,t) # (1,n).
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Moreover, by the equalities (3.7) and (3.8), cz(-f) - cl(»i)l’iﬂ =7(0ki — Ok,it1),
1<i<n-1. Sofori >k, cl(.f) = cl(li)l’i_l = ... = c,g]jzl,k+1 = c,(;z) -,
and for ¢ < K, cgf) = cg_]f_)l,i“ == Cl(ck—)1,k—1 = c,(clz) — 1. Thus ¢p(Ekk) =

> (Cgc];c)_r)Epp+C§<}Z)Ekk+ > (Cgc];c)_r)Epp'i'ch)Eln- Set by, = cgz)—r, ar = Cg?'

p<k p>k

Then
©(Erk) = rEgp + bpd + apErn, 1<k <n.

For any k # 1 or n, [¢(E11), p(Ekk)] = [01] + rE11 + a1 E1p, bkl + 7Egg +
arErn) = [rE11 + a1Evn,rExg + apF1n] = ragEr,. On the other hand,
[0(E11), p(Egk)] = [Er1, Exk] = 0. Thus rax, = 0. Since r? = 1, then a; = 0.
Furthermore, [p(E11), o(Enn)] = [011 + rE11 + a1E10, b, + TEpy, + anFry]
=r(a; + an)E1, =0, and so a3 = —a,. Set a; = a. Thus

©(E1n) =bil +rE; +aFEy,,
@(Enn) =byl +7rE,, — aFy,
@(Ekk) = bl + rEg, Yk # 1,n.

Since o(I) = ¢( > Exi) = (r+ >, bi)I #0, then r+ > by # 0, which implies
k=1 k=1 k=1
that N
L7 by #0.
k=1

Define 1. : T — T by n.(X) = rX. Then 7, is an idempotent scalar mul-
tiplication, and 7, preserves strong commutativity. Set ¢ = ra, and define
0_q:T = Thbyp_o(X)=S5-XS,, where S_, = I — qE1,,. Then ¢_, is an
inner automorphism preserving strong commutativity, and so ¢_¢n,¢ is also
an invertible linear map preserving strong commutativity. Next we will prove
that ¢_,n,@ is a linear map induced by a linear function.

By computations,

(p—gmre)(E11) = p—g(rbil + Er1 + rakry,)
=S (rbi)S_g + SZ3(E1)S—q + Sy (aB1n)S—q
=7rbil + (I 4+ qFE)En(I—qB1n)+ + qF1m)qEv (I —qEhy,)
= E11 + ’I“bll.
Similarly, by computations, we have (¢_¢nr¢)(Exi) = Exr + byl for k #
1. And for any 1 < i < j < n, (p—gnr@)(Eij) = o—q(Eij —ci;I) = (I +
qun)Eij(I — qun) — ([ + qun)Cz‘jI(I — qun) =F; — Cij]-
Define a linear function f : T — R defined by f(E;;) = —c¢ij, 1 <i < j <n,

and f(Egr) = rbr, 1 < k < n. Then f(I) = r(>_ br) # —1, and so the
k=1

linear map 07 : T — T defined by 6,(X) = X + f (S()I is an invertible map
preserving strong commutativity. Since the linear maps ¢_q7,¢ and 6 have
the same actions on the basis {E;; |1 <i < j < n} U{Eg |1 < k < n}, then
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Y_gnrp = 0. Thus ¢ = nr_lap:}ﬁf = Nrpqby, ie., ¢ is a composition of the
idempotent scalar multiplication 7,, an extremal inner automorphism ¢, and
a linear map 6y induced by the linear function f on 7. (I

Remark 3.5. Theorem 3.4 does not hold for n = 2. Here we give a counterex-
ample. Let a be an invertible element in R, and r € R such that r # a~ 1.
Define a linear map ¢ : T — T such that p(F11) = aE11,¢(Fa) = aFaa,
©(F12) = a~'Ej5+rI. Then ¢ is invertible, and ¢! is the linear map defined
by oY (E11) = a 1B, ¢ N (Fa2) = a 1 Ey, ¢ (E12) = aEs —rl. It is easy
to see that [¢(Es;), p(Ew)] = [Eij, B forany 1 <1< j <2,1 <k <1<2
then ¢ preserves strong commutativity. However, for any ¢, € R, and any
linear function f: 7 — R, we have

(nrwqaf)(EIQ) - TSq_l(f(E12)I + E12)Sq = T’f(Elg)I + T’Elg.

Since 7 # a™!, then (1n,¢407)(E12) # ¢(F12), and so n,.¢,05 # .
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