STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

Zhengxin Chen and Yu'e Zhao

Abstract

Let R be a commutative ring with identity $1, n \geq 3$, and let $\mathcal{T}_{n}(R)$ be the linear Lie algebra of all upper triangular $n \times n$ matrices over R. A linear map φ on $\mathcal{T}_{n}(R)$ is called to be strong commutativity preserving if $[\varphi(x), \varphi(y)]=[x, y]$ for any $x, y \in \mathcal{T}_{n}(R)$. We show that an invertible linear map φ preserves strong commutativity on $\mathcal{T}_{n}(R)$ if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on $\mathcal{T}_{n}(R)$.

1. Introduction

Let M be a matrix space over a field \mathbb{F}. A linear map φ on M is said to be commutativity preserving if $\varphi(A)$ commutes with $\varphi(B)$ for every pair of commuting elements $A, B \in M$. It is one of the linear preserver problems to classify commutativity preserving linear maps on matrix spaces. Several authors have classified commutativity preserving linear maps on a number of variations of matrix spaces, see $[2,6,8,11]$. Mathematicians similarly study maps that preserve commutativity on rings. Let R be a ring with center $Z(R)$. Then R is a Lie ring under the Lie product $[A, B]=A B-B A$. Similarly, a map $\varphi: R \rightarrow R$ preserves commutativity if $[\varphi(A), \varphi(B)]=0$ whenever $[A, B]=0$ for all $A, B \in R$. The problem of characterizing linear (or additive) bijective maps preserving commutativity had been studied intensively on various rings and algebras (see [3-5] and the references therein). The authors in $[17,18]$ also determine the linear bijective maps preserving commutativity on finitedimensional simple Lie algebras and their Borel subalgebras.

In [1], Bell and Daif gave the conception of strong commutativity preserving maps. Let S be a subset of a Lie ring R. A bijective map $\varphi: S \rightarrow R$ is said to be strong commutativity preserving on S if $[\varphi(x), \varphi(y)]=[x, y]$

[^0]for all $x, y \in S$. Note that a strong commutativity preserving map must be commutativity preserving, but the inverse is not true generally. Bell and Daif [1] proved that R must be commutative if R is a prime ring and R admits a derivation or a nonidentity endomorphism which is strong commutativity preserving on a right ideal of R. Brešar and Miers in [4] proved that every additive map φ which is strong commutativity preserving on a semiprime ring R has the form $\varphi(x)=\lambda x+\mu(x)$, where $\lambda \in C, C$ is the extended centroid of $R, \lambda^{2}=1$ and $\mu: R \rightarrow R$ is an additive map. Deng and Ashraf [9] proved that if R is a prime ring of characteristic not 2 and there exists a nonidentity endomorphism φ of R such that $[\varphi(x), \varphi(y)]-[x, y] \in Z(R)$ for all x, y in some essential right ideal of R, then R is commutative. Let L be a noncentral Lie ideal of a prime ring R. Recently, Lin and Liu in [13] have proved that every additive map $\varphi: L \rightarrow R$ which is strong commutativity preserving has the form $\varphi(x)=\lambda x+\mu(x)$, where $\lambda \in C$ with $\lambda^{2}=1$ and $\mu: R \rightarrow Z(R)$ is an additive map, unless char $R=2$ and R satisfies the standard identity of degree 4. Recently, the authors in [7] determined the invertible linear maps preserving strong commutativity on the Lie algebra $N(\mathbb{F})$ of the strictly upper triangular matrices over a field. There are other results about strong commutativity preserving maps of associative rings or Lie algebras, see [10,12-15] for example.

In this paper, we consider the invertible linear maps preserving strong commutativity on the Lie ring \mathcal{T} of all upper triangular matrices over a commutative ring. Note that the $\operatorname{ring} \mathcal{T}$ is not semiprime. So our result about invertible linear maps preserving strong commutativity on \mathcal{T} is new. We have tried to determine such linear maps on \mathcal{T} through the form of linear maps preserving commutativity obtained in [16], but it is difficult. In this paper, we determine the concrete forms of such linear maps through their actions on the basis elements of \mathcal{T}. In the following, we always assume that R is a commutative ring with identity $1, n>2$, and R^{*} is the set of all invertible elements in R. Let $\mathcal{T}=\mathcal{T}_{n}(R)$ be the Lie ring consisting of all upper triangular $n \times n$ matrices over R, and the Lie multiplication $[-,-]$ is defined by $[X, Y]=X Y-Y X$. Denote by \mathcal{D} the set of the diagonal matrices in \mathcal{T}. Let I be the identity matrix of \mathcal{T}, and $E_{i j}$ the matrix in \mathcal{T} whose sole nonzero entry is 1 in the (i, j) position, $1 \leq i \leq j \leq n$. The center of \mathcal{T} is $Z(\mathcal{T})=\{X \in \mathcal{T} \mid[X, Y]=0$ for all $Y \in \mathcal{T}\}$. It is known that $Z(\mathcal{T})=R I$. Set $\delta_{i j}$ to be the Kronecker delta function defined by $\delta_{i j}=1$ if $i=j$, and $\delta_{i j}=0$ if $i \neq j$.

2. Certain linear maps preserving strong commutativity

A bijective map φ on a Lie algebra \mathfrak{g} is called strong commutativity preserving if $[\varphi(x), \varphi(y)]=[x, y]$ for any $x, y \in \mathfrak{g}$. In this section, we construct certain maps preserving strong commutativity on \mathcal{T}, which will be used to describe arbitrary maps preserving strong commutativity.
(A) Extremal inner automorphisms.

Let $a \in R$. Denote $S_{a}=I+a E_{1 n}$. Then S_{a} is an invertible matrix, and $S_{a}^{-1}=I-a E_{1 n}$. Recall that the map $\varphi_{a}: \mathcal{T} \rightarrow \mathcal{T}$ defined by $\varphi_{a}(X)=S_{a}^{-1} X S_{a}$ is an inner automorphism of \mathcal{T}. We call φ_{a} an extremal inner automorphism of \mathcal{T}.

Lemma 2.1. For $\forall a \in R, \varphi_{a}: \mathcal{T} \rightarrow \mathcal{T}$ preserves strong commutativity.
Proof. For any $X=\sum_{1 \leq i \leq j \leq n} x_{i j} E_{i j} \in \mathcal{T}$, where $x_{i j} \in R, 1 \leq i \leq j \leq n$, we have $\varphi_{a}(X)=S_{a}^{-1} X S_{a}=\left(I-a E_{1 n}\right) X\left(I+a E_{1 n}\right)=X+a\left(x_{11}-x_{n n}\right) E_{1 n}$. For any $Y=\sum_{1 \leq i \leq j \leq n} y_{i j} E_{i j},\left[\varphi_{a}(X), \varphi_{a}(Y)\right]=\left[X+a\left(x_{11}-x_{n n}\right) E_{1 n}, Y+a\left(y_{11}-\right.\right.$ $\left.\left.y_{n n}\right) E_{1 n}\right]=[X, Y]+a\left(x_{11}-x_{n n}\right)\left(y_{n n}-y_{11}\right) E_{1 n}+a\left(y_{11}-y_{n n}\right)\left(x_{11}-x_{n n}\right) E_{1 n}=$ $[X, Y]$. So the lemma holds.
(B) Idempotent scalar multiplications.

Let

$$
\mathcal{U}=\left\{r \in R \mid r^{2}=1\right\} .
$$

For $r \in \mathcal{U}$, the map $\eta_{r}: \mathcal{T} \rightarrow \mathcal{T}$ defined by $\eta_{r}(X)=r X$ is called an idempotent scalar multiplication. It is easy to see that η_{r} is an invertible linear map preserving strong commutativity, and $\eta_{r}^{-1}=\eta_{r}$.
(C) Linear maps induced by a linear function on \mathcal{T}.

Let $f: \mathcal{T} \rightarrow R$ be a linear function satisfying that $1+f(I) \in R^{*}$. Define a $\operatorname{map} \theta_{f}: \mathcal{T} \rightarrow \mathcal{T}$ by

$$
\theta_{f}(X)=X+f(X) I, \quad \forall X \in \mathcal{T}
$$

Then θ_{f} is linear and invertible, and $\theta_{f}^{-1}(X)=X-\frac{f(X)}{1+f(I)} I$. It is easy to see that θ_{f} preserves strong commutativity.

3. Strong commutativity preserving maps on \mathcal{T}

Lemma 3.1. Let φ be an invertible linear map preserving strong commutativity on \mathcal{T}. Then there exists $a \in R^{*}$ such that $\varphi(I)=a I$.
Proof. For any $X \in \mathcal{T}$, there exists $\bar{X} \in \mathcal{T}$ such that $X=\varphi(\bar{X})$. Then $[\varphi(I), X]=[\varphi(I), \varphi(\bar{X})]=[I, \bar{X}]=0$, and so $\varphi(I) \in Z(\mathcal{T})=R I$. Then there exists $a \in R$ such that $\varphi(I)=a I$. Let φ^{-1} be the inverse map of φ. Then φ is linear, and for any $X, Y \in \mathcal{T},\left[\varphi^{-1}(X), \varphi^{-1}(Y)\right]=\left[\varphi \varphi^{-1}(X), \varphi \varphi^{-1}(Y)\right]$ $=[X, Y]$. So for any $X \in \mathcal{T}$, we can set $\varphi^{-1}(I)=b I, b \in R$. Thus $I=$ $\varphi \varphi^{-1}(I)=\varphi(b I)=a b I$, and so $a b=1$. Therefore, $a \in R^{*}$.

Lemma 3.2. Let φ be an invertible linear map preserving strong commutativity on $\mathcal{T}, n \geq 3$. For any $1 \leq i<j \leq n$, there exist elements $b_{i j}, c_{i j} \in R$ such that

$$
E_{i j}=c_{i j} I+b_{i j} \varphi\left(E_{i j}\right)
$$

Proof. Since φ is linear and invertible, then the set $\varphi(\mathcal{D}) \cup\left\{\varphi\left(E_{k l}\right) \mid 1 \leq k<\right.$ $l \leq n\}$ spans \mathcal{T}. Assume that

$$
E_{i j}=\varphi\left(D_{i j}\right)+\sum_{1 \leq k<l \leq n} a_{k l}^{(i j)} \varphi\left(E_{k l}\right), \text { where } D_{i j} \in \mathcal{D}, a_{k l}^{(i j)} \in R .
$$

At first we prove that $a_{k l}^{(i j)}=0$ for any $(k, l) \neq(i, j)$. For given $(k, l) \neq(i, j)$, $1 \leq k<l \leq n$, we can choose an integer p such that $p=k$ or l, but p, i, j are distinct. In fact, if k, l, i, j are distinct, we can choose $p=k$; if $k=i$ or $k=j$, we can choose $p=l$; if $l=i$ or $l=j$, we can choose $p=k$; then p meets the requirements. On one hand,

$$
\begin{align*}
{\left[\varphi\left(E_{p p}\right), E_{i j}\right] } & =\left[\varphi\left(E_{p p}\right),\left[E_{i i}, E_{i j}\right]\right] \\
& =\left[\varphi\left(E_{p p}\right),\left[\varphi\left(E_{i i}\right), \varphi\left(E_{i j}\right)\right]\right] \\
& =\left[\left[\varphi\left(E_{p p}\right), \varphi\left(E_{i i}\right)\right], \varphi\left(E_{i j}\right)\right]+\left[\varphi\left(E_{i i}\right),\left[\varphi\left(E_{p p}\right), \varphi\left(E_{i j}\right)\right]\right] \tag{3.1}\\
& =\left[\left[E_{p p}, E_{i i}\right], \varphi\left(E_{i j}\right)\right]+\left[\varphi\left(E_{i i}\right),\left[E_{p p}, E_{i j}\right]\right] \\
& =0 .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
{\left[\varphi\left(E_{p p}\right), E_{i j}\right] } & =\left[\varphi\left(E_{p p}\right), \varphi\left(D_{i j}\right)+\sum_{1 \leq s<t \leq n} a_{s t}^{(i j)} \varphi\left(E_{s t}\right)\right] \\
& =\sum_{1 \leq s<t \leq n} a_{s t}^{(i j)}\left[\varphi\left(E_{p p}\right), \varphi\left(E_{s t}\right)\right] \tag{3.2}\\
& =\sum_{1 \leq s<t \leq n} a_{s t}^{(i j)}\left[E_{p p}, E_{s t}\right] \\
& =\sum_{t=p+1}^{n} a_{p t}^{(i j)} E_{p l}-\sum_{s=1}^{p-1} a_{s p}^{(i j)} E_{s p}
\end{align*}
$$

Then $a_{p t}^{(i j)}=0$ for any $t \in\{p+1, \ldots, n\}$, and $a_{s p}^{(i j)}=0$ for any $s \in\{1,2, \ldots, p-$ $1\}$. In particular, if $p=k$, then $a_{k t}^{(i j)}=0$ for any $t>k$; if $p=l$, then $a_{s 1}^{(i j)}=0$ for any $s<l$. Thus for any $k<l$ with $(k, l) \neq(i, j)$, we have $a_{k l}^{(i j)}=0$. So

$$
E_{i j}=\varphi\left(D_{i j}\right)+a_{i j}^{(i j)} \varphi\left(E_{i j}\right)
$$

Next we prove that $\varphi\left(D_{i j}\right)=c_{i j} I$ for some $c_{i j} \in R$.
For $i<j$, we choose $(k, l) \neq(i, j)$, then i, k, l are distinct or j, k, l are distinct. Assume that j, k, l are distinct. On one hand,

$$
\begin{aligned}
{\left[\varphi\left(E_{k l}\right), E_{i j}\right] } & =-\left[\varphi\left(E_{k l}\right),\left[E_{j j}, E_{i j}\right]\right] \\
& =-\left[\varphi\left(E_{k l}\right),\left[\varphi\left(E_{j j}\right), \varphi\left(E_{i j}\right)\right]\right] \\
& =-\left[\left[\varphi\left(E_{k l}\right), \varphi\left(E_{j j}\right)\right], \varphi\left(E_{i j}\right)\right]-\left[\varphi\left(E_{j j}\right),\left[\varphi\left(E_{k l}\right), \varphi\left(E_{i j}\right)\right]\right] \\
& =-\left[\left[E_{k l}, E_{j j}\right], \varphi\left(E_{i j}\right)\right]-\left[\varphi\left(E_{j j}\right),\left[E_{k l}, E_{i j}\right]\right] \\
& =-\left[\varphi\left(E_{j j}\right), \delta_{l i} E_{k j}\right] \\
& =-\left[\varphi\left(E_{j j}\right), \delta_{l i}\left(\varphi\left(D_{k j}\right)+b_{k j} \varphi\left(E_{k j}\right)\right)\right] \\
& =-\delta_{l i}\left[\varphi\left(E_{j j}\right), \varphi\left(D_{k j}\right)\right]-\delta_{l i}\left[\varphi\left(E_{j j}\right), b_{k j} \varphi\left(E_{k j}\right)\right] \\
& =-\delta_{l i}\left[E_{j j}, D_{k j}\right]-\delta_{l i} b_{k j}\left[E_{j j}, E_{k j}\right] \\
& =\delta_{l i} b_{k j} E_{k j} .
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
{\left[\varphi\left(E_{k l}\right), E_{i j}\right] } & =\left[\varphi\left(E_{k l}\right), \varphi\left(D_{i j}\right)+b_{i j} \varphi\left(E_{i j}\right)\right] \\
& =\left[E_{k l}, D_{i j}\right]+b_{i j}\left[E_{k l}, E_{i j}\right] \tag{3.4}\\
& =\left[E_{k l}, D_{i j}\right]+\delta_{l i} b_{i j} E_{k j} .
\end{align*}
$$

Thus $\left[E_{k l}, D_{i j}\right]=0$. Similarly, if i, k, l are distinct, we can obtain that $\left[E_{k l}, D_{i j}\right]$ $=0$. So $\left[E_{k l}, D_{i j}\right]=0$ for any $(k, l) \neq(i, j)$. Since $D_{i j}$ is a diagonal matrix, it is easy to see that $D_{i j} \in Z(\mathcal{T})=R I$. Then $D_{i j}=r_{i j} I$ for some $r_{i j} \in R$. By Lemma 3.1, $\varphi\left(D_{i j}\right)=\varphi\left(r_{i j} I\right)=a r_{i j} I$. Set

$$
c_{i j}=a r_{i j}, b_{i j}=a_{i j}^{(i j)}
$$

Then the lemma holds.
Lemma 3.3. Let φ be an invertible map preserving strong commutativity on $\mathcal{T}, n \geq 3$. If $E_{i j}=c_{i j} I+b_{i j} \varphi\left(E_{i j}\right), 1 \leq i<j \leq n$, then all $b_{i j}$ are equal.

Proof. At first we prove that

$$
\begin{equation*}
b_{i j}=b_{k j}, \quad \forall 1 \leq k \leq i-1 \tag{3.5}
\end{equation*}
$$

On one hand,

$$
\begin{aligned}
{\left[\varphi\left(E_{k i}\right), E_{i j}\right] } & =-\left[\varphi\left(E_{k i}\right),\left[E_{j j}, E_{i j}\right]\right] \\
& =-\left[\varphi\left(E_{k i}\right),\left[\varphi\left(E_{j j}\right), \varphi\left(E_{i j}\right)\right]\right] \\
& =-\left[\left[\varphi\left(E_{k i}\right), \varphi\left(E_{j j}\right)\right], \varphi\left(E_{i j}\right)\right]-\left[\varphi\left(E_{j j}\right),\left[\varphi\left(E_{k i}\right), \varphi\left(E_{i j}\right)\right]\right] \\
& =-\left[\left[E_{k i}, E_{j j}\right], \varphi\left(E_{i j}\right)\right]-\left[\varphi\left(E_{j j}\right),\left[E_{k i}, E_{i j}\right]\right] \\
& =-\left[\varphi\left(E_{j j}\right), E_{k j}\right] \\
& =-\left[\varphi\left(E_{j j}\right), c_{k j} I+b_{k j} \varphi\left(E_{k j}\right)\right] \\
& =-b_{k j}\left[E_{j j}, E_{k j}\right] \\
& =b_{k j} E_{k j} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
{\left[\varphi\left(E_{k i}\right), E_{i j}\right] } & =\left[\varphi\left(E_{k i}\right), c_{i j} I+b_{i j} \varphi\left(E_{i j}\right)\right] \\
& =b_{i j}\left[\varphi\left(E_{k i}\right), \varphi\left(E_{i j}\right)\right] \\
& =b_{i j}\left[E_{k i}, E_{i j}\right] \\
& =b_{i j} E_{k j} .
\end{aligned}
$$

Then $b_{i j}=b_{k j}$.
Similarly, we can prove that

$$
\begin{equation*}
b_{i j}=b_{i l}, \quad \forall l>j \tag{3.6}
\end{equation*}
$$

Set $b_{12}=r$. By (3.6), $r=b_{13}=\cdots=b_{1 n}$. For any $(i, j), 2 \leq i<j \leq n$, we have $b_{i j}=b_{i-1, j}=\cdots=b_{1 j}=r$ by (3.5). So the lemma holds.

Theorem 3.4. Let R be a commutative ring with identity $1, n \geq 3$, let $\mathcal{T}_{n}(R)$ be the linear Lie algebra of all upper triangular $n \times n$ matrices over R, and let $\varphi: \mathcal{T} \rightarrow \mathcal{T}$ be a map. Then φ is an invertible linear map preserving strong commutativity if and only if φ is a composition of an idempotent scalar multiplication η_{r}, an extremal inner automorphism φ_{q} and a linear map θ_{f} induced by a linear function f, i.e., there exist $q \in R, r \in R^{*}$ with $r^{2}=1$, and a linear function $f: \mathcal{T} \rightarrow R$ with $1+f(I) \in R^{*}$, such that

$$
\varphi=\varphi_{q} \cdot \eta_{r} \cdot \theta_{f}
$$

Proof. The sufficient direction is obvious. We prove the necessity. By Lemmas 3.1-3.3, there exist $r \in R$ and $c_{i j} \in R, 1 \leq i<j \leq n$, such that

$$
E_{i j}=c_{i j} I+r \varphi\left(E_{i j}\right)
$$

By computations, $E_{13}=\left[E_{12}, E_{23}\right]=\left[c_{12} I+r \varphi\left(E_{12}\right), c_{23} I+r \varphi\left(E_{23}\right)\right]=$ $r^{2}\left[\varphi\left(E_{12}\right), \varphi\left(E_{23}\right)\right]=r^{2}\left[E_{12}, E_{23}\right]=r^{2} E_{13}$. Then $r^{2}=1$, i.e., $r \in \mathcal{U}$. Furthermore, $r E_{i j}=r c_{i j} I+\varphi\left(E_{i j}\right)$, and so

$$
\varphi\left(E_{i j}\right)=r E_{i j}-r c_{i j} I, \quad 1 \leq i<j \leq n
$$

Next we will prove that for any $1 \leq k \leq n, \varphi\left(E_{k k}\right)=r E_{k k}+b_{k} I+a_{k} E_{1 n}$ for some $b_{k}, a_{k} \in R$. Fix $k \in\{1,2, \ldots, n\}$. Assume that

$$
\varphi\left(E_{k k}\right)=\sum_{p=1}^{n} c_{p p}^{(k)} E_{p p}+\sum_{1 \leq s<t \leq n} c_{s t}^{(k)} E_{s t}
$$

For any $1 \leq i \leq n-1$,
$\left[\varphi\left(E_{k k}\right), E_{i, i+1}\right]=\left[\sum_{p=1}^{n} c_{p p}^{(k)} E_{p p}+\sum_{1 \leq s<t \leq n} c_{s t}^{(k)} E_{s t}, E_{i, i+1}\right]$

$$
\begin{equation*}
=\left(c_{i i}^{(k)}-c_{i+1, i+1}^{(k)}\right) E_{i, i+1}+\sum_{1 \leq s<i} c_{s i}^{(k)} E_{s, i+1}-\sum_{i+1<t \leq n} c_{i+1, t}^{(k)} E_{i t} . \tag{3.7}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
{\left[\varphi\left(E_{k k}\right), E_{i, i+1}\right] } & =\left[\varphi\left(E_{k k}\right), c_{i, i+1} I+r \varphi\left(E_{i, i+1}\right)\right] \\
& =r\left[\varphi\left(E_{k k}\right), \varphi\left(E_{i, i+1}\right)\right] \tag{3.8}\\
& =r\left[E_{k k}, E_{i, i+1}\right] \\
& =r\left(\delta_{k i}-\delta_{k, i+1}\right) E_{i, i+1} .
\end{align*}
$$

By the equalities (3.7) and (3.8), we have

$$
\begin{gather*}
c_{s i}^{(k)}=0, \quad \forall 1 \leq s<i \tag{3.9}\\
c_{i+1, t}^{(k)}=0, \quad \forall i+1<t \leq n . \tag{3.10}
\end{gather*}
$$

Assume that $(s, t) \neq(1, n), s<t$. If $s>1$, then by the equality (3.10), $c_{s t}^{(k)}=c_{s-1+1, t}^{(k)}=0$, where $s-1 \in\{1,2, \ldots, n-1\}$. If $s=1$, then $t \neq n$, and by the equality $(3.9), c_{s t}^{(k)}=0$. Thus $c_{s t}^{(k)}=0$ for any $(s, t) \neq(1, n)$.

Moreover, by the equalities (3.7) and (3.8), $c_{i i}^{(k)}-c_{i+1, i+1}^{(k)}=r\left(\delta_{k i}-\delta_{k, i+1}\right)$, $1 \leq i \leq n-1$. So for $i>k, c_{i i}^{(k)}=c_{i-1, i-1}^{(k)}=\cdots=c_{k+1, k+1}^{(k)}=c_{k k}^{(k)}-r$, and for $i<k, c_{i i}^{(k)}=c_{i+1, i+1}^{(k)}=\cdots=c_{k-1, k-1}^{(k)}=c_{k k}^{(k)}-r$. Thus $\varphi\left(E_{k k}\right)=$ $\sum_{p<k}\left(c_{k k}^{(k)}-r\right) E_{p p}+c_{k k}^{(k)} E_{k k}+\sum_{p>k}\left(c_{k k}^{(k)}-r\right) E_{p p}+c_{1 n}^{(k)} E_{1 n}$. Set $b_{k}=c_{k k}^{(k)}-r, a_{k}=c_{1 n}^{(k)}$. Then

$$
\varphi\left(E_{k k}\right)=r E_{k k}+b_{k} I+a_{k} E_{1 n}, \quad 1 \leq k \leq n .
$$

For any $k \neq 1$ or $n,\left[\varphi\left(E_{11}\right), \varphi\left(E_{k k}\right)\right]=\left[b_{1} I+r E_{11}+a_{1} E_{1 n}, b_{k} I+r E_{k k}+\right.$ $\left.a_{k} E_{1 n}\right]=\left[r E_{11}+a_{1} E_{1 n}, r E_{k k}+a_{k} E_{1 n}\right]=r a_{k} E_{1 n}$. On the other hand, $\left[\varphi\left(E_{11}\right), \varphi\left(E_{k k}\right)\right]=\left[E_{11}, E_{k k}\right]=0$. Thus $r a_{k}=0$. Since $r^{2}=1$, then $a_{k}=0$. Furthermore, $\left[\varphi\left(E_{11}\right), \varphi\left(E_{n n}\right)\right]=\left[b_{1} I+r E_{11}+a_{1} E_{1 n}, b_{n} I+r E_{n n}+a_{n} E_{1 n}\right]$ $=r\left(a_{1}+a_{n}\right) E_{1 n}=0$, and so $a_{1}=-a_{n}$. Set $a_{1}=a$. Thus

$$
\begin{gathered}
\varphi\left(E_{11}\right)=b_{1} I+r E_{11}+a E_{1 n} \\
\varphi\left(E_{n n}\right)=b_{n} I+r E_{n n}-a E_{1 n} \\
\varphi\left(E_{k k}\right)=b_{k} I+r E_{k k}, \forall k \neq 1, n
\end{gathered}
$$

Since $\varphi(I)=\varphi\left(\sum_{k=1}^{n} E_{k k}\right)=\left(r+\sum_{k=1}^{n} b_{k}\right) I \neq 0$, then $r+\sum_{k=1}^{n} b_{k} \neq 0$, which implies that

$$
1+r \sum_{k=1}^{n} b_{k} \neq 0
$$

Define $\eta_{r}: \mathcal{T} \rightarrow \mathcal{T}$ by $\eta_{r}(X)=r X$. Then η_{r} is an idempotent scalar multiplication, and η_{r} preserves strong commutativity. Set $q=r a$, and define $\varphi_{-q}: \mathcal{T} \rightarrow \mathcal{T}$ by $\varphi_{-q}(X)=S_{-q}^{-1} X S_{q}$, where $S_{-q}=I-q E_{1 n}$. Then φ_{-q} is an inner automorphism preserving strong commutativity, and so $\varphi_{-q} \eta_{r} \varphi$ is also an invertible linear map preserving strong commutativity. Next we will prove that $\varphi_{-q} \eta_{r} \varphi$ is a linear map induced by a linear function.

By computations,

$$
\begin{aligned}
\left(\varphi_{-q} \eta_{r} \varphi\right)\left(E_{11}\right) & =\varphi_{-q}\left(r b_{1} I+E_{11}+r a E_{1 n}\right) \\
& =S_{-q}^{-1}\left(r b_{1} I\right) S_{-q}+S_{-q}^{-1}\left(E_{11}\right) S_{-q}+S_{q}^{-1}\left(q E_{1 n}\right) S_{-q} \\
& =r b_{1} I+\left(I+q E_{1 n}\right) E_{11}\left(I-q E_{1 n}\right)+\left(I+q E_{1 n}\right) q E_{1 n}\left(I-q E_{1 n}\right) \\
& =E_{11}+r b_{1} I .
\end{aligned}
$$

Similarly, by computations, we have $\left(\varphi_{-q} \eta_{r} \varphi\right)\left(E_{k k}\right)=E_{k k}+r b_{k} I$ for $k \neq$ 1. And for any $1 \leq i<j \leq n,\left(\varphi_{-q} \eta_{r} \varphi\right)\left(E_{i j}\right)=\varphi_{-q}\left(E_{i j}-c_{i j} I\right)=(I+$ $\left.q E_{1 n}\right) E_{i j}\left(I-q E_{1 n}\right)-\left(I+q E_{1 n}\right) c_{i j} I\left(I-q E_{1 n}\right)=E_{i j}-c_{i j} I$.

Define a linear function $f: \mathcal{T} \rightarrow R$ defined by $f\left(E_{i j}\right)=-c_{i j}, 1 \leq i<j \leq n$, and $f\left(E_{k k}\right)=r b_{k}, 1 \leq k \leq n$. Then $f(I)=r\left(\sum_{k=1}^{n} b_{k}\right) \neq-1$, and so the linear map $\theta_{f}: \mathcal{T} \rightarrow \mathcal{T}$ defined by $\theta_{f}(X)=X+f(X) I$ is an invertible map preserving strong commutativity. Since the linear maps $\varphi_{-q} \eta_{r} \varphi$ and θ_{f} have the same actions on the basis $\left\{E_{i j} \mid 1 \leq i<j \leq n\right\} \cup\left\{E_{k k} \mid 1 \leq k \leq n\right\}$, then
$\varphi_{-q} \eta_{r} \varphi=\theta_{f}$. Thus $\varphi=\eta_{r}^{-1} \varphi_{-q}^{-1} \theta_{f}=\eta_{r} \varphi_{q} \theta_{f}$, i.e., φ is a composition of the idempotent scalar multiplication η_{r}, an extremal inner automorphism φ_{q} and a linear map θ_{f} induced by the linear function f on \mathcal{T}.
Remark 3.5. Theorem 3.4 does not hold for $n=2$. Here we give a counterexample. Let a be an invertible element in R, and $r \in R$ such that $r \neq a^{-1}$. Define a linear map $\varphi: \mathcal{T} \rightarrow \mathcal{T}$ such that $\varphi\left(E_{11}\right)=a E_{11}, \varphi\left(E_{22}\right)=a E_{22}$, $\varphi\left(E_{12}\right)=a^{-1} E_{12}+r I$. Then φ is invertible, and φ^{-1} is the linear map defined by $\varphi^{-1}\left(E_{11}\right)=a^{-1} E_{11}, \varphi^{-1}\left(E_{22}\right)=a^{-1} E_{22}, \varphi^{-1}\left(E_{12}\right)=a E_{12}-r I$. It is easy to see that $\left[\varphi\left(E_{i j}\right), \varphi\left(E_{k l}\right)\right]=\left[E_{i j}, E_{k l}\right]$ for any $1 \leq i \leq j \leq 2,1 \leq k \leq l \leq 2$, then φ preserves strong commutativity. However, for any $q, r \in R$, and any linear function $f: \mathcal{T} \rightarrow R$, we have

$$
\left(\eta_{r} \varphi_{q} \theta_{f}\right)\left(E_{12}\right)=r S_{q}^{-1}\left(f\left(E_{12}\right) I+E_{12}\right) S_{q}=r f\left(E_{12}\right) I+r E_{12}
$$

Since $r \neq a^{-1}$, then $\left(\eta_{r} \varphi_{q} \theta_{f}\right)\left(E_{12}\right) \neq \varphi\left(E_{12}\right)$, and so $\eta_{r} \varphi_{q} \theta_{f} \neq \varphi$.
Acknowledgement. This work is supported by the National Natural Science Foundation of China (Grant No. 11871014) and the Natural Science Foundation of Fujian Province (Grant No. 2020J01162).

References

[1] H. E. Bell and M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447. https://doi.org/10.4153/CMB-1994-064-x
[2] D. Benkovič and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), no. 2, 797-824. https://doi.org/10.1016/ j.jalgebra.2004.06.019
[3] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525-546. https: //doi.org/10.2307/2154392
[4] M. Brešar and C. R. Miers, Strong commutativity preserving maps of semiprime rings, Canad. Math. Bull. 37 (1994), no. 4, 457-460. https://doi.org/10.4153/CMB-1994-066-4
[5] M. Brešar and P. Šemrl, Commutativity preserving linear maps on central simple algebras, J. Algebra 284 (2005), no. 1, 102-110. https://doi.org/10.1016/j.jalgebra. 2004.09.014
[6] Y. Cao, Z. Chen, and C. Huang, Commutativity preserving linear maps and Lie automorphisms of strictly triangular matrix space, Linear Algebra Appl. 350 (2002), 41-66. https://doi.org/10.1016/S0024-3795(02)00264-1
[7] Z. Chen and H. Liu, Strong commutativity preserving maps of strictly triangular matrix Lie algebras, J. Algebra Appl. 18 (2019), no. 7, 1950134, 15 pp. https://doi.org/10. 1142/S0219498819501342
[8] M. D. Choi, A. A. Jafarian, and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227-241. https://doi.org/10.1016/0024-3795(87) 90169-8
[9] Q. Deng and M. Ashraf, On strong commutativity preserving mappings, Results Math. 30 (1996), no. 3-4, 259-263. https://doi.org/10.1007/BF03322194
[10] V. De Filippis and G. Scudo, Strong commutativity and Engel condition preserving maps in prime and semiprime rings, Linear Multilinear Algebra 61 (2013), no. 7, 917-938. https://doi.org/10.1080/03081087.2012.716433
[11] C.-K. Li and N.-K. Tsing, Linear preserver problems: a brief introduction and some special techniques, Linear Algebra Appl. 162/164 (1992), 217-235. https://doi.org/ 10.1016/0024-3795(92) 90377-M
[12] J.-S. Lin and C.-K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl. 428 (2008), no. 7, 1601-1609. https://doi.org/10.1016/j.laa. 2007. 10.006
\qquad , Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl. 432 (2010), no. 1, 14-23. https://doi.org/10.1016/j.laa.2009.06.036
[14] C.-K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math. 166 (2012), no. 3-4, 453-465. https://doi.org/10.1007/s00605-010-0281-1
[15] J. Ma, X. W. Xu, and F. W. Niu, Strong commutativity-preserving generalized derivations on semiprime rings, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 11, 1835-1842. https://doi.org/10.1007/s10114-008-7445-0
[16] L. W. Marcoux and A. R. Sourour, Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras, Linear Algebra Appl. 288 (1999), no. 1-3, 89-104. https://doi.org/10.1016/S0024-3795(98)10182-9
[17] D. Wang, Invertible linear maps on Borel subalgebras preserving zero Lie products, J. Algebra 406 (2014), 321-336. https://doi.org/10.1016/j.jalgebra.2014.02.023
[18] D. Wang and Z. Chen, Invertible linear maps on simple Lie algebras preserving commutativity, Proc. Amer. Math. Soc. 139 (2011), no. 11, 3881-3893. https://doi.org/ 10.1090/S0002-9939-2011-10834-7

Zhengxin Chen
School of Mathematics and Statistic
Fujian Normal University
Fuzhou, 350007, P. R. China
Email address: chenzxmath@sina.com
Yu'e Zhao
School of Mathematics and Statistic
Qingdao University
Qingdao, 266071, P. R. China
Email address: blueskyyu2004@aliyun.com

[^0]: Received September 8, 2020; Accepted March 31, 2021.
 2010 Mathematics Subject Classification. 15A04, 15A27, 15A86.
 Key words and phrases. Upper triangular matrix Lie algebras, strong commutativity preserving maps, extremal inner automorphisms, idempotent scalar multiplications.

