
Bull. Korean Math. Soc. 53 (2016), No. 4, pp. 1017–1031
http://dx.doi.org/10.4134/BKMS.b150487
pISSN: 1015-8634 / eISSN: 2234-3016

GENERALIZED CAYLEY GRAPH OF UPPER

TRIANGULAR MATRIX RINGS
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Abstract. Let R be a commutative ring with the non-zero identity and
n be a natural number. Γn

R
is a simple graph with Rn \ {0} as the vertex

set and two distinct vertices X and Y in Rn are adjacent if and only if
there exists an n× n lower triangular matrix A over R whose entries on
the main diagonal are non-zero such that AXt = Y t or AY t = Xt, where,
for a matrix B, Bt is the matrix transpose of B. Γn

R
is a generalization

of Cayley graph. Let Tn(R) denote the n × n upper triangular matrix
ring over R. In this paper, for an arbitrary ring R, we investigate the

properties of the graph Γn

Tn(R)
.

1. Introduction

The investigation of graphs related to algebraic structures is a very large
and growing area of research. One of the most important classes of graphs
considered in this framework is that of Cayley graphs. These graphs have been
considered, for example in [2], [7], [10] and [11]. Let us refer the readers to the
survey article [14] for extensive bibliography devoted to various applications
of Cayley graphs. Several other classes of graphs associated with algebraic
structures have been also actively investigated. For example, see [1], [3], [5],
[6], [12] and [13].

Let G be a semigroup, and let S be a nonempty subset of G. The Cayley
graph of a semigroup G relative to S, which is denoted by Cay(G,S), is defined
as the graph with vertex set G and edge set E(S) consisting of those ordered
pairs (x, y) such that sx = y for some s ∈ S (see [7]). In particular, the Cayley
graphs of semigroups are related to automata theory, as explained in [9] and
the monograph [8].

In [2], for a commutative ring R with the identity element 1 6= 0, the authors
introduced and studied a simple graph, denoted by Γn

R, with Rn \ {0} as the
vertex set and two distinct vertices X and Y in Rn are adjacent if and only if
there exists an n×n lower triangular matrix A over R whose all entries on the
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main diagonal are non-zero such that AXt = Y t or AY t = Xt, where, for a
matrix B, Bt is the matrix transpose of B. Here, Rn is the Cartesian product
of n copies of R. Clearly, in the case that n = 1, Γ1

R is the undirected Cayley
graph Cay(H,S), where H = S = R \ {0}. So Γn

R is a generalization of Cayley
graphs.

Let Tn(R) be the n× n upper triangular matrix ring over an arbitrary ring
R. When there is no confusion, let us denote Tn(R) by T . In this paper for
a natural number n, we study the graph Γn

T . Γn
T is an undirected graph with

vertex set

{(X1, X2, . . . , Xn); Xi ∈ Tn(R), 1 ≤ i ≤ n},

and two distinct vertices X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) in
Γn
T are adjacent if and only if there exists an n× n lower triangular matrix A

over an arbitrary ring R whose all entries on the main diagonal are non-zero
such that AX t = Yt or AYt = X t. We denote the set of zero-divisors and unit
elements of R by ZD(R) and U(R), respectively (cf. [15]).

We use the standard terminology of graphs contained in [4]. Throughout the
paper, all graphs are simple and connected graphs. Suppose that G is a graph
with vertex set V (G). The distance between the vertices u and v of V (G) is
defined as the length of a minimal path connected them, denoted by d(u, v).
The diameter of a graph G is diam(G) = sup{d(u, v); u, v ∈ V (G) and u 6=
v}. The girth of G is the length of the shortest cycle in G, and denoted by
gr(G). The degree of a vertex u in a graph G, denoted by degG(u), is the
number of edges of G incident with u. The graph G is complete if each pair
of distinct vertices is joined by an edge. We use Kn to denote the complete
graph with n vertices. A clique of a graph is a complete subgraph of it and
the number of vertices in a largest clique of G is called the clique number of
G and is denoted by ω(G). A dominating set for a graph G is a subset D

of V (G) such that every vertex not in D is adjacent to at least one member
of D. The domination number γ(G) is the number of vertices is a smallest
dominating set for G. For a vertex a of G, we denote the neighbourhood of a
by N(a) = {x ∈ V (G) : d(a, x) = 1}. Let G be a graph and a, b, c ∈ V (G),
such that N(a) ( N(b) ⊆ N(c). Then G is not End-regular. Let G1 and G2

be subgraphs of G. We say that G1 and G2 are disjoint if they have no vertex
and no edge in common. The union of two disjoint graphs G1 and G2, which
is denoted by G1 ∪ G2, is a graph with V (G1 ∪ G2) = V (G1) ∪ V (G2) and
E(G1 ∪ G2) = E(G1) ∪ E(G2). The independence number of a graph G is
the cardinality of the largest independent set. The independence number is
denoted by α(G). The chromatic number of a graph G, which is denoted by
χ(G), is the smallest number of colors needed to color the vertices of G so that
no two adjacent vertices have the same colors. Also, the edge chromatic number

of a graph G, which is denoted by χ′(G), is the smallest number of colors such
that one can associate colors to edges of G so that every pair of distinct edges
meeting at a common vertex are assigned two different colors.
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In Section 2, we study some basic properties of Γn
T . In Section 3, we describe

the graph Γ1
T2(R) in detail. Moreover, in the case that R is a field, we completely

investigate the properties of the graph Γ1
T2(R).

2. Basic properties

In this section, for a finite ring R, we study the cardinality of the sets
of vertices and edges of the graph Γn

T . Also, we study the connectivity and
diameter of the graph Γn

T , where n is a positive integer with n > 1.
For i with 1 ≤ i ≤ n, we use the notation T i to denote the set of all vertices

whose first non-zero components are in the ith place. In the following remark,
we bring some results about the adjacencies in the graph Γn

T from [2].

Remark 2.1. Assume that X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) are
two distinct vertices in Γn

T . Then,

(i) If X1 is unit (or invertible) and Y1 is non-zero, then X and Y are
adjacent in Γn

T .
(ii) If X ∈ T i such that its ith component is a unit matrix, then X is

adjacent to Y for all Y ∈ T i.
(iii) If X1 = 0 = Y1, then there is a vertex Z = (Z1, Z2, . . . , Zn) such that

Z1 is non-zero and Z is adjacent to both vertices X and Y.
(iv) If X1 6= 0, then X is adjacent to (X1, In, . . . , In).

Proposition 2.2. Let R be a finite ring with |R| = k. Then

|V (Γn
T )| =

(
k

n(n+1)

2

)n
− 1.

Proof. Since we have |T | = kn · kn−1 · · · · · k = k(1+2+···+n) = k
n(n+1)

2 , the
result holds. �

Proposition 2.3. Let R be a finite ring with |R| = k and |ZD(R)| = d. Then

the number of edges of Γn
T is at least

[ n∑

i=1

( |Vi| · |Vi − 1|

2
+ |Vi| · |V

′

i |
)

+
[∣
∣ZD(T )

∣
∣
(∣
∣T

∣
∣
n−1

− 1
)]
,

where |Vi| is the number of vertices of T i in Γn
T whose first unit components

are in the ith place, and |V ′

i | is the number of vertices of T i in Γn
T whose first

non-zero and non-unit components are in the ith place.

Proof. Assume that |R| = k, |ZD(R)| = d and |U(R)| = k − d. Clearly

|U(T )| = (k − d)n
(
kn−1 · kn−2 · · · · · k

)
= (k − d)n · k

n(n−1)

2 .

Also, the number of non-zero and non-unit elements of T is

|U ′(T )| = k
n(n+1)

2 − (k − d)n · k
n(n−1)

2 − 1.
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For each i with 1 ≤ i ≤ n, we have

|Vi| = |U(T )| · |T |n−i = (k − d)n · k
n(n−1)

2 ·
(
k

n(n+1)

2

)n−i
,

and

|V ′

i | = |U ′(T )| · |T |n−i =
(

k
n(n+1)

2 − (k − d)n · k
n(n−1)

2 − 1
)(

k
n(n+1)

2

)(n−i)
.

Thus, in this case, by Remark 2.1(i), we conclude that the number of edges
between Vi’s and V ′

i ’s are at least
n∑

i=1

( |Vi|(|Vi| − 1)

2
+ |Vi| · |V

′

i |
)

.

Also, the number of vertices whose first components are zero, is equal to

k
n
2
(n+1)

2 − 1−
(

k
n
2
(n+1)

2 − k
n(n+1)(n−1)

2

)

= k
n(n−1)(n+1)

2 − 1,

and by Remark 2.1(iii), these vertices are adjacent to vertex (B, In, . . . , In),
where B ∈ ZD(T ). Hence, the number of edges of Γn

T is at least

[ n∑

i=1

( |Vi| · (|Vi| − 1)

2
+ |Vi| · |V

′

i |
)]

+
(

|ZD(T )| · (|T |n−1 − 1)
)

.
�

Theorem 2.4. The graph Γn
T is connected and diam(Γn

T ) ∈ {2, 3}.

Proof. Since T is not an integral domain, by [2, Theorem 2.8], we have Γn
T is

connected and diam(Γn
T ) ∈ {2, 3}. �

Lemma 2.5. Assume that R is an arbitrary ring. Then R = ZD(R) ∪ U(R)
if and only if T = ZD(T ) ∪ U(T ).

Proof. Let R = ZD(R) ∪ U(R). Then clearly T = ZD(T ) ∪ U(T ). Now,
suppose that T = ZD(T ) ∪ U(T ) and R 6= ZD(R) ∪ U(R). Then there exists
0 6=a ∈ R \ (ZD(R)∪U(R)). So there exists an n× n upper triangular matrix
A over R with entries on the main diagonal are a 6= 0, and so A 6∈ ZD(T ).
Hence A ∈ U(T ). Therefore there exists an n × n upper triangular matrix B

over R such that AB = In. So ab11 = 1, which implies that a ∈ U(R), and this
is impossible. �

The following proposition immediately follows from Theorem 2.4 and Lemma
2.5 in conjunction with [2, Theorem 2·10].

Proposition 2.6. In the graphs Γn
R and Γn

T we have diam(Γn
R) = diam(Γn

T ).

Lemma 2.7. If R is a field, then diam(Γn
T ) = 2.

Proof. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two vertices of
Γn
T . By Remark 2.1(i), if X1 6= 0 6= Y1, then d(X ,Y) = 1. If X1 = 0 and

Y1 6= 0, then, by Remark 2.1(iii), there exists a vertex Z = (Z1, Z2, . . . , Zn)
with Z1 6= 0 such that X and Z are adjacent. Also, by Remark 2.1(i), Z and Y
are adjacent. Hence d(X ,Y) ≤ 2. Now if X1 and Y1 are zero, then, by Remark
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2.1(iii), there exists a vertex K = (K1,K2, . . . ,Kn) with K1 6= 0, such that
X ∼ K ∼ Y. Hence d(X ,Y) ≤ 2. Clearly (Y1, 0, . . . , 0) and (0, X2, 0, . . . , 0) are
two non-adjacent vertices in Γn

T . Hence diam(Γn
T ) = 2. �

Proposition 2.8. In the graph Γn
T , we have the following inequality

γ(Γn
T ) ≤ |T |n−1(|T | − 1).

Proof. We show that the set D = {(X1, X2, . . . , Xn); X1 6= 0} forms a dom-
inating set for Γn

T . Let (Y1, Y2, . . . , Yn) be a vertex in Γn
T such that

(Y1, Y2, . . . , Yn) 6∈ D.

Hence Y1 = 0. Consider two matrices A and B such that A ∈ Mn×n(R) and
0 6=B ∈ Tn(R), and AB = 0. Then we have








A 0 · · · 0
0 In · · · 0
...

...
. . .

...
0 0 · · · In

















B

Y2

Y3

...
Yn










=










0
Y2

Y3

...
Yn










,

which means that (B, Y2, . . . , Yn) and (0, Y2, . . . , Yn) are adjacent and

(B, Y2, . . . , Yn) ∈ D.

Now since D is a dominating set of size |T |n−1(|T | − 1), the result holds. �

Lemma 2.9. Assume that T contains a nonidentity unit matrix. Then Γn
T is

not End-regular.

Proof. Suppose that I = (I1, 0, . . . , 0), U = (U1, 0, . . . , 0) and X = (X1, 0, . . .,
0) are three vertices of Γn

T such that I1 is the identity matrix, U1 is a nonidentity
unit matrix and X1 6= 0. Let Y ∈ N(U). Then there exists n × n lower

triangular matrix A =









a11 0 . . . 0

a21 a22
...

...
. . . 0

an1 · · · · · · ann









such that AYt = U t or AU t =

Yt.
First suppose that AYt = U t, and consider the n×n lower triangular matrix

A′ =









a11U
−1
1 0 · · · 0

a21 a22
...

...
...

. . . 0
an1 an2 · · · ann









. Then A′Yt = It, and so Y ∈ N(I). Hence

N(U) ⊆ N(I). Now, let AU t = Yt, and consider the n × n lower triangular
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matrix A′′ =









Y1 0 · · · 0

Y2 a22
...

...
...

. . . 0
Yn an2 · · · ann









. Then A′′It = Yt, and so Y ∈ N(I).

Therefore N(U) ⊆ N(I). Now, let W ∈ N(X ). Then one can easily check
that the first component of W is non-zero. Hence, by Remark 2.1(i), we have
N(X ) ⊆ N(U). We show that N(X ) ( N(U). Since T has at least two
maximal ideals, there exist non-zero matrices X1 and Z1 such that X1 6∈ 〈Z1〉
and Z1 6∈ 〈X1〉, where for a matrix A ∈ T , 〈A〉 is the ideal generated by A.
Now, it is easy to see that (Z1, 0, . . . , 0) is adjacent to U but it is not adjacent
to X . Therefore Γn

T is not End-regular. �

3. The structure of Γ1

T2(R)

In this section, we restrict T = T2(R) to be the 2 × 2 matrices over an
arbitrary ring R with identity. We describe the graph Γ1

T2(R) in detail. Let X

and Y be two vertices of Γ1
T2(R). Then X and Y are adjacent if and only if

there exists a non-zero arbitrary 2× 2 matrix A over R such that AX = Y or
AY = X .

Denote ZD = ZD(R) and U = U(R). To describe the graph Γ1
T2(R) for an

arbitrary ring R, we first divide the vertices of T = T2(R) into the following
disjoint subsets:

X(1) =

[
U R

0 U

]

, X(2) =

[
U R

0 ZD

]

,

X(3) =

[
ZD R

0 U

]

, X(4) =

[
ZD R

0 ZD

]

.

That is, V (Γ1
T2(R)) = X(1) ∪X(2) ∪X(3) ∪X(4) is the disjoint union of the four

sets X(i)’s for i = 1, 2, 3, 4. Also, Γ1
T (Xi) is the induced subgraph of Γ1

T2(R), and

V (Γ1
T (Xi)) = X(i) for i = 1, 2, 3, 4. In the following, let Eij be a subgraph of

Γ1
T2(R) with vertex set X(i) ∪X(j), and consists of all edges from vertices X(i)

to X(j) for i, j = 1, 2, 3, 4.

Proposition 3.1. The subgraph E11 is a complete graph.

Proof. Let

X =

[
u1 r2
0 u3

]

, Y =

[
u′

1 r′2
0 u′

3

]

∈ X(1),

where u1, u
′

1, u3, u
′

3 ∈ U , and r2, r
′

2 ∈ R. In this case, there exists a non-zero
arbitrary 2× 2 matrix of the form

A =

[
u−1
1 u′

1 r′2u
−1
3 − u−1

1 u′

1r2u
−1
3

0 u′

3u
−1
3

]

,
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such that AX = Y. Then X and Y are adjacent, and so E11 is complete. �

Proposition 3.2. For j = 2, 3, 4, the subgraph E1j is a complete graph.

Proof. Similar to the proof of Proposition 3.1, the results hold. �

The following corollary follows from Propositions 3.1 and 3.2.

Corollary 3.3. In the graph Γ1
T2(R), we have diam(Γ1

T2(R)) = 2.

Theorem 3.4. Let R be a finite arbitrary ring with identity. Let |R| = k and

|ZD(R)| = z. Then the number of edges of Γ1
T2(R) is at least equal to

1

2
k(k − z)2(k3 + 2k2z − kz2 − 1).

Proof. By Propositions 3.1 and 3.2, the number of edges in Γ1
T2(R) is at least

equal to the sum of the number of edges of the complete graph E11 and E1j ,
for j = 2, 3, 4. So,

|E(Γ1
T2(R))| ≥

[k(k − z)2][k(k − z)2 − 1]

2

+ k(k − z)2[kz(k − z) + kz(k − z) + kz2]

=
1

2
k(k − z)2(k3 + 2k2z − kz2 − 1).

�

In the rest of this section, we assume that R is a finite field with k elements.
Clearly |U(R)| = k − 1. In this case

X(1) =

[
U R

0 U

]

, X(2) =

[
U R

0 0

]

,

X(3) =

[
0 R

0 U

]

, X(4) =

[
0 R∗

0 0

]

.

Recall that |X(1)| = k(k − 1)2, |X(2)| = |X(3)| = k(k − 1) and |X(4)| = k − 1.
So the number of vertices of Γ1

T2(R) is equal to (k − 1)(k2 + k + 1).

Lemma 3.5. Let R be a finite field. Then the following statements hold.

(i) For each i = 1, 3, 4, the subgraph Eii is complete.

(ii) For each j = 2, 3, 4, the subgraph E1j is complete.

(iii) The subgraph E34 is complete.

Proof. (i) We only give the proof for the case that i = 4, the other situations
are similar.
Let

X =

[
0 r2
0 0

]

, Y =

[
0 r′2
0 0

]

∈ X(4),

where r2, r
′

2 ∈ R \ {0}. In this situation, there exists a non-zero arbitrary 2× 2
matrix of the form

A =

[
r−1
2 r′2 a2
0 a4

]

,
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such that a2, a4 ∈ R and AX = Y. Then X and Y are adjacent and the
subgraph E44 is complete.

(ii) We only give the proof for the case that j = 3, and the proof of other
situations is obtained similarly. Let

X =

[
u1 r2
0 u3

]

∈ X(1), Y =

[
0 r′2
0 u′

3

]

∈ X(3),

where u1, u3, u
′

3 ∈ U and r2, r
′

2 ∈ R. X and Y are adjacent, since there exists

a 2 × 2 matrix A =

[
a1 a2
a3 a4

]

such that a1u1 = 0, a2u3 = r′2, a3u1 = 0 and

a4u3 = u′

3, by considering a1 = a3 = 0, a2 = u−1
3 r′2 and a4 = u−1

3 u′

3. So the
subgraph E13 is complete.

(iii) The proof of this part is similar to the proof of previous parts. �

Lemma 3.6. Let R be a finite field with n elements. Then the subgraph E22

is isomorphic to the union of n complete graphs Kn−1.

Proof. For each pair of distinct vertices in X(2), one of the following situations
happens:

(i) Let X =

[
u1 0
0 0

]

,Y =

[
u′

1 0
0 0

]

∈ X(2), where u1, u
′

1 ∈ U . Then there

exists a 2 × 2 matrix A =

[
u−1
1 u′

1 a2
0 a4

]

such that a2, a4 ∈ R. Hence AX = Y,

and in this case we have one clique with n− 1 vertices.

(ii) Let X =

[
u u

0 0

]

,Y =

[
u′ u′

0 0

]

∈ X(2), where u, u′ ∈ U . Then there

exists a 2× 2 matrix A =

[
u−1u′ u−1u′

0 a4

]

such that a4 ∈ R. Hence AX = Y,

and in this case we have one clique with n− 1 vertices.

(iii) Let X =

[
u1 r2
0 0

]

,Y =

[
u′

1 r′2
0 0

]

∈ X(2), where u1, u
′

1 ∈ U and r2, r
′

2 ∈

R \ {0}. Then there exists a non-zero 2× 2 matrix A =

[
u−1
1 u′

1 a2
0 a4

]

such that

a2, a4 ∈ R. Hence AX = Y, if r′2 = u−1
1 u′

1r2. Since the number of vertices of
this part is (n− 2)(n− 1) and X ∪NX(2)(X) forms the complete graph Kn−1,
we have (n − 2) cliques of size (n − 1). Now, by considering the above cases
the result holds. �

Remark 3.7. The subgraphs E23 and E24 are empty graphs.

In Figure 1, Γ1
T2(R) is pictured by using the sets X(i)’s, for a finite field R.

Example 3.8. Let R = Z2. Then the vertices of Γ1
T2(Z2)

are

X1 =

[
1 0
0 1

]

, X2 =

[
1 1
0 1

]

, X3 =

[
1 1
0 0

]

, X4 =

[
1 0
0 0

]

,
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X(3)

X(4)

X(1)

X(2)

Kn−1

Kn−1

Kn−1

n− th

Figure 1

X5 =

[
0 0
0 1

]

, X6 =

[
0 1
0 1

]

, X7 =

[
0 1
0 0

]

,

and Γ1
T2(Z2)

is pictured in Figure 2.

X1

X2 X3

X4X5

X6

X7

Figure 2

Lemma 3.9. Let R be a finite field with |R| = k. Then the number of edges

of Γ1
T2(R) is equal to k−1

2 (k5 + k4 − 2k3 − k − 2).

Proof. By Lemma 3.5, the induced subgraph with vertex set X(1)∪X(3)∪X(4)

forms the complete graph Kn with [(k−1)(k2+1)][(k−1)(k2+1)−1]
2 edges, where n =

(k − 1)(k2 + 1). Also, by Lemma 3.6, the number of edges of E22 is equal to
k(k−1)(k−2)

2 . Now, by Remark 3.7, it is enough to determine the number of

edges of E12. Since all vertices in X(1) are adjacent to all vertices in X(2), the
number of edges of E12 is equal to k2(k − 1)3. Therefore,

|E(Γ1
T2(R))| =

[(k − 1)(k2 + 1)][(k − 1)(k2 + 1)− 1]

2

+
k(k − 1)(k − 2)

2
+ k2(k − 1)3

= (
k − 1

2
)
[
(k − 1)(k2 + 1)2 − (k2 + 1) + k(k − 2) + 2k2(k − 1)2

]

= (
k − 1

2
)(k5 + k4 − 2k3 − k − 2).

�

The following corollary follows from the proof of Lemma 3.9.
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Corollary 3.10. Let R be a finite field with |R| = k. Then the following

statements hold.

(i) ω(Γ1
T2(R)) = (k − 1)(k2 + 1).

(ii) The vertex chromatic number of Γ1
T2(R) is equal to (k − 1)(k2 + 1).

The following lemma is obtained from Figure 1 by using a simple counting.

Lemma 3.11. If R be a finite field with |R| = k, then

(i) degX(1)(a) = k3 − 2.
(ii) degX(2)(a) = (k − 2) + k(k − 1)2.
(iii) degX(3)(a) = (k − 1)(k2 + 1)− 1.
(iv) degX(4)(a) = (k − 1)(k2 + 1)− 1.

Lemma 3.12. If R is a finite field with |R| = k, then the independence number

of Γ1
T2(R) is k + 1.

Proof. By Lemma 3.6, there are k vertices in X(2) that form an independent
set, say I, in Γ1

T2(R). Now, in view of Remark 3.7, we can add one vertex from

X(3) orX(4) to I, say a, that I∪{a} is an independent set. So γ(Γ1
T2(R)) ≤ k+1.

In view of Figure 1, one can easily see that α(Γ1
T2(R)) = k + 1. �

Lemma 3.13. If R is a finite field with |R| = k, then the edge chromatic

number of Γ1
T2(R) is

(k − 1)(2k2 − k + 1)− 1 ≤ χ′
(
Γ1
T2(R)

)
< (k − 1)(2k2 + 1)− 1.

Proof. Since Eii∪Eij , for i, j ∈ {1, 3, 4}, forms a clique in Γ1
T2(R), we can color

these edges with (k − 1)(k2 + 1) colors. Also we can color the edges of all
cliques of X(2) with the colors that are used to color the edges of X(4). Since
each vertex in X(1) is adjacent to all vertices in X(2), there are k(k− 1)2 edges
between each vertex in X(1) and the vertices in X(2). Now, by considering
the first vertex of X(1), we can color the edges between this vertex and the
vertices of X(2) by using k(k − 1)2 colors. One can easily see that for coloring
the edges between the next vertex of X(1) and the vertices of X(2), we can use
the k(k − 1)2 previous colors with one new color. By continuing this method,
we can color the edges of E12 with k(k − 1)2 + k(k − 1)− 1 colors. Therefore
χ′
(
Γ1
T2(R)

)
≤ (k − 1)(2k2 + 1)− 1. Now, as we have mentioned before, we can

color Eii∪Eij , for i, j ∈ {1, 3, 4} with (k−1)(k2+1) colors. Also, we can color
E12 ∪E22 with k(k− 1)2+ k(k− 1)− 1+ (k− 1) colors. On the other hand, we
can color E33 ∪E44 ∪E34 with k(k− 1)+ (k− 1) colors. Since E33 ∪E44 ∪E34

is disjoint from E12∪E22, we can use the colors of the edges in E33∪E44 ∪E34

for coloring the edges of E12 ∪E22, if it is possible. Therefore we need at least
(k − 1)(k2 + 1) + k(k − 1)2 + k(k − 1) + (k − 2)− k(k − 1)− (k − 1) colors for
coloring Γ1

T2(R). Hence χ′
(
Γ1
T2(R)

)
≥ (k − 1)(2k2 − k + 1). �
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The wiener index, W (G), is equal to the count of all shortest distances in
a graph (cf. [16]). In other words, W (G) = 1

2

∑

u∈V (G)

∑

v∈V (G) d(u, v). The

hyper-wiener index, is defined for all connected graphs, as a generalization of
the wiener index. It is WW (G) = 1

2W (G) + 1
2

∑

{u,v}⊆V (G) d
2(u, v).

Wiener number was defined in 1947 by an American chemist H. Wiener. He
used this index to estimate the boiling point of Alkans. There are many situ-
ations in communication, facility location, cryptology, architecture etc. where
the Wiener index of the corresponding graph or the average distance is of great
interest. One of these problems, for example, is to find a spanning tree with
minimum average distance.

In the rest of the paper, we investigate the wiener index and hyper-wiener
index of Γ1

T2(R), where R is a finite field.

Theorem 3.14. If R is a finite field with |R| = k, then

W
(
Γ1
T2(R)

)
=

k − 1

2
(k5 + k4 + 4k3 − 4k2 − 3k − 2).

Proof. Each vertex in X(1) is adjacent to all vertices in Γ1
T2(R). So

∑

a∈X(1)

∑

b∈V (Γ1

T2(R)
)

d(a, b) = k(k − 1)2[(k3 − 1)− 1] = k(k − 1)2(k3 − 2).

Also,
∑

a∈X(2)

∑

b∈V (Γ1

T2(R)
)\X(2)

d(a, b)

= k(k − 1) · k(k − 1)2 + k(k − 1) · 2k(k − 1) + k(k − 1) · 2(k − 1)

= k(k − 1)2(k2 + k + 2),

and,
∑

a∈X(2)

∑

b∈X(2)

a 6=b

d(a, b) = k(k − 1)[(k − 2) + 2(k − 1)(k − 1)].

Hence,
∑

a∈X(2)

∑

b∈V (Γ1

T2(R)
)

d(a, b)

= k(k − 1)2(k2 + k + 2) + k(k − 1)[(k − 2) + 2(k − 1)2]

= k(k − 1)(k3 + 2k2 − 2k − 2).

Similarly,
∑

a∈X(3)

∑

b∈V (Γ1

T2(R)
)

d(a, b)

= k(k − 1)
[
k(k − 1)2 + 2k(k − 1) +

(
k(k − 1)− 1

)
+ (k − 1)

]
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= k(k − 1)(k3 + k2 − k − 2),

and
∑

a∈X(4)

∑

b∈V (Γ1

T2(R)
)

d(a, b)

= (k − 1)
[
k(k − 1)2 + 2k(k − 1) + k(k − 1) +

(
(k − 1)− 1

)]

= (k − 1)(k3 + k2 − k − 2).

Therefore

W
(
Γ1
T2(R)

)
=

1

2
[k(k − 1)2(k3 − 2) + k(k − 1)(k3 + 2k2 − 2k − 2)

+ k(k − 1)(k3 + k2 − k − 2) + (k − 1)(k3 + k2 − k − 2)]

=
k − 1

2
(k5 + k4 + 4k3 − 4k2 − 3k − 2).

�

Theorem 3.15. If R is a finite field with |R| = k, then

WW
(
Γ1
T2(R)

)
=

1

2

( k−1∑

j=1

k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − j)

)

+
1

4
(2k6 + 8k4 − 15k3 − 4k2 + 3k + 6).

Proof. For each i = 1, 2, 3, 4, if a ∈ X(1) and b ∈ X(i), then
∑

{a,b}⊆V (Γ1

T2(R)
)

d2(a, b) = k(k − 1)2(k3 − 1)−
(
1 + 2 + 3 + · · ·+ k(k − 1)2

)

=
k(k − 1)2

2
(k3 + 2k2 − k − 3).

The sum of the square of the distances from each vertex of the first clique of
X(2) from other vertices X(2) is equal to (k− 2)+22(k− 1)(k− 1). So the sum
of the square of the distance from vertices of the first clique of X(2) from other
vertices X(2) is equal to

[(k − 2) + 22(k − 1)2] + [(k − 3) + 22(k − 1)2] + · · ·+
[
[k − (k − 1)] + 22(k − 1)2

︸ ︷︷ ︸

]

(k−2)−th

+ 22(k − 1)(k − 1)

= k(k − 2)−
(
2 + 3 + · · ·+ (k − 1)

)
+ (k − 2)× 22(k − 1)2 + 22(k − 1)2

= k(k − 2)−
((k − 1)(k − 1 + 1)

2
− 1

)

+ 4(k − 1)(k − 1)2

= k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)(k − 1)2.

Also, the sum of the square of the distance from each vertex of the second
clique of X(2) from other vertices of (k − 2) other cliques is equal to (k − 2) +
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22(k − 1)(k − 2). So the sum of the square of the distance from vertices of the
second clique of X(2) except vertices of the first clique is equal to

[(k − 2) + 22(k − 1)(k − 2)] + [(k − 3) + 22(k − 1)(k − 2)] + · · ·+
[
[k − (k − 1)] + 22(k − 1)(k − 2)

︸ ︷︷ ︸

]

(k−2)−th

+ 22(k − 1)(k − 2)

= (k − 2)k −
(
2 + 3 + · · ·+ (k − 1)

)
+ (k − 1) · 22(k − 1)(k − 2)

= k(k − 2)−
( (k − 1)(k − 1 + 1)

2
− 1

)

+ 4(k − 1)2(k − 2)

= k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − 2).

Also, the sum of the square of the distance from each vertex of X(2) from other
vertices X(2) is equal to

[ k−1∑

j=1

k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − j)

]

+
[

(k − 2) + (k − 3) + · · ·+
(
k − (k − 1)

)]

=
[ k−1∑

j=1

k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − j)

]

+
[

(k − 2) · k −
(k − 2)(k + 1)

2

]

.

Hence, for each i = 2, 3, 4, if a ∈ X(2) and b ∈ X(i),

∑

{a,b}⊆V (Γ1

T2(R)
)

d2(a, b)

=
[ k−1∑

j=1

k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − j)

]

+
[

(k − 2) · k −
(k − 2)(k + 1)

2

]

+ [k(k − 1) · 22k(k − 1)]

+ [k(k − 1) · 22(k − 1)]

=
[ k−1∑

j=1

k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − j)

]

+ (4k4 − 4k3 −
7

2
k2 +

5

2
k + 1).
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Also, the subgraphX(3)
⋃
X(4) is a complete graph. Therefore for each i = 3, 4,

and a, b ∈ X(i),
∑

{a,b}⊆V (Γ1

T2(R)
)

d2(a, b) = (k2 − 2) + (k2 − 3) + · · ·+ [k2 − (k2 − 1)]
︸ ︷︷ ︸

(k2
−2)−th

= (k2 − 2) · k2 −
(
2 + 3 + · · ·+ (k2 − 1)

)

= k2 · (k2 − 2)−
[ (k2 − 1)(k2 − 1 + 1)

2
− 1

]

= k2(k2 − 2)−
k2(k2 − 1)

2
+ 1.

Hence,

WW
(
Γ1
T2(R)

)

=
1

2
W

(
Γ1
T2(R)

)
+

1

2

∑

{a,b}⊆V (Γ1

T2(R)
)

d2(a, b)

=
k − 1

4
(k5 + k4 + 4k3 − 4k2 − 3k − 2) +

k(k − 1)2

4
(k3 + 2k2 − k − 3)

+
1

2

[ k−1∑

j=1

k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − j)

]

+
1

2
(4k4 − 4k3 −

7

2
k2 +

5

2
k + 1)

+
1

2

(

k2(k2 − 2)−
k2(k2 − 1)

2
+ 1

)

=
1

2

[ k−1∑

j=1

k(k − 2)−
(k − 2)(k + 1)

2
+ 4(k − 1)2(k − j)

]

+
1

4
(2k6 + 8k4 − 15k3 − 4k2 + 3k + 6).

�

Example 3.16. Let R = Z2, then χ(Γ1

T2(Z2)
) = 5, χ′

(Γ1

T2(Z2)
)
= 6, W(Γ1

T2(Z2)
) =

28, and WW(Γ1

T2(Z2)
) = 35.
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