• Title/Summary/Keyword: unitary representation

Search Result 15, Processing Time 0.037 seconds

DILATION OF PROJECTIVE ISOMETRIC REPRESENTATION ASSOCIATED WITH UNITARY MULTIPLIER

  • Im, Man Kyu;Ji, Un Cig;Kim, Young Yi;Park, Su Hyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.367-373
    • /
    • 2007
  • For a unital *-subalgebra of the space $\mathcal{L}^a(X)$ of all adjointable maps on a Hilbert $\mathcal{B}$-module X with a $C^*$-algebra $\mathcal{B}$, we study unitary operator (in such algebra)-valued multiplier ${\sigma}$ on a normal, generating subsemigroup S of a group G with its extension to G. A dilation of a projective isometric ${\sigma}$-representation of S is established as a projective unitary ${\rho}$-representation of G for a suitable unitary operator (in some algebra)-valued multiplier ${\rho}$ associated with the multiplier ${\sigma}$ which is explicitly constructed.

  • PDF

EISENSTEIN SERIES WITH NON-UNITARY TWISTS

  • Deitmar, Anton;Monheim, Frank
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.507-530
    • /
    • 2018
  • It is shown that for a non-unitary twist of a Fuchsian group, which is unitary at the cusps, Eisenstein series converge in some half-plane. It is shown that invariant integral operators provide a spectral decomposition of the space of cusp forms and that Eisenstein series admit a meromorphic continuation.

Geometric Interpretation of the Unitary Jones Matrix and Its Vectorial Representation (유니타리 존즈행렬의 기하학적 해석과 벡터표현)

  • 노봉규;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 1994
  • We derive a set of formuale which show one-to-one correspondence between the the unitary Jones matrices of transparent anisotropic media and the rotational transformations on the Poincare sphere. By using the formuale one can determine the vectorial representation of the rotational transformation on the Poincare sphere which specifies the direction of the axis and the angle of the rotation in terms of the three parameters specific to the corresponding unitary Jones matrix, and conversely the the three parameters of the uniatry Jones matrix in terms of the vectorial representation of the corresponding rotational transformation on the Poincare sphere. To understand the polarization transmission characteristics of an optical system consisting of transparent linear anisotropic media, start with the Jones calculus to get the unitary Jones matrix for the whole system and then convert it to a rotational transformation on the Poincare sphere, from which we can intuitively understand the effect of the optical system on the polarization state of the light passing through the system.

  • PDF

ON A q-FOCK SPACE AND ITS UNITARY DECOMPOSITION

  • Ji, Un-Cig;Kim, Young-Yi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • A Fock representation of q-commutation relation is studied by constructing a q-Fock space as the space of the representation, the q-creation and q-annihilation operators (-1 < q < 1). In the case of 0 < q < 1, the q-Fock space is interpolated between the Boson Fock space and the full Fock space. Also, a unitary decomposition of the q-Fock space $(q\;{\neq}\;0)$ is studied.

Electromagnetic Properties of the Dirac Particles

  • Pac, P.Y.
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.103-106
    • /
    • 1969
  • A new representation for the Dirac equation, which may be appropriate to describe the interaction of the charged particle with the electric field, is derived by introducing a gauge-independent unitary transformation. It is shown that in this representation the effective Hamiltonian without potentials has a new feature in the non-relativistic limit.

  • PDF

ABSTRACT RANDOM LINEAR OPERATORS ON PROBABILISTIC UNITARY SPACES

  • Tran, Xuan Quy;Dang, Hung Thang;Nguyen, Thinh
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.347-362
    • /
    • 2016
  • In this paper, we are concerned with abstract random linear operators on probabilistic unitary spaces which are a generalization of generalized random linear operators on a Hilbert space defined in [25]. The representation theorem for abstract random bounded linear operators and some results on the adjoint of abstract random linear operators are given.

Representations of the Braid Group and Punctured Torus Bundles

  • Morifuji, Takayuki;Suzuki, Masaaki
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • In this short note, we consider a family of linear representations of the braid group and the fundamental group of a punctured torus bundle over the circle. We construct an irreducible (special) unitary representation of the fundamental group of a closed 3-manifold obtained by the Dehn filling.

ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS

  • Mohammad, Ramezanpour
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.557-570
    • /
    • 2015
  • Let $\mathbb{G}$ be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that $\hat{\mathbb{G}}$, the dual of $\mathbb{G}$, is co-amenable if and only if there is a state $m{\in}L^{\infty}(\hat{\mathbb{G}})^*$ which is invariant under a left module action of $L^1(\mathbb{G})$ on $L^{\infty}(\hat{\mathbb{G}})^*$. This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.