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Abstract. In this short note, we consider a family of linear representations of the braid

group and the fundamental group of a punctured torus bundle over the circle. We con-

struct an irreducible (special) unitary representation of the fundamental group of a closed

3-manifold obtained by the Dehn filling.

1. Introduction

Representations of the fundamental group have played an important role in
the study of 3-dimensional topology. For instance, studying the structure of the
SL(2, C)-representation space gives us information about embedded surfaces in a
3-manifold. Representing a knot group into well-known groups, including SU(2),
to obtain geometric information of a knot has met with success in various context.

In [4], motivated by the volume conjecture due to Kashaev-Murakami-Murakami
[7], the first author et al. introduced an infinite sequence of L2-torsion invariants,
which approximates the simplicial volume, for a surface bundle over the circle. It is
defined by using the regular representations associated with the lower central series
of the surface group. One of the results in [4] states that the geometric structure
of a punctured torus bundle is detected by our first invariant corresponding to the
homology representation. More precisely, the invariant is non-trivial if and only if
a punctured torus bundle admits the hyperbolic structure.

In view of such a background, it seems natural to ask whether representations
into other groups with the similar geometric information exist. In particular, we
would like to construct an invariant of 3-manifolds derived from the representation
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in question. For the problem, we can find in this note a one-parameter family of
irreducible GL(4, C)-representations of the fundamental group of a punctured torus
bundle over the circle. We have not achieved our original attempt rigorously, but
it will be useful to introduce an invariant of punctured torus bundles, which is
minimized by the exterior of the figure eight knot in the 3-sphere.

The purpose of this short note is to discuss another application of this family.
Namely, we give in Section 3 a sufficient condition that it induces a 4-dimensional
irreducible (special) unitary representation of a closed 3-manifold obtained by the
Dehn filling. To this end, we first consider a complex one-parameter family of n-
dimensional linear representations for the braid group Bn (see the next section).
The construction used here is based on Mangum-Shanahan’s recipe for a family of
SL(3, C)-representations [5]. See also [6] for a two-parameters family of SL(6, C)-
representations.

2. A family of representations

The braid group Bn of n strings is generated by n − 1 elements σ1, · · · , σn−1

which satisfy the two kinds of braid relations:

σiσj = σjσi (|i− j| ≥ 2),
σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n− 2).

Let r : Bn → GL(n,Z[s, s−1]) be a representation of Bn defined by the assignment

r(σi) = Ii−1 ⊕
(

0 −s
s 0

)
⊕ In−i−1,

where In denotes the n × n identity matrix. We easily see that r satisfies all the
relations of Bn. We can regard r as a one-parameter deformation of an SO(n)-
representation (s = 1) or a U(n)-representation (s =

√
−1). In the following, we

construct a family of 4-dimensional irreducible representations of a punctured torus
bundle along the paper [5] (see also [6]).

Let Wf be an oriented punctured torus bundle over the circle with a monodromy
f ∈ SL(2, Z). Namely, it is the identification space T × R/(x, τ) ∼ (f(x), τ + 1),
where T is a once punctured torus. The fundamental group of Wf has a presentation
of the form

π1Wf = 〈x, y, z | zxz−1 = f∗(x), zyz−1 = f∗(y)〉.

We first modify the representation r as r′(σi) = (−1/s2)1/4r(σi). For a tech-
nical reason, we also put t = s1/2 and then obtain a representation α : B4 →
GL(4, C[t, t−1]) for t 6= 0. For each i, detα(σi) = −1 and further α

(
(σ1σ2σ3)4

)
= I4

holds. Hence we have a representation

ᾱ : B4/C4 → GL(4, C[t, t−1]),

where C4 is the center of B4 generated by (σ1σ2σ3)4.
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Next we review the construction of a homomorphism from π1Wf to B4/C4.
Since the free group F2

∼= 〈x, y〉 injects into B4 (x 7→ σ1σ
−1
3 , y 7→ σ2σ1σ

−1
3 σ−1

2 ) and
the image is a normal subgroup of B4 (see [2]), we have a homomorphism h : B4 →
Aut(F2). Moreover, the kernel of h is C4 and the image of h̄ : B4/C4 → Aut(F2) is
Aut+(F2) (see [3]), so that we have an isomorphism

h̄ : B4/C4 → Aut+(F2).

Here, Aut+(F2) denotes an index two subgroup of Aut(F2), which is the preimage of
SL(2, Z) under the natural surjective homomorphism Aut(F2)→ GL(2, Z). Using
the isomorphism, we can define a homomorphism ι : π1Wf → B4/C4 by

ι(x) = [σ1σ
−1
3 ],

ι(y) = [σ2σ1σ
−1
3 σ−1

2 ],

ι(z) = h̄−1(f∗).

The composite of ι and ᾱ yields a family of representations

ρt : π1Wf → GL(4, C).

A direct computation shows that

X = ρt(x) =


0 −t2 0 0
t2 0 0 0
0 0 0 t−2

0 0 −t−2 0

 , Y = ρt(y) =


0 0 −1 0
0 0 0 −1
t4 0 0 0
0 t−4 0 0


and detX = detY = 1. Let P be a nonsingular matrix given by

P =


0 0 −

√
−1

√
−1

0 0 1 1√
−1 −

√
−1 0 0

1 1 0 0

 .

Taking conjugations of X and Y by P , we obtain

P−1XP =


−
√
−1t−2 0 0 0
0

√
−1t−2 0 0

0 0 −
√
−1t2 0

0 0 0
√
−1t2

 ,(2.1)

P−1Y P =


0 0 (t−4 − t4)/2 (t−4 + t4)/2
0 0 (t−4 + t4)/2 (t−4 − t4)/2
0 −1 0 0
−1 0 0 0

 .(2.2)
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All the invariant subspaces for (2.1) are spanned by the coordinate axes. However,
none of these subspaces is fixed by (2.2). Thus ρt is irreducible for all values of
t ∈ C except for t = 0. Summing up, we have the following.

Proposition 2.1. There exists a complex one-parameter family ρt of irreducible
representations of a punctured torus bundle over the circle into GL(4, C).

Remark 2.2. As we see in the next section, if we specialize the value of t (put
t = (−1)1/4 for example), then we can obtain an irreducible SU(4)-representation
of π1Wf under a certain condition.

3. Unitary representations for closed 3-manifolds

In this section, we construct representations of closed 3-manifolds obtained from
Wf by Dehn fillings. To this end, we first explain how to compute h̄−1(f∗) for any
f∗ ∈ Aut+(F2) (see also [5] Remark 4). Put S = h̄(σ2σ3σ

−1
2 ) and R = h̄(σ2σ1σ3).

Checking the conjugate action of S and R on F2, we see that

S(x) = xy, S(y) = y, R(x) = y, R(y) = x−1.

By suitable application of S,R and their inverses to f∗(x) and f∗(y), we obtain x
and y as a result. Namely, if we denote the word in R and S by F , then F ◦ f∗ is
the identity in Aut+(F2).

Now let us consider a monodromy f =
(

0 −1
1 m

)
∈ SL(2, Z) as our object and

fix a group presentation

π1Wf = 〈x, y, z | zxz−1 = y−1, zyz−1 = yxym−1〉,

where m is an integer.

Remark 3.1. The conjugacy classes in SL(2, Z) are of three types: (i) elliptic,
(ii) parabolic and (iii) hyperbolic. Our monodromy f contains all the types and is

conjugate to f ′ =
(
a bc
1 d

)
∈ SL(2, Z), where m = a + d. Moreover Wf ′ is a |c|-

fold covering of Wg with the monodromy g =
(
a b
c d

)
. As is known, the conjugacy

classes in SL(2, Z) are not determined only by the trace and there are finitely many
conjugacy classes with the same trace (see [1] and its references).

Lemma 3.2. We have

Fm(y−1) = x and Fm(yxym−1) = y

for the word Fm = R−1S−1R2S1−m.

Proof. Straightforward calculations show that the image of x and y via Fm are

Fm(x) = xyxm−1, Fm(y) = x−1.
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Hence Fm(y−1) = x and Fm(yxym−1) = x−1 · xyxm−1 · x1−m = y. �

Thus we obtain h̄−1(f∗) = h̄−1(F−1
m ) and then

h̄−1(f∗) = [σ2σ3
m−1σ−1

2 σ−1
3 σ−1

1 σ−1
2 σ3].

Therefore we have the matrix below corresponding to the monodromy f ,

Zm = ρt(z) =




0 0 0 ak
bk 0 0 0
0 0 ck 0
0 dk 0 0

 m = 2k − 1,


0 0 0 a′k
0 b′k 0 0
0 0 c′k 0
d′k 0 0 0

 m = 2k,

where

ak = (−1)
k
2 t−2k+2, a′k = (−1)

2k+1
4 t−2k+1,

bk = −(−1)
3k
2 t2k−2, b′k = (−1)

6k+1
4 t2k−1,

ck = −(−1)
k
2 t−2k+4, c′k = −(−1)

2k+1
4 t−2k+3,

dk = (−1)
3k
2 t2k−4, d′k = (−1)

6k+1
4 t2k−3.

It is easy to see that detZm = 1, if m is odd. Hence we get a representation
ρt : π1Wf → SL(4, C) in this case (see Remark 2.2).

Here we recall the definition of Dehn filling on a compact 3-manifold. We first
note that Wf is homeomorphic to the interior of a compact 3-manifold with a torus
boundary E. Let ν ∈ H1(E) be a primitive homology element (i.e., ν is not a
multiple of another ν′ ∈ H1(E)). Let Σ be a solid torus with boundary ∂Σ and φ :
E → ∂Σ be a homeomorphism so that φ∗(ν) = 0 in H1(Σ). Then the identification
space W ν

f = (Wf ∪ Σ)/φ is called the ν-Dehn filling. The homeomorphism type of
W ν
f only depends on ν. If there is some implicit identification H1(E) ∼= Z2 carrying

ν to (p, q), we call W ν
f the (p, q)-Dehn filling and denote it by W(p,q) for simplicity.

Now we are ready to study the possibility that a family of representations ρt
induces a non-trivial representation of the closed 3-manifold obtained by the (p, q)-
Dehn filling. As an answer, we have the following theorem.

Theorem 3.3. For a monodromy f =
(

0 −1
1 m

)
∈ SL(2, Z) and a coprime pair of

integers (p, q), if

p ≡
{

0 mod 3 (m = 2k − 1)
0 mod 2 (m = 2k) ,

there exists an irreducible SU(4)-representation (m = 2k−1) or U(4)-representation
(m = 2k) of the fundamental group of the closed 3-manifold W(p,q) obtained from
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Wf by the (p, q)-Dehn filling.

Proof. First, we investigate the case where m is an odd integer. Let {µ, λ} be a basis
of the fundamental group of the boundary torus. Namely, the basis are represented
by z and xyx−1y−1 respectively. Two matrices ρt(µ) and ρt(λ) are commutative,
so that after suitable change of the basis we get two diagonal matrices M and L,
whose diagonal components are{

(−1)
k+2
2 t−2k+4, (−1)

7k+2
6 t

2k−4
3 , (−1)

7k+6
6 t

2k−4
3 , (−1)

7k+10
6 t

2k−4
3

}
and {−t−12,−t4,−t4,−t4} respectively. A representation ρt : π1Wf → SL(4, C)
induces a representation ρ̄t : π1W(p,q) → SL(4, C) if ρt(µpλq) = I4 (i.e., MpLq = I4)
holds. This condition can be expressed as the following four equations:

(−1)
k+2
2 p+q t−{(2k−4)p+12q} = 1,(3.1)

(−1)
7k+2

6 p+q t
1
3{(2k−4)p+12q} = 1,(3.2)

(−1)
7k+6

6 p+q t
1
3{(2k−4)p+12q} = 1,(3.3)

(−1)
7k+10

6 p+q t
1
3{(2k−4)p+12q} = 1.(3.4)

The equations (3.2), (3.3) and (3.4) imply p ≡ 0 mod 3. Since

(−1)
k+2
2 =


(−1)

7k+2
6 k = 3l + 1

(−1)
7k+6

6 k = 3l
(−1)

7k+10
6 k = 3l + 2

hold, one of the three equations (3.2), (3.3), (3.4) can be written to be

(−1)
k+2
2 p+q t

1
3{(2k−4)p+12q} = 1.

Substituting it for the first equation (3.1), we obtain

(−1)
4k+8

2 p+4q = 1.

This equation always holds. Hence the condition ρt(µpλq) = I4 is described as p ≡ 0
mod 3. Conversely, if we put t = (−1)1/4 and p = 3l (l ∈ Z), then four equations
(3.1), (3.2), (3.3) and (3.4) are satisfied. Moreover, we can check that the matrices
X, Y and Zm satisfy the unitarity condition when t = (−1)1/4.

Next, we consider the case where m is even. In this case, detZm = −1 holds.
After changing the basis, the diagonal components of the diagonal matrices M and
L are {

(−1)
2k+5

4 t−2k+3, (−1)
6k+1

4 t2k−1, (−1)
1
4 t−1, (−1)

5
4 t−1

}
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and {−t−12,−t4,−t4,−t4} respectively. The condition ρt(µpλq) = I4 is equivalent
to the equations

(−1)
2k+5

4 p+q t(−2k+3)p−12q = 1,(3.5)

(−1)
6k+1

4 p+q t(2k−1)p+4q = 1,(3.6)

(−1)
1
4p+q t−p+4q = 1,(3.7)

(−1)
5
4p+q t−p+4q = 1.(3.8)

The last two equations (3.7), (3.8) imply p ≡ 0 mod 2. Substituting (3.7) for (3.5)
and (3.6), they can be written to be

(−1)
k
2 p t−2kp = 1, (−1)

3k
2 pt2kp = 1.

These equations always hold for t = (−1)1/4. Hence the condition ρt(µpλq) = I4
is described as p ≡ 0 mod 2 in this case. We can easily check that four equations
(3.5), (3.6), (3.7) and (3.8) are satisfied if we put t = (−1)1/4 and p = 2l (l ∈ Z).
Moreover the matrix Z2k satisfies the unitarity condition when t = (−1)1/4. This
completes the proof. �

Remark 3.4. For a monodromy f =
(

0 −1
1 m

)
∈ SL(2, Z) with an odd trace, we

obtain an irreducible Spin(6)-representation of π1W(p,q) in terms of the isomorphism
between classical Lie groups SU(4) ∼= Spin(6).
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