Browse > Article
http://dx.doi.org/10.4134/JKMS.2016.53.2.347

ABSTRACT RANDOM LINEAR OPERATORS ON PROBABILISTIC UNITARY SPACES  

Tran, Xuan Quy (Department of Mathematics College of Science Thai Nguyen University)
Dang, Hung Thang (Department of Mathematics Hanoi University of Sciences)
Nguyen, Thinh (Department of Mathematics Hanoi University of Sciences)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.2, 2016 , pp. 347-362 More about this Journal
Abstract
In this paper, we are concerned with abstract random linear operators on probabilistic unitary spaces which are a generalization of generalized random linear operators on a Hilbert space defined in [25]. The representation theorem for abstract random bounded linear operators and some results on the adjoint of abstract random linear operators are given.
Keywords
probabilistic linear space; probabilistic unitary space; probabilistic Hilbert space; abstract random linear operator; abstract random bounded linear operator; abstract random symmetric operator; abstract random self-adjoint operator; abstract random normal operator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. A. Dorogovstev, On application of a Gaussian random operator to random elements, Theory Probab. Appl. 30 (1986), no. 4, 812-814.
2 H. W. Engl, M. Z. Nashed, and M. Zuhair, Generalized inverses of random linear operators in Banach spaces, J. Math. Anal. Appl. 83 (1981), no. 2, 582-610.   DOI
3 H. W. Engl and W. Romisch, Approximate solutions of nonlinear random operator equations: Convergence in distribution, Pacific J. Math. 120 (1985), no. 1, 55-77.   DOI
4 T. Guo, Module homomorphisms on random normed modules, Northeast. Math. J. 12 (1996), no. 1, 102-114.
5 T. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258 (2010), no. 9, 3024-3047.   DOI
6 T. Guo and G. Shi, The algebraic structure of finitely generated $L^0$(${\cal{F}}$, K)-modules and the Helly theorem in random normed modules, J. Math. Anal. Appl. 381 (2011), no. 2, 833-842.   DOI
7 T. Guo and Y. Yang, Ekelands variational principle for an $L^-0$-valued function on a complete random metric space, J. Math. Anal. Appl. 389 (2012), no. 1, 1-14.   DOI
8 Wu. Mingzhu, The Bishop-Phelps theorem in complete random normed modules endows with the (${\varepsilon},{\lambda}$)-topology, J. Math. Anal. Appl. 391 (2012), 648-652.   DOI
9 M. Z. Nashed and H. W. Engl, Random generalized inverses and approximate solution of random equations, In: A. T. Bharucha-Reid (Ed.) Approximate Solution of random equations, pp. 149-210, Elsevier /North-Holland, New York-Amsterdam, 1979.
10 H. Olga and P. Endre, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, 2001.
11 B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, New York, 1983.
12 N. Shahzad, Random fixed points of K-set and pseudo-contractive random maps, Nonlinear Anal. 57 (2004), no. 2, 173-181.   DOI
13 N. Shahzad, Random fixed point results for continuous pseudo-contractive random maps, Indian J. Math. 50 (2008), no. 2, 331-337.
14 N. Shahzad and N. Hussain, Deterministic and random coincidence point results for f-nonexpansive maps, J. Math. Anal. Appl. 323 (2006), no. 2, 1038-1046.   DOI
15 A. V. Skorokhod, Random Linear Operators, Reidel Publishing Company, Dordrecht, 1984.
16 D. H. Thang, Random Operator in Banach spaces, Probab. Math. Statist. 8 (1987), 155-157.
17 D. H. Thang, The adjoint and the composition of random operators on a Hilbert space, Stoch. Stoch. Rep. 54 (1995), no. 1-2, 53-73.   DOI
18 D. H. Thang, Random mappings on infinite dimensional spaces, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 51-73.   DOI
19 D. H. Thang, Series and spectral representations of random stable mappings, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 33-49.   DOI
20 D. H. Thang, Transforming random operators into random bounded operators, Random Oper. Stoch. Equ. 16 (2008), no. 3, 293-302.
21 D. H. Thang and P. T. Anh, Random fixed points of completely random operators, Random Oper. Stoch. Equ. 21 (2013), no. 1, 1-20.   DOI
22 D. H. Thang and T. N. Anh, On random equations and applications to random fixed point theorems, Random Oper. Stoch. Equ. 18 (2010), no. 3, 199-212.   DOI
23 D. H. Thang and T. M. Cuong, Some procedures for extending random operators, Random Oper. Stoch. Equ. 17 (2009), no. 4, 359-380.
24 D. H. Thang, Ng. Thinh, and Tr. X. Quy, Generalized random spectral measures, J. Theoret. Probab. 27 (2014), no. 2, 576-600.   DOI
25 D. H. Thang and Ng. Thinh, Random bounded operators and their extension, Kyushu J. Math. 58 (2004), no. 2, 257-276.   DOI
26 D. H. Thang and Ng. Thinh, Generalized random linear operators on a Hilbert space, Stochastics 85 (2013), no. 6, 1040-1059.   DOI