1 |
A. A. Dorogovstev, On application of a Gaussian random operator to random elements, Theory Probab. Appl. 30 (1986), no. 4, 812-814.
|
2 |
H. W. Engl, M. Z. Nashed, and M. Zuhair, Generalized inverses of random linear operators in Banach spaces, J. Math. Anal. Appl. 83 (1981), no. 2, 582-610.
DOI
|
3 |
H. W. Engl and W. Romisch, Approximate solutions of nonlinear random operator equations: Convergence in distribution, Pacific J. Math. 120 (1985), no. 1, 55-77.
DOI
|
4 |
T. Guo, Module homomorphisms on random normed modules, Northeast. Math. J. 12 (1996), no. 1, 102-114.
|
5 |
T. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258 (2010), no. 9, 3024-3047.
DOI
|
6 |
T. Guo and G. Shi, The algebraic structure of finitely generated (, K)-modules and the Helly theorem in random normed modules, J. Math. Anal. Appl. 381 (2011), no. 2, 833-842.
DOI
|
7 |
T. Guo and Y. Yang, Ekelands variational principle for an -valued function on a complete random metric space, J. Math. Anal. Appl. 389 (2012), no. 1, 1-14.
DOI
|
8 |
Wu. Mingzhu, The Bishop-Phelps theorem in complete random normed modules endows with the ()-topology, J. Math. Anal. Appl. 391 (2012), 648-652.
DOI
|
9 |
M. Z. Nashed and H. W. Engl, Random generalized inverses and approximate solution of random equations, In: A. T. Bharucha-Reid (Ed.) Approximate Solution of random equations, pp. 149-210, Elsevier /North-Holland, New York-Amsterdam, 1979.
|
10 |
H. Olga and P. Endre, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, 2001.
|
11 |
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, New York, 1983.
|
12 |
N. Shahzad, Random fixed points of K-set and pseudo-contractive random maps, Nonlinear Anal. 57 (2004), no. 2, 173-181.
DOI
|
13 |
N. Shahzad, Random fixed point results for continuous pseudo-contractive random maps, Indian J. Math. 50 (2008), no. 2, 331-337.
|
14 |
N. Shahzad and N. Hussain, Deterministic and random coincidence point results for f-nonexpansive maps, J. Math. Anal. Appl. 323 (2006), no. 2, 1038-1046.
DOI
|
15 |
A. V. Skorokhod, Random Linear Operators, Reidel Publishing Company, Dordrecht, 1984.
|
16 |
D. H. Thang, Random Operator in Banach spaces, Probab. Math. Statist. 8 (1987), 155-157.
|
17 |
D. H. Thang, The adjoint and the composition of random operators on a Hilbert space, Stoch. Stoch. Rep. 54 (1995), no. 1-2, 53-73.
DOI
|
18 |
D. H. Thang, Random mappings on infinite dimensional spaces, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 51-73.
DOI
|
19 |
D. H. Thang, Series and spectral representations of random stable mappings, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 33-49.
DOI
|
20 |
D. H. Thang, Transforming random operators into random bounded operators, Random Oper. Stoch. Equ. 16 (2008), no. 3, 293-302.
|
21 |
D. H. Thang and P. T. Anh, Random fixed points of completely random operators, Random Oper. Stoch. Equ. 21 (2013), no. 1, 1-20.
DOI
|
22 |
D. H. Thang and T. N. Anh, On random equations and applications to random fixed point theorems, Random Oper. Stoch. Equ. 18 (2010), no. 3, 199-212.
DOI
|
23 |
D. H. Thang and T. M. Cuong, Some procedures for extending random operators, Random Oper. Stoch. Equ. 17 (2009), no. 4, 359-380.
|
24 |
D. H. Thang, Ng. Thinh, and Tr. X. Quy, Generalized random spectral measures, J. Theoret. Probab. 27 (2014), no. 2, 576-600.
DOI
|
25 |
D. H. Thang and Ng. Thinh, Random bounded operators and their extension, Kyushu J. Math. 58 (2004), no. 2, 257-276.
DOI
|
26 |
D. H. Thang and Ng. Thinh, Generalized random linear operators on a Hilbert space, Stochastics 85 (2013), no. 6, 1040-1059.
DOI
|