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ABSTRACT RANDOM LINEAR OPERATORS ON

PROBABILISTIC UNITARY SPACES

Tran Xuan Quy, Dang Hung Thang, and Nguyen Thinh

Abstract. In this paper, we are concerned with abstract random linear
operators on probabilistic unitary spaces which are a generalization of
generalized random linear operators on a Hilbert space defined in [25].
The representation theorem for abstract random bounded linear operators
and some results on the adjoint of abstract random linear operators are
given.

1. Introduction

Let (Ω,F , P ) be a complete probability space and X,Y be Banach spaces.
A mapping f : Ω × X → Y is said to be a random operator (or a random
mapping) defined on X with values in Y if for each x ∈ X , the mapping
ω 7→ f(ω, x) is a Y -valued random variable. Equivalently, a random operator
defined on X with values in Y is a mapping from X into the space LY

0 (Ω)
of all Y -valued random variables. A random operator f : X → LY

0 (Ω) is
said to be a random linear operator if f is linear. The interest in random
operators has been arouse not only for its own right as a random generalization
of usual deterministic operators but also for their widespread applications in
other areas. Research in theory of random operators has been carried out in
many directions including random linear operators which provide a framework
of stochastic integral, infinite random matrix (see e.g. [1], [2], [15]-[20], [23]-
[26]), random fixed points of random operators and random operator equations,
(e.g [3]-[14], [18], [21], [22] and references therein). As an extension of random
linear operators, generalized random linear operators on a separable Hilbert
space were introduced and investigated in [25].

In this paper, generalized random linear operators on a separable Hilbert
space are extended to abstract random linear operators on probabilistic unitary
spaces. Section 2 presents the definitions and some properties of probabilistic
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unitary spaces and probabilistic Hilbert spaces in the connection with the no-
tion of random normed modules introduced and investigated by some authors
(see [4]-[8] and references therein). The main result of Section 2 is the theo-
rem on the orthogonal decomposition of a probabilistic Hilbert space (Theorem
2.4). Next, in the Section 3 we deal with abstract random linear operators on
probabilistic unitary spaces. It should be noted that generalized random linear
operators on a Hilbert space defined in [25] can be regarded as a special case of
abstract random linear operators. The main results of Section 3 is the represen-
tation theorem (Theorem 3.2) which states that an abstract random bounded
linear operator from a probabilistic Hilbert space H into the space of complex-
valued random variables is bounded if and only if it is represented as a random
inner product on H. Finally, in the Section 4 abstract random normal oper-
ators, abstract random symmetric operators and abstract random self-adjoint
operators on a probabilistic Hilbert space H are introduced and studied. Ap-
plying the main results in Section 3, we obtain a sufficient condition for an
abstract random symmetric operators can be extended to an abstract random
self-adjoint operator (Theorem 4.2) and a claim that if Φ : D(Φ) → H is an
abstract random self-adjoint operator and α is a complex number such that
Im(α) 6= 0, then Φα = αI − Φ : D(Φ) → H is bijective and (Φα)

−1 : H → H is
an abstract random normal operator (Theorem 4.3).

2. Probabilistic unitary spaces and probabilistic Hilbert spaces

Let (Ω,F , P ) be a complete probability space and X be a complex separable
Banach space. A mapping u : Ω → X is said to be a X-valued random variable
(r.v.) if u is (F ,B)-measurable where B denotes the Borel σ-algebra of X . The
space of all (equivalence classes of) X-valued r.v.’s is denoted by LX

0 (Ω). If
X is the field C of complex numbers, then LC

0 (Ω) is denoted briefly by L0(Ω).
If ξ1, ξ2 ∈ LR

0 (Ω) we write ξ1 > ξ2 if ξ1(ω) > ξ2(ω) a.s. and L+
0 (Ω) = {ξ ∈

LR

0 (Ω) : ξ > 0} denotes the set of all non-negative r.v’s. The convergence in
LX
0 (Ω) means the convergence in probability and we write p-limn→∞ un = u if

a sequence (un) ∈ LX
0 (Ω) converges to u in LX

0 (Ω).

Definition (see [4]). An ordered pair (S, ‖ · ‖) is called an random normed
module over C if S is a left module over the ring L0(Ω) and ‖ · ‖ is a mapping
from S into L+

0 (Ω), called a random norm, such that the following conditions
are satisfied

(1) ‖u‖ = 0 if and only if u = θ,where θ is the neutral element of S;
(2) ‖u+ v‖ 6 ‖u‖+ ‖v‖ for all u, v ∈ S;
(3) ‖ξu‖ = |ξ|‖u‖ for each ξ ∈ L0(Ω) and each u ∈ S.

Definition. A set V is said to be a probabilistic linear space if V is a module
over the ring L0(Ω). Namely
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(1) The operation of addition is defined in V and V is a commutative group
with respect to this operation. The neutral element of V is denoted by
θ.

(2) The operation of multiplication by complex-valued random variables is
defined in V and is commutative: For u ∈ V , ξ ∈ L0(Ω), then ξu ∈
V , uξ ∈ V , ξu = uξ and the following conditions are satisfied

ξ(u + v) = ξu+ ξv, (ξ + η)u = ξu+ ηu, and ξ(ηu) = (ξη)u.

Example 1. Let X be a complex separable Banach space and V be a subset
of LX

0 (Ω). For each ξ ∈ L0(Ω), u, v ∈ LX
0 (Ω) define u + v by (u + v)(ω) =

u(ω) + v(ω) and ξu by (ξu)(ω) = ξ(ω)u(ω). Denote by V the set of X-valued
r.v.’s u of the form

u =

n
∑

i=1

ξivi, ξ ∈ L0(Ω), vi ∈ V, n = 1, 2, . . . .

It is easy to check that V is a probabilistic linear space.

Example 2. Let X,Y be two complex separable Banach spaces and V(X,Y,Ω)
stands for the set of all random operators Φ : X → LY

0 (Ω). For each Φ,Ψ ∈
V(X,Y,Ω), ξ ∈ L0(Ω) define Φ + Ψ by (Φ + Ψ)x = Φx + Ψx and ξΦ by
(ξΦ)(x) = ξΦx. It is easy to check that V(X,Y,Ω) is a probabilistic linear
space.

Definition. Let V be a probabilistic linear space. Assume that with every pair
u, v ∈ V there is associated a complex-valued r.v. h(u, v) ∈ L0(Ω), such that
for every pair u, v ∈ V and for each ξ ∈ L0(Ω):

(1) h(u1 + u2, v) = h(u1, v) + h(u2, v);
(2) h(u, v1 + v2) = h(u, v1) + h(u, v2);
(3) h(ξu, v) = ξh(u, v); h(u, ξv) = ξ̄h(u, v);

(4) h(u, v) = h(v, u);
(5) h(u, u) ∈ L+

0 (Ω) and h(u, u) = 0 if and only if u = θ.

h(·, ·) is called a random inner product on V and V is called a probabilistic
unitary space with the random inner product h(· , ·).

Example 3. LetH be a complex Hilbert space with the inner product 〈·, ·〉 and
V ⊂ LH

0 (Ω) be a probabilistic linear space. Then V is a probabilistic unitary
space with the random inner product h(· , ·) given by h(u, v)(ω) = 〈u(ω), v(ω)〉.

From now on, a random inner product h(· , ·) on a probabilistic unitary space
V will be denoted by 〈·, ·〉.

Theorem 2.1. Let V be a probabilistic unitary space and u, v ∈ V. Define

‖u‖ =
√

〈u, u〉. Then

(1) ‖u‖ = 0 if and only if u = θ.
(2) ‖ξu‖ = |ξ|‖u‖.
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(3) For u, v ∈ V , A,B ∈ F , A ∩B = ∅ we have

‖1Au+ 1Bv‖ = 1A‖u‖+ 1B‖v‖.

(4)

(2.1) |〈u, v〉| 6 ‖u‖‖v‖.

(5)

‖u+ v‖ 6 ‖u‖+ ‖v‖.

(6)

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Proof. The proofs of (1)-(3) and (5)-(6) are clear. It suffices to prove (4). Let
ξ ∈ L0(Ω) be defined by

ξ(ω) =

{

‖u‖2(ω)
〈v,u〉(ω) if 〈u, v〉(ω) 6= 0

0 otherwise.

There is a set D with P (D) = 1 such that for each ω ∈ D one has 〈u− ξv, u−
ξv〉(ω) > 0. Let ω ∈ D. If 〈u, v〉(ω) = 0, then |〈u, v〉(ω)| 6 ‖u‖(ω)‖v‖(ω). If
〈u, v〉(ω) 6= 0, then

〈u− ξv, u− ξv〉(ω) = ‖u‖2(ω)− ξ̄(ω)〈u, v〉(ω)− ξ(ω)〈v, u〉(ω)+ |ξ|2(ω)‖u‖2(ω)

= −‖u‖2(ω) +
‖u‖4(ω)

|〈u, v〉(ω)|2
‖v‖2(ω) > 0

so |〈u, v〉(ω)| 6 ‖u‖(ω)‖v‖(ω). Hence, |〈u, v〉(ω)| 6 ‖u‖(ω)‖v‖(ω), ∀ω ∈ D, i.e.,
(2.1) holds. �

From Theorem 2.1 we get:

Corollary 2.2. If V is a probabilistic unitary space, then it is a random normed

module over C.

Definition. Let V be a probabilistic unitary space.

(1) A sequence (un) ⊂ V is said to converge to u ∈ V if for every ǫ > 0 we
have limn→∞ P (‖un − u‖ > ǫ) = 0.

(2) A sequence (un) ⊂ V is said to be a Cauchy sequence if for each ǫ > 0
we have limn,m→∞ P (‖un − um‖ > ǫ) = 0.

(3) V is said to be complete if every Cauchy sequence (un) ⊂ V is conver-
gent.

(4) A probabilistic complete unitary space is called a probabilistic Hilbert
space. From now on, a probabilistic Hilbert space is always denoted by
H.

Remark 1. Define a function d on V × V by

(2.2) d(u, v) = E
‖u− v‖

1 + ‖u− v‖
.
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It is easy to prove that d is a metric on V . limn→∞ un = u if and only
if limn→∞ d(un, u) = 0 and (un) ⊂ V is a Cauchy sequence if and only if
limn,m→∞ d(un, um) = 0.

Lemma 2.3. Let V be a probabilistic unitary space with the random inner

product 〈·, ·〉. Then

(i) If (un) and (vn) are two Cauchy sequences in V, then (〈un, vn〉) is a

Cauchy sequence in L0(Ω).
(ii) If limn→∞ un = u, lim vn→∞ = v in V, then limn→∞〈un, vn〉 = 〈u, v〉

in L0(Ω).

Proof. (i) Given ǫ > 0. Since limn,m→∞ P (‖un − um‖ > ǫ) = 0 it follows that
(‖un‖) is a Cauchy in L0(Ω). Hence the exists limn→∞ ‖un‖ in L0(Ω). Hence
there is c > 0 such that P (‖un‖ > c) < ǫ, ∀n. For each t > 0 we have

P (|〈un, vn − vm〉| > t) 6 P (‖un‖‖vn − vm‖ > t)

6 P (‖un‖‖vn − vm‖ > t), ‖un‖ < c) + P (‖un‖ > c)

6 P (‖vn − vm‖ > t/c) + ǫ,

so lim supn,m→∞ P (|〈un, vn − vm〉| > t) 6 ǫ. By taking limit as ǫ → 0, we get

lim sup
n,m→∞

P (|〈un, vn − vm〉| > t) = 0.

Similarly
lim

n,m→∞
P (|〈un − um, vm〉| > t) = 0.

Since,

P (|〈un, vn〉 − 〈um, vm〉| > t)

6 P (|〈un, vn − vm〉| > t/2) + P (|〈un − um, vm〉| > t/2),

we obtain that limn,m→∞ P (|〈un, vn〉 − 〈um, vm〉| > t) = 0 as required.
The proof of (ii) is carried out by a similar argument. �

Remark 2. If V is a probabilistic unitary space, then completing V with respect
to the metric (2.2) we get a probabilistic Hilbert space Ṽ . The random inner

product of two elements ū, v̄ ∈ Ṽ where ū = (un), v̄ = (vn) are two Cauchy
sequences in V is given by

〈ū, v̄〉Ṽ = lim
n→∞

〈un, vn〉 in L0(Ω).

Theorem 4.3 in [25] on the orthogonal decomposition of LH
0 (Ω) is extended

to the following theorem on the orthogonal decomposition of a probabilistic
Hilbert space.

Theorem 2.4. Let H be a probabilistic Hilbert space and M ⊂ H be a closed

probabilistic linear space. Then every element u ∈ H can be represented in a

unique way as the sum

u = v0 + u0, v0 ∈ M, u0 ∈ M⊥,
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where M⊥ = {u ∈ H : 〈u, v〉 = 0 for all v ∈ M}.

The proof is carried out in almost the same as the proof of Theorem 4.3 in
[25] with the notice that for u, v ∈ H and D ∈ F we have

E1D‖u‖2 + E1Dc‖v‖2 = E‖1Du+ 1Dcv‖2

by using Theorem 2.1.
Hence if E‖1Du+ 1Dcv‖2 > E‖v‖2, then

∫

D

‖u‖2dP = E1D‖u‖2 > E‖v‖2 − E1Dc‖v‖2 =

∫

D

‖v‖2dP.

3. Abstract random linear operators

Let V ,Y be two probabilistic unitary spaces.

Definition. A mapping Φ : V → Y is said to be an abstract random linear
operator if for u1, u2 ∈ V , ξ1, ξ2 ∈ L0(Ω), then

Φ(ξ1u1 + ξ2u2) = ξ1Φ(u1) + ξ2Φ(u2).

As usual, the domain V of Φ is denoted by D(Φ).

Example 4. Let A : H → LH
0 (Ω) be a random linear operator, where H is a

separable Hilbert space. Denote by V the subset of LH
0 (Ω) of the form

(3.1) u =

n
∑

i=1

ξixi,

where xi ∈ H , ξi ∈ L0(Ω). Clearly, V is a probabilistic linear space containing
H . By Example 3, V is a probabilistic unitary space. Define a mapping Φ :
V → LH

0 (Ω) by

Φu =

n
∑

i=1

ξiAxi

for u is of the form given as in (3.1).
It is easy to verify that this definition is well-defined and Φ is an abstract

random linear operator extending A.

Example 5. Let A : H → LH
0 (Ω) be a random continuous linear operator,

where H is a Hilbert space with the basis e = (en)
∞
n=1.

Denote by V ⊂ LH
0 (Ω) the set of all H-valued r.v.’s u for which the series

(3.2)

∞
∑

n=1

(u, en)Aen

converges in LH
0 (Ω). If u ∈ V , then the sum (3.2) is denoted by Ψu .
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It is easily shown that V is a probabilistic unitary space and the mapping
Ψ : V → LH

0 (Ω) is an abstract random linear operator. Moreover since A :
H → LH

0 (Ω) is continuous and

x =

∞
∑

n=1

(x, en)en

we get

Ax =

∞
∑

n=1

(x, en)Aen

which shows thatH ⊂ V and Ψ is an abstract random linear operator extending
A.

Definition. Let Φ : V → Y be an abstract random linear operator.

(1) Φ is said to be bounded if there exists a non-negative random variable
k ∈ L+

0 (Ω) such that for each u ∈ V we have

(3.3) ‖Φu‖ 6 k‖u‖.

(2) Φ is said to be continuous if for each sequence (un) ⊂ V such that
limn→∞ un = u ∈ V we have limn→∞ Φun = Φu.

(3) Φ is said to be closed if for each sequence (un) ⊂ V such that limn→∞ un

= u, limn→∞ Φun = g we have u ∈ V and g = Φu.

Theorem 3.1. Let Φ : V → Y be an abstract random bounded linear operator.

Then

(1) Φ is continuous.

(2) If (un) ⊂ V is a Cauchy sequence, then limn→∞ Φun exists in Y pro-

vided that Y is complete.

Proof. (1) Let un ∈ V such that limn→∞ un = u ∈ V . For each ǫ, r > 0 we
have

P (‖Φun − Φu‖ > ǫ) = P (‖Φun − Φu‖ > ǫ, ‖un − u‖ 6 r)

+ P (‖Φun − Φu‖ > ǫ, ‖un − u‖ > r)

6 P (k > ǫ/r) + P (‖un − u‖ > r).

Letting n → ∞ then r → 0 we get limn→∞ P (‖Φun − Φu‖ > ǫ) = 0.
(2) Let (un) ⊂ V be a Cauchy sequence in V . For each ǫ, r > 0 we have

P (‖Φun − Φum‖ > ǫ) = P (‖Φun − Φum‖ > ǫ, ‖un − um‖ 6 r)

+ P (‖Φun − Φum‖ > ǫ, ‖un − um‖ > r)

6 P (k > ǫ/r) + P (‖un − um‖ > r).

Hence
lim sup
n,m→∞

P (‖Φun − Φum‖ > ǫ) 6 P (k > ǫ/r).

Letting r → 0 we obtain lim supn,m→∞ P (‖Φun − Φum‖ > ǫ) = 0, i.e., (Φun)
is a Cauchy sequence in Y. Since Y is complete, there exists limn→∞ Φun. �
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Now we prove the random version of the Riesz representation theorem for
abstract random linear operator.

Theorem 3.2. Let H be a probabilistic Hilbert space and Γ : H → L0(Ω) be an

abstract random linear operator. Then Γ is bounded if and only if there exists

an element w0 ∈ H such that Γu = 〈u,w0〉 for every u ∈ H.

Proof. Suppose that Γu = 〈u,w0〉 for every u ∈ H. By the inequality (2.1) in
Theorem 2.1 we have |Γu| = |〈u,w0〉| 6 ‖w0‖‖u‖. Hence Γ is bounded. Now
we prove the converse.

If Γu = 0 for every u ∈ H, then we take w0 = 0. Otherwise, define N =
{u : Γu = 0}. Γ is bounded so it is continuous, thus N is a probabilistic closed
linear space. The following lemma is crucial to the proof of Theorem 3.2.

Lemma 3.3. There exists v0 ∈ N⊥ such that N⊥ = {u ∈ H : u = ξv0, ξ ∈
L0(Ω)}.

Proof of Lemma 3.3. For u ∈ H, we denote Zu = {ω ∈ Ω : ‖u‖(ω) = 0}. If
A,B ∈ F , we write A ⊂ B a.s if 1A 6 1B and we write A = B a.s if 1A = 1B.
It is easy to see that if A ⊂ B a.s., then P (B \A) = P (B)− P (A). On the set
N⊥ we define a relation ≪ as follow: u, v ∈ N⊥

u ≪ v if Zv ⊂ Zu a.s. and 1Zc
u
u = 1Zc

u
v.

It is easy to check that the relation≪ is reflexive, antisymmetric, and transitive,
thus (N⊥,≪) is a partially ordered set.
Step 1. If u ≪ v, then for each ǫ > 0

(3.4) P (‖u− v‖ > ǫ) 6 P (Zu)− P (Zv).

Indeed, put A = Zv, B = Zu. Then A ⊂ B a.s. and 1Bcu = 1Bcv. Hence
1Bc‖u− v‖ = 0, 1A∩B‖u− v‖ 6 1A‖u‖+ 1B‖v‖ = 0 which implies that

‖u− v‖ = 1Bc‖u− v‖+ 1A∩B‖u− v‖ + 1B\A‖u− v‖

= 1B\A‖u− v‖.

Therefore, P (‖u− v‖ > ǫ) 6 P (B \A) = P (B)− P (A) = P (Zu)− P (Zv).
Step 2. There exists a maximal element v0 of N⊥, i.e., if u ∈ N⊥, v0 ≪ u,
then u = v0.

Proof of Step 2. By Zorn’s Lemma it suffices to show that every totally ordered
subset of (N⊥,≪) has an upper bound. Suppose M is a totally ordered subset
of (N⊥,≪). Put a = inf{P (Zu), u ∈ M}. Then there exists a sequence
un ∈ M such that un ≪ un+1 and limn→∞ P (Zun

) = a. Put An = Zun
. If

n > m, then um ≪ un. Hence by (3.4) P (‖um − un‖ > ǫ) 6 P (Am) − P (An)
which implies that (un) is a Cauchy sequence in H . Since N⊥ is closed, there
exists u0 ∈ N⊥ such that limn→∞ un = u0. Put A0 = Zu0

. If there is m
such that u0 ≪ um, then u0 ≪ un, ∀n > m. For each n > m by (3.4) we
have P (‖u0 − un‖ > ǫ) 6 P (A0) − P (An) 6 0, i.e., P (‖u0 − un‖ > ǫ) = 0
for each ǫ > 0 which implies that ‖u0 − un‖ = 0 → u0 = un for each n > m.
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Hence un ≪ u0 ∀n. Now we show that u ≪ u0 ∀u ∈ M, i.e., u0 is an upper
bound of M. Indeed, given u ∈ M. If un ≪ u ∀n, then P (‖u − un‖ > ǫ) 6
P (An) − P (Zu). Hence lim supP (‖u − un‖ > ǫ) 6 a − P (Zu) 6 0 implying
that limn→∞ P (‖u− un‖ > ǫ) = 0 so u = u0. Otherwise, there is un such that
u ≪ un ≪ u0 and we are done. �

Step 3. For each u ∈ N⊥ we have

(3.5) Zv0 ⊂ Zu a.s.

Indeed, let u ∈ N⊥. Put w = 1Zc
v0
v0 + 1Zv0

\Zu
u. We have

‖w‖ = 1Zc
v0
‖v0‖+ 1Zv0

\Zu
‖u‖ implies Zw = Zu ∩ Zv0 ⊂ Zv0 a.s.

Moreover 1Zc
v0
v = 1Zc

v0
w. From this we deduce that v0 ≪ w. Because v0 is

maximal so v0 = w which implies Zv0 = Zw a.s. Since Zw = Zu ∩ Zv0 ⊂ Zu

a.s. we get (3.5) as claimed.
Step 4. At first we prove that for each u ∈ N⊥

(3.6) Zu = ZΓu a.s.

Indeed, put A = ZΓu, B = Zu we have 1A‖Γu‖ = 0, it follows that 1AΓu = 0
and hence Γ(1Au) = 0. Since 1Au ∈ N⊥ we get 1Au = 0 which implies 1A‖u‖ =
0 and hence A ⊂ B a.s.

Similarly, since 1B‖u‖ = 0 implies 1Bu = 0 and hence Γ(1Bu) = 0 therefore
1BΓu = 0, implies 1B|Γu| = 0 so B ⊂ A a.s. Therefore, A = B a.s. as claimed.

Next, put

(3.7) ξ(ω) =

{

Γu(ω)
Γv0(ω) if Γv0(ω) 6= 0

0 if Γv0(ω) = 0.

By (3.5) and (3.6) we get ZΓv0 = Zv0 ⊂ Zu = ZΓu a.s. From (3.7) it follows
that Γu = ξΓv0 = Γ(ξv0). Since u, ξv0 ∈ N⊥ we conclude that u = ξv0. The
proof of Lemma 3.3 is completed. �

Put A = {ω : ‖v0‖(ω) 6= 0} = Zc
v0 . Define λ ∈ L0(Ω) by

(3.8) λ(ω) =

{

Γv0(ω)
‖v0‖2(ω) if ‖v0‖(ω) 6= 0

0 if ‖v0‖(ω) = 0,

we have λ‖v0‖2 = 1AΓv0. Put w0 = λv0 ∈ N⊥. We shall show that for every
u ∈ H.

(3.9) Γu = 〈u,w0〉.

Indeed, let u ∈ H, by Theorem 2.4 u = u1+u2 where u1 ∈ N , u2 ∈ N⊥. Then

(3.10) Γu = Γu2, 〈u,w0〉 = 〈u2, w0〉.
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By Lemma 3.3 there exists ξ ∈ L0(Ω) such that u2 = ξv0. Since 〈u2, w0〉 =
ξ〈v0, w0〉 we get

‖v0‖
2〈u2, w0〉 = ξ〈v0, ‖v0‖

2w0〉 = ξ〈v0, ‖v0‖
2λv0〉

= ξλ‖v0‖
2〈v0, v0〉 = ξ1AΓv0〈v0, v0〉

= 1AΓ(ξv0)‖v0‖
2 = 1AΓu2‖v0‖

2.

In addition we have

Zv0 ⊂ Zu a.s. |Γu| 6 k‖u‖, |〈u,w0〉| 6 ‖u‖‖w0‖.

Consequently combining with (3.10) there is a set D with P (D) = 1 such that
if ω ∈ D, then

ω ∈ Zv0 implies ω ∈ Zu,

1A(ω)Γu2(ω)‖v0‖
2(ω) = ‖v0‖

2(ω)〈u2, w0〉(ω),

|Γu(ω)| 6 k(ω)‖u‖(ω),

|〈u,w0〉(ω)| 6 ‖u‖(ω)‖w0‖(ω),

Γu(ω) = Γu2(ω),

〈u,w0〉(ω) = 〈u2, w0〉(ω).

From this it follows that

• If ω ∈ Zc
v0 ∩D, then ‖v0‖2(ω) 6= 0 so Γu2(ω) = 〈u2, w0〉(ω) → Γu(ω) =

〈u,w0〉(ω).
• If ω ∈ Zv0 ∩ D we have ω ∈ Zu → ‖u‖(ω) = 0. Hence Γu(ω) =
〈u,w0〉(ω) = 0.

Therefore Γu(ω) = 〈u,w0〉(ω)∀ω ∈ D, so the identity (3.9) is proved. �

4. The adjoint of abstract random linear operators

Since in the sequence, we shall deal only with abstract random linear oper-
ators, we shall omit the adjective linear.

Definition. Given a probabilistic Hilbert space H. Let Φ : D(Φ) → H be
an abstract random operator with the dense domain D(Φ) ⊂ H. Let V be the
collection of v ∈ H for which there exists g ∈ H such that

〈Φu, v〉 = 〈u, g〉

for all u ∈ D(Φ).
Because D(Φ) is dense, such a g is uniquely determined.

Putting g = Φ∗v we get a mapping Φ∗ : V → H and the domain V of Φ∗

is denoted by D(Φ∗). It is easy to check that D(Φ∗) is a probabilistic linear
space and Φ∗ is an abstract random operator and is called the adjoint of Φ.



ABSTRACT RANDOM LINEAR OPERATORS ON PROBABILISTIC SPACES 357

Definition. The adjoint Φ∗ : D(Φ∗) → H is defined by the relation

〈Φu, v〉 = 〈u,Φ∗v〉

for all u ∈ D(Φ), v ∈ D(Φ∗).

Remark 3. The domains of two abstract random operators Φ and Ψ introduced
in Example 4 and Example 5 are dense in LH

0 (Ω).

Indeed it suffices to show that if a probabilistic unitary space V ⊂ LH
0 (Ω)

containing H as a subset, then V is dense in LH
0 (Ω). Indeed, let S be the linear

subspace of LH
0 (Ω) consisting simple r.v.’s. u of the form

u =

n
∑

i=1

1Ei
xi, xi ∈ H,Ei ∈ F .

Since H ⊂ V it follows that S ⊂ V . Since S is dense in LH
0 (Ω) so is V .

The following example shows that the domain of Φ∗ need not be dense in
H.

Example 6. Let (ξn) be a sequence of i.i.d real-valued r.v.’s such that Eξn =
0, E|ξn|2 = 1. Let V be the set of u ∈ LH

0 (Ω) such that the series
∑∞

n=1(u, en)ξn
converges in probability. We claim that V is a probabilistic dense linear space.
Clearly V is a probabilistic linear space. For each x ∈ H

∞
∑

n=1

E|(x, en)ξn|
2 =

∞
∑

n=1

| < x, en > |2 = ‖x‖2 < ∞

which implies the series
∑∞

n=1(x, en)ξn converges a.s. Hence H ⊂ V . By the
Remark 3, V is dense in LH

0 (Ω).
For u ∈ V put

Tu =

∞
∑

n=1

(u, en)ξn.

Take a ∈ H, a 6= 0. Define a mapping Φ : V → LH
0 (Ω) by Φu = aTu. It is easy

to see that Φ is an abstract random operator.
Now we prove that D(Φ∗) is not dense in LH

0 (Ω). Indeed v ∈ D(Φ∗) if and
only if there is g ∈ LH

0 (Ω) such that for all u ∈ D(Φ)

〈Φu, v〉 = 〈u, g〉 ⇔ 〈a, v〉Tu = 〈u, g〉

→ 〈a, v〉Ten = 〈en, g〉 ∀n

→ 〈a, v〉ξn = 〈en, g〉 → |〈a, v〉|2|ξn|
2 = |〈en, g〉|

2

→ |〈a, v〉|2
∞
∑

n=1

|ξn|
2 =

∞
∑

n=1

|〈en, g〉|
2 = ‖g‖2.

It is easy to prove that
∑∞

n=1 |ξn|
2 = +∞ a.s. Hence

|〈a, v〉|2 = 0 → 〈a, v〉 = 0.
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Hence

D(Φ∗) = {v ∈ LH
0 (Ω) : 〈a, v〉 = 0},

i.e., D(Φ∗) = LH1

0 (Ω) where H1 = [a]⊥. Since a 6= 0, D(Φ∗) is not dense in
LH
0 (Ω) as claimed.

The following theorem is a generalization of the claim 4 of Theorem 2.5 in
[25] to the case of probabilistic Hilbert spaces.

Theorem 4.1. If Φ : H → H is an abstract random bounded operator, then

D(Φ∗) = H and Φ∗ : H → H is also an abstract random bounded operator.

Proof. Fixed v ∈ H. We shall show that, there exists g ∈ H such that for all
u ∈ H we have

〈Φu, v〉 = 〈u, g〉.

Indeed let Γ : H → L0(Ω) be defined by Γu = 〈Φu, v〉. We claim that Γ is
an abstract random bounded operator. Indeed, since Φ is bounded, there is a
non-negative r.v. k such that ‖Φu‖ 6 k‖u‖. Hence

|Γu| = |〈Φu, v〉| 6 ‖Φu‖‖v‖ 6 k‖v‖‖u‖ ∀u ∈ H

showing that Γ is bounded. By Theorem 3.2 there is g ∈ H such that

Γu = 〈u, g〉, i.e., 〈Φu, v〉 = 〈u, g〉 ∀u ∈ H.

Consequently D(Φ∗) = H and Φ∗v = g. Moreover, we have

|〈u, g〉| = |〈Φu, v〉| 6 k‖v‖‖u‖ ∀u, v ∈ H.

For u = g we get ‖g‖2 6 k‖v‖‖g‖ implies ‖g‖ 6 k‖v‖ and hence ‖Φ∗v‖ 6

k‖v‖, which shows that Φ∗ : H → H is bounded. �

Definition. Let Φ : D(Φ) → H be an abstract random operator with the dense
domain D(Φ) ⊂ H.

(1) Φ is said to be symmetric if 〈Φu, v〉 = 〈u,Φv〉 ∀u, v ∈ D(Φ), i.e., D(Φ) ⊂
D(Φ∗) and Φu = Φ∗u ∀u ∈ D(Φ).

(2) Φ is said to be self-adjoint if Φ = Φ∗, i.e., D(Φ) = D(Φ∗) and Φu =
Φ∗u ∀u ∈ D(Φ).

(3) Φ is said to be normal if D(Φ) = H, Φ is bounded and ΦΦ∗ = Φ∗Φ.

Notice that if Φ is symmetric, then 〈Φu, u〉 is a real-valued r.v. since 〈Φu, u〉 =

〈u,Φu〉 = 〈Φu, u〉.

Definition. Let Φ : D(Φ) → H be an abstract random symmetric operator.

(1) Φ is said to be bounded from below if there is a real-valued r.v. m such
that for each u ∈ D(Φ) 〈Φu, u〉 > m‖u‖2.

(2) Φ is said to be bounded from above if there is a real-valued r.v. M
such that for each u ∈ D(Φ) 〈Φu, u〉 6 M‖u‖2.

(3) Φ is said to be semi-bounded if Φ is bounded from below or from above.
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Theorem 4.2. Given an abstract random semi-bounded symmetric operator

Φ : D(Φ) → H, there exists an abstract random self-adjoint operator Φ̃ extend-

ing Φ.

Proof. Since Φ is bounded from above if and only if −Φ is bounded from below,
it suffices to assume that Φ is bounded from below. Without loss of generality
we may suppose that m = 1. Indeed, put Ψ = Φ− aI where a = m− 1 then Ψ
is a probabilistic symmetric operator satisfying D(Φ) = D(Ψ),D(Φ∗) = D(Ψ∗)
and

〈Ψu, u〉 = 〈Φu, u〉 − a〈u, u〉 > m‖u‖2 −m‖u2‖+ ‖u‖2 = ‖u‖2.

Let M = D(Φ). Define a random inner 〈u, v〉M onM by 〈u, v〉M = 〈Φu, v〉. By
assumption we have ‖u‖ 6 ‖u‖M. Completing M with respect to the metric
(2.2) induced by the random norm ‖u‖M we get a probabilistic Hilbert space

M̃. Because ‖u‖M > ‖u‖, each Cauchy sequence (un) in M converges in H
thus we can identify M̃ with some subset of sequences converging in H, i.e.,
M̃ is the subset of H.

Put N = D(Φ∗) ∩ M̃. Since Φ is symmetric, we have M ⊂ D(Φ∗) so

M ⊂ N ⊂ D(Φ∗). Let Φ̃ : N → H be the restriction of Φ∗ on N . We claim

that Φ̃ is self-adjoint. Indeed,
• Φ̃ is symmetric: Let u, v ∈ N . Since N ⊂ M̃ there sequences (un), (vn) of

elements of M such that limn→∞ un = u, limn→∞ vn = v in M̃. We have

lim
m→∞

lim
n→∞

〈Φun, vm〉 = lim
m→∞

lim
n→∞

〈un, vm〉M = lim
m→∞

〈u, vm〉M = 〈u, v〉M.

Similarly limn→∞ limm→∞〈Φun, vm〉 = limn→∞〈un, v〉M = 〈u, v〉M. Hence

lim
m→∞

lim
n→∞

〈Φun, vm〉 = lim
n→∞

lim
m→∞

〈Φun, vm〉.

On the other hand, since

lim
n→∞

un = u, lim
n→∞

vn = v in H,

we also have

lim
m→∞

lim
n→∞

〈Φun, vm〉 = lim
m→∞

lim
n→∞

〈un,Φvm〉 = lim
m→∞

〈u,Φvm〉

= lim
m→∞

〈Φ∗u, vm〉 = 〈Φ̃u, v〉.

Similarly,

lim
n→∞

lim
m→∞

〈Φun, vm〉 = lim
n→∞

〈un,Φ
∗v〉 = lim

n→∞
〈u,Φ∗v〉 = 〈u, Φ̃v〉.

Hence 〈Φ̃u, v〉 = 〈u, Φ̃v〉 which proves that Φ̃ is symmetric.

• The range R(Φ̃) is the whole space H: Let v be any element of H. Define

Γ : M̃ → L0 by Γu = 〈u, v〉. We have |Γu| 6 ‖v‖‖u‖ 6 ‖v‖‖u‖M for all u ∈ M̃.

By Theorem 3.2 there is v∗ ∈ M̃ such that Γu = 〈u, v∗〉M ∀u ∈ M̃. Hence,

for each u ∈ M 〈Φu, v∗〉 = 〈u, v∗〉M = 〈u, v〉. Hence v∗ ∈ M̃∩D(Φ∗) = N and

v = Φ∗v∗ = Φ̃v∗.
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• Φ̃ is injective: Indeed, suppose that Φ̃u = θ. Since R(Φ̃) = H there is v ∈
D(Φ̃) such that u = Φ̃v. Then 〈u, u〉 = 〈u, Φ̃v〉 = 〈Φ̃u, v〉 = 0 implies u = θ.

• Φ is self-adjoint: Since Φ̃ is injective and R(Φ̃) = H there exists Ψ =

Φ̃−1 : H → H. Since Φ̃ is symmetric, Ψ is also symmetric. Since D(Ψ) = H
it follows that Ψ = Ψ∗. By the standard argument similar to that in the
case of deterministic linear operators we get Ψ∗ = (Φ̃∗)−1. Hence (Φ̃)−1 =

(Φ̃∗)−1 implies Φ̃ = Φ̃∗ as claimed. �

The following theorem is a generalization of Theorem 4.2 in [25] to the case
of probabilistic Hilbert spaces.

Theorem 4.3. Let Φ : D(Φ) → H be an abstract random self-adjoint operator

and α is a complex number such that Im(α) 6= 0. Put Φα = αI − Φ. Then

Φα : D(Φ) → H is bijective and the inverse (Φα)
−1 : H → H is an abstract

random normal operator.

Proof. At first remark that:

Lemma 4.4. (1) Let Φ : D(Φ) → H be an abstract random self-adjoint opera-

tor. Then Φ is closed.

(2) Let Φ : D(Φ) → H be an abstract random closed bounded operator. Then

the set D(Φ) is closed.

Proof. (1) Let (vn) ⊂ D(Φ), limn→∞ vn = v and limn→∞ Φvn = g. Then for
each u ∈ D(Φ)

〈u, g〉 = lim
n→∞

〈u,Φvn〉 = lim
n→∞

〈Φu, vn〉 = 〈Φu, v〉.

This show that v ∈ D(Φ∗) and Φ∗v = g. Since Φ = Φ∗ we conclude that
v ∈ D(Φ) and Φv = g.

(2) Assume that (un) ⊂ D(Φ) such that limn→∞ un = u. By Theorem 3.1
there exists limn→∞ Φun = g. Since Φ is closed we conclude that u ∈ D(Φ). �

The proof of Theorem 4.3 is based on Lemma 4.4, Theorem 2.4 and the
argument similar to that in the proof of Theorem 4.2 in [25]. �
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