DOI QR코드

DOI QR Code

THE RELATION BETWEEN THE NUMERICAL RANGE W(An) AND W(A) FOR THE 2 × 2 COMPLEX MATRIX

  • LEE, YONG HUN (Department of Mathematics, Institute of Pure and Applied Mathematics, Jeonbuk National University) ;
  • PARK, YEON HEE (Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University) ;
  • SHIN, HYE RAN (Department of Mathematics Education, Graduate School, Jeonbuk National University)
  • Received : 2020.07.23
  • Accepted : 2020.10.13
  • Published : 2021.01.30

Abstract

In the paper, we investigate the representation of the numerical range W(An) for the 2 × 2 complex matrix A, in terms of the numerical range W(A) of the matrix A, and the elements of A or the eigenvalue of A.

Keywords

References

  1. C.S. Ballantine, Numerical range of a matrix, some effective criteria, Lin. Alg. Appl. 19 (1978), 117-188. https://doi.org/10.1016/0024-3795(78)90010-1
  2. W.F. Donoghue, Jr., On the numerical range of bounded operators, Mich. Math. J. 4 (1957), 261-267.
  3. M. Fiedler, Geometry of the numerical range of matrices, Lin. Alg. Appl. 37 (1981), 81-96. https://doi.org/10.1016/0024-3795(81)90169-5
  4. K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
  5. G.H. Golub and C.F. Van Loan, Matrix Computation 3rd Ed., Johns Hopkins University Press, 1996.
  6. F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919), 314-316. https://doi.org/10.1007/BF01292610
  7. R.A. Horn and C.R. Johnson, Matrix Analysis 2nd Ed., Cambridge University Press, 2013.
  8. C.R. Johnson, Computation of the field of values of a 2 × 2 matrix, J. Res. Nat. Bur. Standards 78 (1974), 105-107. https://doi.org/10.6028/jres.078B.016
  9. R. Kippenhahn, Uber den Wertevorrat einer Matrix, Math. Nachr. 6 (1951), 193-228. https://doi.org/10.1002/mana.19510060306
  10. F.D. Murnaghan, On the field of values of a square matrices, Poc. Nat. Acad. Sci. 18 (1932), 246-248. https://doi.org/10.1073/pnas.18.3.246
  11. T.M. Patel, On the numerical range of an operator, Vidya B 23 (1980), 11-14.
  12. O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Z. 2 (1918), 187-197. https://doi.org/10.1007/BF01212904
  13. F. Uhlig, Relations between the fields of values of a matrix and of its polar factors, the 2 × 2 real and complex case, Lin. Alg. Appl. 52 (1983), 701-715.