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EISENSTEIN SERIES WITH NON-UNITARY TWISTS

Anton Deitmar and Frank Monheim

Abstract. It is shown that for a non-unitary twist of a Fuchsian group,

which is unitary at the cusps, Eisenstein series converge in some half-

plane. It is shown that invariant integral operators provide a spectral
decomposition of the space of cusp forms and that Eisenstein series admit

a meromorphic continuation.

Introduction

Werner Müller established in [6] a trace formula with non-unitary twists
for compact locally symmetric spaces Γ\G/K. In the paper [2] the authors
extend this to compact quotients Γ\G, for a Lie group or a totally disconnected
group G. This paper is the first step towards a corresponding formula in the
case of non-compact quotient Γ\G. In this paper we specialize to the case
G = PSL2(R). We fix a non cocompact lattice Γ in G. For convenience we can
switch to a subgroup of finite index and thus assume Γ to be torsion-free.

First we set up the notion of a canonical Hilbert space. It turns out that
the Hilbert structure is not canonical, though. Using geometric estimates on
the word representations of group elements, it is shown that Eisenstein series
actually do converge. For this, however, it is needed that the representation
χ : Γ → GL(V ) be bounded in terms of the, say, Frobenius norm of the ele-
ments of the Fuchsian group Γ. Recall that a Fuchsian group with cusps, which
is torsion-free, is a free group in finitely many generators [5]. So in order to
give a representation χ as above, one only needs to give one arbitrary matrix
χ(τ) for each generator τ . If the group has at least two cusps, the canoni-
cal set of generators contains a parabolic element, but if one has a parabolic
generator, say τ = ( 1 1

1 ) and maps it to a semisimple matrix, then the norms∥∥χ(τk))
∥∥ will tend to infinity exponentially in k, while the Frobenius norm

equals
∥∥τk∥∥

Frob
=
√

2 + k2. So in that case an estimate of the desired kind is
impossible and consequentially, the corresponding Eisenstein series won’t con-
verge. The solution is to insist that the representation be unitary on parabolic
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elements, which is a restriction which is used in the text. Under this condi-
tion indeed we show convergence and analyticity of the Eisenstein series. As
a by-product we get that the space of cusp forms is stable under all invariant
operators.

1. Notation

The group G = PSL2(R) acts transitively on the upper half plane H in C
by linear fractionals. Let Γ ⊂ G be a lattice, i.e., a discrete subgroup of finite
covolume. We will throughout assume that Γ\H is non-compact, i.e., the group
Γ has cusps. Then Γ acts on H properly discontinuously. The action extends
to the boundary ∂H = R ∪ {∞}, and for each w ∈ H = H ∪ ∂H we write Γw
for its stabilizer, i.e.,

Γw =
{
γ ∈ Γ : γw = w

}
.

A connected open set F ⊂ H, whose boundary is a null-set, is called a fun-
damental domain for G if there exists a set of representatives R for Γ\H such
that

F ⊂ R ⊂ F .

An example is the Dirichlet domain D(z0) to a point z0 ∈ H with trivial
stabilizer Γz0 = {1}:

D(z0) =
{
z ∈ H : d(z, z0) < d(z, γz0) for every 1 6= γ ∈ Γ

}
.

We will fix a domain F of this type. It has finitely many geodesic sides and

finitely many cusps. For each cusp a ∈ R̂ = R ∪ ∞ there exists an element
σa ∈ G such that

• σa∞ = a,

• σ−1
a Γaσa = ±

(
1 Z

1

)
.

In order to measure the location of a point z in the Riemann surface Γ\H with
respect to the compact core of Γ\H and the cuspidal ends, we introduce the
invariant height

yΓ(z) = max
a

max
γ∈Γ

(
Im(σ−1

a γz)
)
.

We say that z ∈ H approaches the cusp a if Im(σ−1
a γz) → ∞. For Y > 0

let P (Y ) be the set of all z = x + iy ∈ H with 0 < x < 1 and y ≥ Y . For
large enough Y the scaling matrix σa maps this strip injectively into F . Let
Fa(Y ) = σaP (Y ) denote the image. For large enough Y we set

F (Y ) = F r

(⋃
a

Fa(Y )

)
.
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Then F (Y ) is relatively compact in H and we have divided the fundamental
domain F into the central part F (Y ) and finitely many cuspidal zones

F = F (Y ) ∪
⋃
a

Fa(Y ).

a b

F (Y )

Fa(Y ) Fb(Y )

F∞(Y )

Definition 1.1. Let
χ : Γ→ GL(V )

be a finite-dimensional representation of Γ on a unitary space V . We say that χ
is unitary at the cusps if for every cusp a and every γ ∈ Γa the endomorphism
χ(γ) of V is unitary.

The orthogonal projection V → V χ(Γa) onto the space of Γa fixed points
will be denoted by Pa. In the case that Pa = 0 for every cusp we say that χ is
non-singular .

We choose a fundamental domain F ⊂ H and define

L2(F, χ) =

f : H→ V :

f is measurable
f(γz) = χ(γ)f(z), γ ∈ Γ, z ∈ H∫
F
‖f(z)‖2V dz <∞


modulo nullfunctions. This Hilbert space depends on the choice of F , but only
in a mild way.

Definition 1.2. Two fundamental domains F1 and F2 are said to be equivalent
if, up to a set of measure zero, F2 can be covered by finitely many Γ-translates
of F1 and vice-versa.

Proposition 1.3. If two fundamental domains F1 and F2 are equivalent, then
L2(F1, χ) and L2(F2, χ) coincide as sets and the identity map

L2(F1, χ)→ L2(F2, χ)

is a topological isomorphism.
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Proof. Let γ1, . . . , γl ∈ Γ such that F2 ⊂
(
N ∪

⋃l
j=1 γjF1

)
, where N is a

null-set. Then ∫
F2

‖f(z)‖2 dz ≤
l∑

j=1

‖χ(γj)‖2
∫
F1

‖f(z)‖2 dz,

where ‖χ(γj)‖ is the operator norm. By symmetry the claim follows. �

Definition 1.4. A fundamental domain F is called geometrically finite if it is
bounded by finitely many geodesics. A Dirichlet domain is an example.

Proposition 1.5. Any two geometrically finite fundamental domains are equiv-
alent.

Proof. We consider the Borel-Serre compactification. Let

HΓ = H ∪
⋃
a

(∂Hr {a}) .

We write Ba for ∂H r {a}. For the points of Ba we will write ba(x) where
x ∈ ∂H r {a} to distinguish the points of different copies of ∂H = R ∪ {∞}.
We install a topology on HΓ as follows:

• any z ∈ H has the usual neighborhood base in H,
• for x ∈ ∂H r {a} we define a neighborhood base by switching to the

disk model D of the hyperbolic space. On the disk, de(x, y) shall denote
the Euclidean distance of x and y. Then a neighborhood basis will be
given by the sets UI,ε = I ∪Uε, where I ⊂ Ba is open and Uε is the set
of all z ∈ D which satisfy de(z, a) < ε and z lies on a geodesic joining
a and a point in I.

I

Uε

a

ε

The group Γ acts on HΓ in the following way. On H it is the usual action by
hyperbolic isometries. For a point ba(x) we set γ · ba(x) = bγa(γx). It is easy
to see that this Γ-action is properly discontinuous. A fundamental domain for
this Γ-action is given as follows: Let F be a geometrically finite fundamental
domain for the Γ-action on H. It has finitely many inequivalent cusps. For
each cusp a of F we choose aa, ba ∈ Ba

∼= R such that the unique geodesics
αa, βa which join a to aa and ba respectively contain the two faces of F which
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meet at a.

I

a

aa

ba

Then FΓ = F ∪
⋃

(aa, ba) can be shown to be a fundamental domain of the
Γ-action on HΓ. The closure of FΓ in HΓ is given by

FΓ
HΓ

= F
H ∪

⋃
a

[aa, ba].

As F has only finitely many faces, it follows that FΓ
HΓ

is compact. Consider
two geometrically finite fundamental domains F, F ′ ⊂ H. Since FΓ and F ′Γ are
both relative compact and the Γ-action is properly discontinuous, one can cover
F ′Γ by finitely many Γ-translates of FΓ and vice-versa. Taking the intersection
with H, the claim follows. �

If Γ is torsion-free and χ is unitary at the cusps, we can yet introduce an L2-
space in a different manner, such that again we get a topological isomorphism
to the former spaces. We let Γ act on H× V diagonally. The quotient space

H×Γ V = Γ\(H× V )

yields a flat vector bundle over Γ\H with fibre V . We choose a hermitian
fibre metric 〈·, ·〉s in such a way that it coincides with the given inner product
near the cusps. This means that for z ∈ H whose invariant height yγ(z) is
larger than some constant, say yγ(z) > c, the inner product on the fibre above
z coincides with the inner product on V . It is possible to find such a fibre
metric, as the representation χ is unitary at the cusps. Now define the Hilbert
space L2(Γ\H, χ)s as the set of all measurable sections f : Γ\H→ H×Γ V such
that ∫

Γ\H
‖f(z)‖2s dz <∞

modulo nullfunctions. A section f can be considered a map f : H → V with
f(γz) = χ(z)f(z) and so we find:

Proposition 1.6. Let Γ be torsion-free and χ unitary at the cusps. Then
for any geometrically finite fundamental domain F the sets L2(Γ\H, χ)s and
L2(F, χ) coincide and the identity map yields a topological isomorphism of
Hilbert spaces

L2(F, χ)→ L2(Γ\H, χ)s.



512 A. DEITMAR AND F. MONHEIM

Proof. We pull back the smooth fibre metric 〈·, ·〉s to the trivial bundle H× V
and denote this metric by 〈〈·, ·〉〉. Since any two norms on a finite-dimensional
space are equivalent and since 〈·, ·〉 and 〈〈·, ·〉〉 coincide on cuspidal areas Fa(Y )
for large enough Y , there exist constants m,M > 0 such that

m 〈〈(z, v), (z, v)〉〉 ≤ 〈v, v〉 ≤M 〈〈(z, v), (z, v)〉〉

holds for all (z, v) ∈ F × V . The claim follows. �

For this smooth fibre metric there exists corresponding Laplacian ∆s which
has the same principal symbol as the hyperbolic Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

The sign is chosen to make the operator positive semidefinite. Let (·, ·)s denote
the inner product of L2(Γ\H, χs). We introduce the Sobolev spaces

H1(Γ\H, χ)s =
{
f ∈ L2(Γ\H, χ)s : (f, f)s + (∆sf, f)s <∞

}
,

H2(Γ\H, χ)s =
{
f ∈ L2(Γ\H, χ)s : (f, f)s + (∆sf,∆sf)s <∞

}
,

where ∆sf is understood in the distributional sense. For later use note that
the function f(z) = Im(z)s satisfies ∆f = s(1− s)f .

2. Estimating representations

We assume Γ to be a torsion-free lattice with cusps and χ a finite-dimensional
representation of Γ which is unitary at the cusps.

The classical Eisenstein series for a cusp a is defined by

Ea(z, s) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s,

the series being convergent for z ∈ H, s ∈ C, Re(s) > 1. For the χ-twist we
define the Eisenstein series by

Ea(z, s, χ) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s χ(γ−1)Pa.

We will have to show convergence.

Notation. In the following, we shall use the “big O” and the “�” notation:
for a set X and two functions f : X → C and h : X → (0,∞) we write

f = O(h) or f � h

if there exists a constant C > 0 such that

|f(x)| ≤ C h(x)

holds for every x ∈ X. Any choice of C will be referred to as the implied
constant.
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Proposition 2.1. There exists α > 0 such that the operator norm satisfies

‖χ(γ)‖ = O(Im(γz)α),

where the implied constant depends continuously on z ∈ H. This means that
there exists a continuous function C : H→ (0,∞) such that

‖χ(γ)‖ ≤ C(z) Im(γz)α

holds for all γ ∈ Γ and all z ∈ H.
In particular, the Eisenstein series Ea(z, s, χ) converges locally uniformly

absolutely for Re(s) > 1 + α.

The proof of this proposition occupy the rest of the section.
First observe that, as χ is unitary at the cusps, we have

‖χ(γaγ)‖ = ‖χ(γ)‖
for γ ∈ Γ and γa ∈ Γa.

Definition 2.2 (Normal presentation). We fix a fundamental domain F of the
form F = D(z0). Let γjF with j = 1, . . . , l be the neighboring domains. Then
the set {γ1, . . . , γl} is a symmetric generating set of the group Γ.

A presentation γ = η1η2 · · · ηr with ηi ∈ {γ1, . . . , γl} is called normal if the
ηi are chosen in the following manner: We fix a second point z1 ∈ F different
from z0 and chosen such that for any two τ0, τ1 ∈ Γ the geodesic joining τ0z0 to
τ1z1 is different from any geodesic being a boundary line of any fundamental
domain σF , σ ∈ Γ. We assume η1, . . . , ηj−1 to be already found. Now join
η1 · · · ηj−1z0 with γz1 by a geodesic. Following this geodesic from η1 · · · ηj−1z0

in the direction of γz1, after leaving the fundamental domain η1 · · · ηj−1F the
geodesic enters a fundamental domain of the form η1 · · · ηj−1γkF with 1 ≤ k ≤
l. We set ηj = γk. As the geodesic distance d(η1 · · · ηjz0, γz1) decreases, this
procedure will stop and give a presentation of γ.

z0

z1

γz1

F η1F

ζ1

We write ζj = η1 · · · ηjz0.

Lemma 2.3. There exists a positive constant c1 independent of γ and z1 such
that for the hyperbolic distance we have

d(ζj , γz1) ≤ d(ζj−1, γz1)− c1
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if ηj is not parabolic.

Proof. We recall that the fundamental domain F is of the form F = {z ∈ H :
d(z, z0) < d(z, γz0) for all γ ∈ Γ}. Let g(ζj−1, γz1) denote the geodesic joining
ζj−1 and γz1. Let z ∈ g(ζj−1, γz1) be the unique point between ζj−1 and γz1

which lies in the boundary of η1 · · · ηj−1F .

ζj−1

γz1
ζj

z

Since the fundamental domain η1 · · · ηjF is the Dirichlet domain with center
ζj , all of the geodesic line, which is to the right of z, is nearer to ζj than to
ζj−1. For γz1 this means

0 ≤ d(ζj−1, γz1)− d(ζj , γz1),

where we would have equality only if γz1 = z, which is impossible. So we get

d(ζj−1, γz1)− d(ζj , γz1) ≥ c1
with some c1 > 0. We have make clear that we can choose c1 independent of
γ. This becomes clear by

d(ζj−1, γz1)− d(ζj , γz1) = d(z0, γ
′z1)− d(ηjz0, γ

′z1)

with γ′ = η1 · · · ηj−1γ, which reduces the claim to the case j = 1. In this case,
as ηj is not parabolic, z can only vary in the compact part of the boundary of

F where F meets ηjF . This implies independence of γ. �

Lemma 2.4. There exists a constant c2 > 0, independent of γ and z1 such
that

d(ζj+1, γz1) ≤ d(ζj−1, γz1)− c2
as long as ηj , ηj+1 are not parabolic elements belonging to the same Γ-conjugacy
class.

Proof. In the case that ηj or ηj+1 is not parabolic, one can apply the previous
lemma. So assume that both are parabolic but not Γ-conjugate. They fix two
different cusps a and b respectively. Then a is the cusp which F and ηjF have
in common and similarly with b. For simplicity, we assume j = 1. If we vary
γz1, then the point z as in the last picture, varies on the common boundary of
F and ηjF . We define z and w as in the picture and by z′, w′ we denote the
corresponding points for j + 1. Let a positive constant C > 0 be given. We
first consider the case that

d(ζi−1, z) ≤ C or d(ζj , z
′) ≤ C.
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This means that either z or z′ are restricted to a compact subset and the
same argument as in the proof of Lemma 2.3 applies. We therefore assume
d(ζi−1, z), d(ζj , z

′) ≥ C. Our starting point is the inequality

d(ζj−1, z) < d(ζj−1, γz1)

and the same for ζj . We shall show that d(ζi−1, z) and d(ζj , z
′) cannot tend

both to infinity, which means that one of them is restricted to a compact
set. If d(ζj−1, z) → ∞, then also d(ζj−1, γz1) → ∞ and the same holds for
d(ζj , γz1). This means that z moves into the cuspidal area of a and so does
γz1. Assuming d(ζj , z

′)→∞ too, we get by the same reasoning that γz1 moves
into the cuspidal area of b, but as a 6= b, this is a contradiction. �

Definition 2.5. Let γ = η1 · · · ηr be given in normal presentation. If η1 is not
parabolic, set ν1 = η1. Otherwise set ν1 = η1 · · · ηr1 , where r1 is the biggest
number such that η1, η2, . . . , ηr1 all belong to the same parabolic conjugacy
class. Continuing in the same way for ν2, . . . , we obtain a new presentation

γ = ν1 · · · νk.
The occurring νj are called the tranches of γ. For g =

(
a b
c d

)
∈ G we set

µ(g) = a2 + b2 + c2 + d2.

Lemma 2.6. For every g ∈ G we have

µ(g)

2
≤ exp(d(i, gi)) ≤ µ(g).

Proof. By the Cartan decomposition we can write g = k1Dk2 with k1, k2 ∈
SO(2) and D = ( a a−1 ) for some a ≥ 1. Since neither of the expression in the
proposition changes under SO(2)-multiplication, we can assume that g = D.

In this case d(i, gi) = 2 log a and we have a2+a−2

2 ≤ a2 ≤ a2 + a−2. �

Proposition 2.7. Let γ ∈ Γ and

γ = η1 · · · ηr
its normal presentation. The number of tranches k in the presentation can be
estimated by

k ≤ CΓ (log(µ(γ)) + 1)

for some constant CΓ depending on the group Γ and the points z0, z1, but not
on the element γ.

Proof. Let γ = ν1 · · · νk be the presentation in tranches. Using Lemma 2.4 we
get

d(z0, γz1) ≥ d(ν2ν1z0, γz1)+c2 ≥ · · · ≥
[
k

2

]
c2+d(γz0, γz1) =

[
k

2

]
c2+d(z0, z1).

The triangle inequality yields

d(z0, γz1) ≤ d(z0, i) + d(i, γi) + d(γi, γz1)
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and thus

k ≤ CΓ (d(z0, i) + d(i, γi) + d(i, z1)) .

The claim follows with Lemma 2.6. �

Definition 2.8. For z, w ∈ H let

u(z, w) =
|z − w|2

Im z Imw
.

This number is connected with the hyperbolic distance via the formula

cosh (d(z, w)) = 1 +
1

2
u(z, w).

Proposition 2.9. Let χ : Γ → GL(V ) be a finite dimensional representation
which is unitary at the cusps. Then there exists σ0 > 1 such that for all z, w ∈ H
we have

‖χ(γ)‖ = O
(
µ(γ)σ0−1

)
as well as

‖χ(γ)‖ = O
(
(u(z, γw) + 1)σ0−1

)
,

where the implied constant depends continuously on z, w, but not on γ.

Proof. Let γ ∈ Γ and let γ = ν1 · · · νk be its presentation in tranches. Then we
estimate

‖χ(γ)‖ ≤
k∏
j=1

‖χ(νj)‖ .

Let K be the maximum of ‖χ(γj)‖ for j = 1, . . . , k. With Proposition 2.7 we
obtain

‖χ(γ)‖ ≤ Kk ≤ KC log µ(γ)+C = µ(γ)C logKKC .

This implies the first claim. Similar to Lemma 2.6 one finds that there exists
c > 0, which can be chosen independently of z in a compact set, such that

µ(γ) ≤ c exp(d(z, γz)).

By the triangle inequality we get

exp(d(z, γz)) ≤ exp(d(z, γw) + d(γw, γz))

= exp(d(w, z)) exp(d(z, γw)).

Since exp
2 ≤ cosh we arrive at µ(γ) = O(u(z, γw)+1) and whence the claim. �

Lemma 2.10. Assume that ∞ is a cusp of Γ of width one. Then there exists
a constant C > 0 such that every coset in Γ∞\Γ contains an element ( a b

m n )
with

a2 + b2 ≤ C(m2 + n2).
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Proof. Let ( α β
m n ) ∈ Γ be given. We can assume n > 0 and m 6= 0 for otherwise

the statement is clear. Then we find q ∈ Z such that α = mq + l, 0 ≤ l < |m|.
The set γ =

(
1 −q
0 1

)
and γ ( α β

m n ) = ( a b
m n ). Then, as a = l and an− bm = 1 we

get

a2 + b2 = l2 +

(
ln− 1

m

)2

≤ m2 +
(l + 1)2n2

m2
≤ m2 +

(m+ 1)2n2

m2
= O(m2 + n2).

�

Lemma 2.11. Let Γ have a cusp at ∞ of width one. Then with σ0 > 1 as
in Proposition 2.9, for γ = ( ∗ ∗c d ) ∈ Γ one has ‖χ(γ)‖ ,

∥∥χ(γ−1)
∥∥ = O((c2 +

d2)σ0−1). The implied constant depends on the representation χ but not on γ.

Proof. The estimate for ‖χ(γ)‖ follows from the above lemma and Proposition
2.9. For the estimate of

∥∥χ(γ−1)
∥∥ note that if γ =

(
a b
c d

)
, then γ−1 =

(
d −b
−c a

)
,

then use Lemma 2.10 a second time. �

Lemma 2.12. For c, d ∈ R and z = x+ iy ∈ C we have(
y2

1 + |z|2

)
(c2 + d2) ≤ |cz + d|2.

In particular with Lemma 2.11 we infer, that if Γ has a cusp at ∞ of width 1,
then

‖χ(γ)‖ ,
∥∥χ(γ−1)

∥∥ = O

(
Im(γz)1−σ0

(
1 + |z|2

y

)σ0−1
)
, z ∈ H, γ ∈ Γ.

Proof. Observe that |cz + d|2 ≥ y2c2 and |z|2|cz + d|2 = |c|z|2 + dz|2 ≥ d2y2,

so that |cz + d|2 ≥ y2(c2+d2)
1+|z|2 . This yields

‖χ(γ)‖ ,
∥∥χ(γ−1)

∥∥ = O

((
y2

1 + |z|2

)1−σ0

|cz + d|2(σ0−1)

)
,

which implies the claim. �

3. Eisenstein series

Definition 3.1. Let ψ ∈ C∞c (R>0). For a cusp a we define the incomplete
Eisenstein series

Ea(z|ψ) =
∑

γ∈Γa\Γ

ψ(Im(σ−1
a γz))χ(γ−1)Pa.

For v ∈ V consider the function Ea(·|ψ)v : H → V . Since ψ has compact
support, the function Ea(·|ψ)v is bounded on the fundamental domain F , hence
an element of L2(F, χ) = L2(Γ\H, χ).
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We let Ea(Γ\H, χ) denote the closure of all incomplete Eisenstein series in
L2(Γ\H, χ), where ψ varies in C∞c (R>0) and v ranges over V . Then we set

E(Γ\H, χ) =
∑
a

Ea(Γ\H, χ).

Note that Ea(Γ\H, χ) = 0 if Eig(χ(Γa), 1) = 0, where for any linear map
operator T and λ ∈ C we write Eig(T, λ) for the λ-eigenspace of T .

Definition 3.2. For s ∈ C and a cusp a we define the Eisenstein series by

Ea(z, s, χ) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s χ(γ−1)Pa.

Proposition 3.3. Let σ0 be as in Proposition 2.9. Then for any cusp a, the
Eisenstein series Ea(z, s, χ) converges locally uniformly absolutely in the half
plane Re(s) > σ0.

Proof. We replace a with ∞ and Γ with σ−1
a Γσa. Then by Lemma 2.12 we

have ∥∥Im(γz)sχ(γ−1)
∥∥ ≤ Im(γz)Re(s)+1−σ0

(
1 + |z|2

y

)σ0−1

.

The claim follows. �

In order to estimate the growth of Ea(z, s, χ) near a cusp, we need to study
its Fourier expansion. We will consider the more general case Ea(z|ψ) and later
set ψ(t) = ts.

Definition 3.4. We write

n(k) =

(
1 k
0 1

)
and we let NZ denote the subgroup of PSL2(R) generated by n(1).

The integral

Ks(y) =
1

2

∫ ∞
0

e−y(t+t−1)/2ts
dt

t

converges locally uniformly absolutely for y > 0 and s ∈ C. The so-defined
function Ks is called the K-Bessel function. It satisfies the estimate

|Ks(y)| ≤ e−y/2KRe(s)(2), if y > 4.

We also note that the integrand in the Bessel integral is invariant under t 7→ t−1,
s 7→ −s, so that

K−s(y) = Ks(y).

Lemma 3.5. Let a, b be cusps of Γ. We have the disjoint union

σ−1
a Γσb = δa,bΩ∞ t

⊔
c>0

⊔
d(c)

Ω(c,d),
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where Ω∞ = NZω∞NZ and Ω(c,d) = NZω(c,d)NZ with some element ω∞ =

( 1 ∗
1 ) ∈ σaΓσb and some ω(c,d) = ( ∗ ∗c d ) ∈ σ−1

a Γσb.
Here c runs over all real numbers > 0 for which such ω(c,d) exists and d runs

modulo c.

Proof. This is Theorem 2.7 in [4]. �

We now derive the Fourier expansion of the Eisenstein series. For γ ∈
σ−1
a Γσb we write η(γ) = χ(σaγσ

−1
b ). Writing ψ̃(z) = ψ(Im(z)), the double

coset decomposition gives

Ea(σbz|ψ) =
∑

γ∈Γa\Γ

ψ̃(σ−1
a γσbz)χ(γ−1)Pa

=
∑

γ∈(σ−1
a Γσa)∞\σ−1

a Γσb

ψ̃(γz) η(γ−1)Pa

= δa,bψ̃(y)Pa +
∑
c>0

∑
d(c)

(∑
k∈Z

ψ̃(ω(c,d)(z + k))χ(γb)−k

)
η(ω−1

(c,d))Pa,

where γb is a generator of Γb and so χ(γb) is a unitary automorphism of V .
So if 1 = e(ν1), e(ν2), . . . , e(νk(b)) are the eigenvalues where e(x) = e2πix and
νj ∈ [0, 1) and P1 = Pb, P2, . . . , Pk(b) are the corresponding projections to the
eigenspaces, then

χ(γb)−1 =

k(b)∑
j=1

e(−νj)Pj .

Here we use the convention that we list the eigenvalue 1 = e(ν1) even if it
doesn’t occur, i.e., even in the case when P1 = Pb = 0. We get that Ea(σbz|ψ)
equals

δa,bψ̃(y)Pa +
∑
c>0

∑
d(c)

k(b)∑
j=1

∑
k∈Z

ψ̃(ω(c,d)(z + k)) e(−kνj)Pj

 η(ω−1
(c,d))Pa.

By the Poisson Summation Formula we get∑
k∈Z

ψ̃(ω(c,d)(z + k))e(−kνj)Pj =
∑
k∈Z

∫
R
e(tνj)ψ̃(ω(c,d)(z + t))e(kt)Pj dt.

Writing ω(c,d) =
(
a b
c d

)
and using ad − bc = 1 we get ω(c,d)(z + t) = a

c −
1

c2(t+x+iy+d/c) . So that the change of variable t 7→ t− x− d
c yields

∑
k∈Z

e

(
(k − νj)

(
x+

d

c

))∫
R
ψ

(
yc−2

t2 + y2

)
e((k + νj)t) dt Pj .
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Hence Ea(σbz|ψ) equals δa,bψ(y)Pa plus

k(b)∑
j=1

∑
k∈Z

e((k − νj)x)
∑
c>0

Pj Sa,b(k − νj , c, χ)

∫
R
ψ

(
yc−2

t2 + y2

)
e((k + νj)t) dt Pa,

where Sa,b(r, c, χ) is the Kloosterman sum

Sa,b(r, c, χ) =
∑
d(c)

e

(
r
d

c

)
η(ω−1

c,d).

We now specialize to the case ψ(y) = ys. From [4, p. 205] we take∫
R

(t2 + y2)−s dt = π
1
2

Γ(s− 1
2 )

Γ(s)
y1−2s

and for r ∈ R×,∫
R

(t2 + y2)−se(−rt) dt =
2πs

Γ(s)

(
|r|
y

)s− 1
2

Ks− 1
2
(2π|r|y).

With these notations we have proven the following theorem.

Theorem 3.6. Let a, b be cusps of Γ and let s be in C with Re(s) > σ0, where
σ0 is as in Proposition 2.9. Then we have

Ea(σbz, s, χ) =δa,by
sPa + ϕa,b(s)y1−s

+
∑
k 6=0

ϕa,b,1(k, s)Ws(kz)

+

k(b)∑
j=2

∑
k∈Z

ϕa,b,j(k − νj , s)Ws((k − νj)z),

where

ϕa,b(s) = π
1
2

Γ(1− 1
2 )

Γ(s)
Pa

∑
c>0

c−2sSa,b(0, c, χ)Pa,

ϕa,b,j(r, s) =
πs

Γ(s)
|r|s−1Pj

∑
c>0

c−2sSa,b(r, c, χ)Pa,

and Ws(z) is the Whittaker function

Ws(z) = 2y
1
2Ks− 1

2
(2πy)e(x).

Proposition 3.7. For s with Re(s) > σ0, where σ0 is as in Proposition 2.9,
we have

Ea(σbz, s, χ) = δa,by
sPa + ϕa,b(s)y1−s +O(e−βy)

as y →∞, where 0 < β < minj≥2 νj is arbitrary. The implied constant depends
on Γ, χ and s ∈ C only. It can be chosen to vary continuously in s.



EISENSTEIN SERIES WITH NON-UNITARY TWISTS 521

Proof. We use the estimate |Ws(z)| ≤ C(s)y
1
2 e−πy as y →∞ for some contin-

uous function C(s). Since for y ≥ ε > 0 we have

∞∑
k=0

(k + νj)
s−1e−πy(νj+k) = O(e−βy),

the claim follows. �

Proposition 3.8. Let s ∈ C with Re(s) > σ0, where σ0 is as in Proposition
2.9. With σ = Re(s) we have

Ea(σbz, s, χ)� 1

yσ
+ yσ,

where the implied constant depends on Γ, χ and σ only.

Proof. First let y ≥ 1. Since

Ea(σbz, s, χ) = δa,b y
2 Pa +O(y1−σ),

we get Ea(σbz, s, χ) = O (yσ). On the other hand, for z = x+ iy and z̃ = x+ i
the inequality

Im(z) Im(γz) ≤ Im(γz̃)

holds for y ≤ 1 and arbitrary γ ∈ PSL2(R). This yields the claim. �

4. Cusp forms

Definition 4.1. For a cusp a of Γ and f ∈ L2(Γ\H, χ) let

c0(f, a, y) =

∫
[0,1]

Paf(σa(x+ iy)) dx, y > 0,

denote the zeroth Fourier coefficient at the cusp a. By Fubini’s theorem, the
integral exists almost everywhere in y and defines a measurable function in y.

A function f ∈ L2(Γ\H, χ) is called a cusp form, if

c0(f, a, y) = 0

holds almost everywhere in y ∈ (0,∞). The space of cusp forms will be denoted
by L2

cusp(Γ\H, χ).

Definition 4.2. Let k ∈ C∞(R>0). For z, w ∈ H recall the notation u(z, w) =
|z−w|2

Im(z) Im(w) . Then cosh (d(z, w)) = 1 + 1
2u(z, w). By abuse of notation we write

k(z, w) = k(u(z, w)). We define an integral operator L = Lk by

Lf(z) =

∫
H
k(z, w)f(w) dw.

For f ∈ L2(Γ\H, χ) we obtain

Lf(z) =

∫
Γ\H

K(z, w)f(w) dw,
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where K(z, w) =
∑
γ∈Γ k(z, γw)χ(γ). Note that for γ, τ ∈ Γ we have

K(γz, τw) = χ(γ)K(z, w)χ(τ−1).

Definition 4.3. Let C(Γ\H, χ) denote the space of all continuous functions
f : H→ V with f(γz) = χ(γ)f(z) for every z ∈ H, γ ∈ Γ. Write Ccusp(Γ\H, χ)
for the subspace of all f such that∫

[0,1]

Paf(σa(x+ iy)) dx = 0

for every cusp a and every y > 0. We call Ccusp(Γ\H, χ) the space of continuous
cusp forms.

Proposition 4.4. Suppose the kernel satisfies

k(z, w) =� u(z, w)−σ

for σ > σ0 and σ0 as in Proposition 2.9. Then K(z, w) is continuous on the

domain
{

(z, w) ∈ H×H : z ≡/ w mod Γ
}

. If more strongly, k satisfies

k(z, w) =� (u(z, w) + 1)−σ,

then K is continuous on all of H×H and the integral Lf converges locally uni-
formly to an element of C(Γ\H, χ), defining a linear operator L : L2(Γ\H, χ)→
C(Γ\H, χ). This operator maps the space of cusp forms L2

cusp(Γ\H, χ) to the
space Ccusp(Γ\H, χ) of continuous cusp forms.

Proof. Replacing Γ with a conjugate, we may assume that∞ is a cusp of width
one. By Proposition 2.9 we have

‖χ(γ)‖ = O((u(γz, w) + 1)σ0−1).

We then get for z ≡/ w mod Γ that∑
γ∈Γ

‖k(z, γw)χ(γ)‖ �
∑
γ∈Γ

u(a, γw)−σ ‖χ(γ)‖

�
∑
γ∈Γ

u(z, γw)σ0−1−σ,

where the implied constants depend continuously of (z, w). By Lemma 2.11
in [4], locally uniform convergence follows if σ > σ0. The convergence of the
integral Lf follows from this bound.

For the last assertion let f be a cusp form, g = Lf and n(t) = ( 1 t
1 ). We

compute∫
[0,1]

Pag(σan(t)z) dt =

∫
[0,1]

∫
H
k(σan(t)z, w)Paf(w) dw dt

=

∫
H
k(z, w)

(∫
[0,1]

Paf(σan(t)w) dt

)
dz = 0.

�
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Definition 4.5. For a cusp a, the zeroth Fourier coefficient of K(z, w) which
equals

Ha(z, w) =
∑

γ∈Γa\Γ

∫
R
k(z, σan(t)σ−1

a γw) dtPaχ(γ),

is also called the principal part of the kernel K at the cusp a.

Proposition 4.6. The operator with kernel Ha annihilates cusp forms, i.e.,
for every cusp form f we have∫

Γ\H
Ha(z, w)f(w) dw = 0.

Proof. By unfolding the integral we get∫
Γ\H

Ha(z, w)f(w) dw

=

∫
Γ\H

∑
γ∈Γa\Γ

∫
R
k(z, σan(t)σ−1

a γw) dtPaχ(γ)f(w) dw

=

∫
Γa\H

∫
R
k(z, σan(t)σ−1

a w) dtPaf(w) dw

=

∫
Γa\H

∫
[0,1]

∑
γ∈Γa

k(z, σan(t)σ−1
a γw) dtPaf(w) dw

=

∫
H

∫
[0,1]

k(z, σan(t)σ−1
a w) dtPaf(w) dw

=

∫
H
k(z, w)

(∫
[0,1]

Paf(σan(−t)σ−1
a w) dt

)
dw = 0.

�

Definition 4.7. We add the principal parts

H(z, w) =
∑
a

Ha(z, w).

The kernel function

K̂(z, w) = K(z, w)−H(z, w)

is called the compact part of K(z, w). If L is the operator with kernel K, then

L̂ will denote the operator with kernel K̂. On the space of cusp forms, the

operator L̂ coincides with L.

Theorem 4.8. Suppose that

k(z, w)� (u(z, w) + 1)−σ

for some σ > σ0 and σ0 as in Proposition 2.9. Then the kernel K̂ is square
integrable on F × F and thus defines a Hilbert-Schmidt operator on L2(F, χ).

The proof of the theorem will take the rest of the section.
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Lemma 4.9. Suppose the kernel satisfies

k(z, w)� (u(z, w) + 1)−σ

for σ > σ0 and σ0 as in Proposition 2.9.

(a) For z, w ∈ F we have

K(z, w) = k(z, w) +
∑

a∈C(F )

∑
γ∈Γa

γ 6=1

k(z, γw)χ(γ) +O(1),

where the first sum runs over the finite set C(F ) of cusps of the fundamental
domain F .

(b) For any cusp a of F we have

Ha(z, w) =

∫
R
k(z, σan(t)σ−1

a w) dt Pa +H ′a(z, w),

where H ′a has bounded L2-norm on F × F .

Proof. (a) We have

K(z, w) =
∑

a∈C(F )

∑
16=γ∈Γa

k(z, γw)χ(γ) +
∑
γ∈Γ

not parabolic

k(z, γw)χ(γ).

For a cusp a we write χa : σ−1
a Γσa → GL(V ), χa(γ) = χ(σaγσ

−1
a ). We write

N(Z) = ( 1 Z
1 ) and get∑

γ∈Γ
not parabolic

k(z, γw)χ(γ) =
∑

γ∈N(Z)\σ−1
a Γσ1

not parabolic

∑
j∈Z

k(z, γw + j)χa(n(j)γ).

Now

k(z, γw + j)� (1 + u(z, γw + j))−σ

=

(
1 +

(Re(z)− Re(γw)− j)2 + (Im(z)− Im(γw))2

Im(z) Im(γw)

)−σ
� Im(γw)σ(

Im(z) + (Re(z)−Re(γw)−j)2

Im(z)

)σ ,
which yields∑

j∈Z
k(z, γw + j)� Im(γw)σ

∑
j∈Z

(
Im(z) +

(Re(z)− Re(γw)− j)2

Im(z)

)−σ

� Im(γw)σ
∞∑
j=0

(
Im(z) +

j2

Im(z)

)−σ
.
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If we assume Im(z) ≥ A for some A > 0, then we get

∞∑
j=0

(
Im(z) +

j2

Im(z)

)−σ

< Im(z)−σ +

∫ ∞
0

(
Im(z) +

u2

Im(z)

)−σ
du� Im(z)−σ+1,

and thus ∑
j∈Z

k(z, γw + j)� Im(z)1−σ Im(γw)σ.

We therefore get∥∥∥∥∥∥∥∥
∑
γ∈Γ

not parabolic

k(σaz, γσaw)χ(γ)

∥∥∥∥∥∥∥∥� Im(z)1−σ
∑

γ∈Γa\Γ
not parabolic

Im(σ−1
a γw)σ ‖χ(γ)‖ .

The latter sum is O(y1−σ) by Proposition 3.7. So we see that the sum∑
γ∈Γ

not parabolic

k(σaz, γσaw)χ(χ)

is uniformly bounded for z and w in F with Im(σ−1
a z) ≥ A. Since this is true

for any cusp, the claim follows.
Part (b) is obtained in a similar fashion. �

In order to finish the proof of Theorem 4.8 it now remains to show that

Ja(z, w) =
∑
γ∈Γa

k(z, γw)χ(γ)−
∫
R
k(z, σan(t)σ−1

a w) dt Pa

is bounded on F × F . We first consider

Ja(z, w)Pa =
∑
γ∈Γa

k(z, γw)Pa −
∫
R
k(z, σan(t)σ−1

a w) dt Pa.

For ψ(t) = t− [t]− 1
2 and f continuously differentiable on R with f(t), tf ′(t) ∈

L1(R) integration by parts shows that∑
j∈Z

f(k) =

∫
R
f(t) dt+

∫
R
ψ(t)f ′(t) dt.

In our case this yields

|Ja(σaz, σaw)Pa| =

∣∣∣∣∣∣
∑
j∈Z

k(z, w + j)Pa −
∫
R
k(z, n(t)w) dt Pa

∣∣∣∣∣∣
=

∣∣∣∣∫
R
ψ(t)

∂

∂t
k(u(z, w + t)) dt Pa

∣∣∣∣
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=

∣∣∣∣∫
R
ψ(t)

∂

∂t
k

(
|w + t− z|2

Im(z) Im(w)

)
dt Pa

∣∣∣∣� ∫
R
|k′(u)| du� 1.

Next we consider the contribution of Ja(z, w) on the orthogonal complement
Eig(χ(γa), 1)⊥, where γa is a generator of Γa. In this case we have

(Id− χ(γa))
∑
γ∈Γa

k(σaz, γσaw)χ(γ) =
∑
j∈Z

(k(w, z + j)−k(w, z + j − 1))χ(γa)n

�
∫
R
dk(w, z + t)�

∫
R
|k′(u)| du� 1.

It follows that K̂ is an L2-kernel and thus defines a Hilbert-Schmidt operator.
Theorem 4.8 is proven.

For the next theorem let’s shortly recall spectral theory of compact oper-
ators. For a compact operator T : H → H every spectral value λ 6= 0 is
an isolated point in the spectrum and it is a generalized eigenvalue where the
generalized eigenspace

E(λ) =

∞⋃
n=1

ker(T − λ)n

is non-zero and finite-dimensional. For λ 6= 0 in the spectrum of T let

P (λ) =
1

2πi

∫
η

(T − z)−1dz,

where η is a closed path in C which surrounds the eigenvalue λ once and no
other spectral value. Then P is a continuous projection with image E(λ), called
the Riesz-projection of the eigenvalue λ. Let N be the intersection of all P (λ),
λ ∈ σ(T ), λ 6= 0. Then N ist preserved by T which is quasi-nilpotent on N .
The space N is called the nilpotence kernel of T . The direct sum

N ⊕
⊕
λ6=0

E(λ)

is dense in H. If S is an operator commuting with T , it will preserve each of
the spaces E(λ) and N .

Theorem 4.10 (Spectral decomposition). Let ∆cusp denote the restriction of
the hyperbolic Laplacian ∆ to the space of cusp forms. For every λ ∈ C there
exists m ∈ N0 such that

ker(∆cusp − λ)m = ker(∆cusp − λ)m+k

holds for every k ∈ N. Let m(λ) denote the smallest such m ∈ N0 and let
Hcusp(λ) denote the space ker(∆cusp−λ)m(λ). Then there is a sequence λj ∈ C,
tending to infinity, such that Hcusp(λ) = 0 unless λ = λj for some j and the
direct sum

N ⊕
∞⊕
j=1

Hcusp(λj)
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is dense in L2
cusp(Γ\H, χ), where N is the intersection of all nilpotence ker-

nels of the operators R(f). On the closed space N , every R(f) has only
the spectral value 0. For each even f ∈ C∞c (R) the operator with kernel
k(z, w) = f(u(z, w)) is a trace class operator on L2

cusp(Γ\H, χ).

We believe that the space N is zero, but we can’t prove this statement.

Proof. Let C∞c (R)even be the set of all smooth functions f of compact support
which are even, i.e., satisfy f(−x) = f(x). For such f the kernel k(z, w) =
f(u(z, w)) is smooth satisfies the requirement of Theorem 4.8, thus defines a
Hilbert-Schmidt operator on L2

cusp(Γ\H, χ). The algebra of all such operators
is commutative (Section 11.2 in [1]). So it has a common spectral decomposi-
tion as a direct sum of a nilpotence kernel and generalized eigenspaces, which
are all finite-dimensional. These generalized eigenspaces are also generalized
eigenspaces of the Laplace operator [4]. As for the last statement about the
trace class, note that so far we know that these operators are Hilbert-Schmidt.
The algebra of these operators coincides with the convolution algebra of K-
bi-invariant functions in C∞c (G). By the Theorem of Dixmier-Malliavin [3] we
have that every f ∈ C∞c (G) can be written as a finite sum f =

∑n
j=1 gj ∗ hj ,

where gj , hj ∈ C∞c (G). If f is K-bi-invariant, we can integrate over K and
assume the each gj and each hj is K-bi-invariant, too. This means that the
operator induced by f is a finite sum of products of Hilbert-Schmidt operators,
hence trace class. �

5. Meromorphic continuation of the Eisenstein series

Let Gs(u) be the integral

Gs(u) =
1

4π

∫ 1

0

(ξ(1− ξ))s−1(ξ + u)−s dξ.

Proposition 5.1. The integral Gs(u) converges absolutely for Re(s) > 0. The
function Gs(u) is smooth and satisfies the differential equation

∆ + s(1− s))Gs(u) = 0,

where ∆ is applied to either z or w in u = u(z, w). We have the following
bounds

Gs(u) = − 1

4π
log(u) +O(1), u→ 0,

G′s(u) = − 1

4πu
+O(1), u→ 0,

Gs(u)� u−Re(s), u→∞.
Proof. This is Lemma 1.7 in [4]. �

Theorem 5.2. For Re(s) > 0 let Rs be the integral operator

Rsf(z) = −
∫
H
Gs(u(z, w))f(w) dw.
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If f : H→ V is smooth and together with its first and second order derivatives
(under the Lie algebra) satisfies ‖f‖ � yσ+y−σ for some σ > 0 and if Re(s) >
1 + σ, then

(∆ + s(1− s))Rsf = f = Rs(∆ + s(1− s))f.

Proof. In [4], Theorem 1.17 and Lemma 1.18 we find the proof if f is bounded
with bounded derivatives. For the general situation note that the growth con-
dition assures that the integral Rsf converges absolutely and defines a smooth
function. Let 1 =

∑∞
j=1 uj be a smooth partition of unity in H with compact

supports. Then

(∆ + (s(1− s))Rsf =

∞∑
j=1

(∆ + (s(1− s))Rs(ujf) =

∞∑
j=1

ujf = f

and analogously for the other order. �

Note that the singularity of Gs(u) at u = 0 does not depend on s. It will
therefore vanish in differences of the form Gs −Ga for a 6= s.

Theorem 5.3. Let a be a cusp of Γ. The Eisenstein series Ea(z, s, χ) extends
to a function H×C→ End(V ), which is smooth in z and meromorphic in the
complex variable s. Let ϕa,b(s) the function in the constant term of the Fourier
expansion in Theorem 3.6 and let

Φ(s) = (ϕa,b(s))a,b∈C(Γ) ,

where C(Γ) is the set of inequivalent cusps of Γ. Then det Φ(s) 6= 0, the func-
tion Φ(s) extends to a meromorphic function on C and the vector E(z, s, χ) =
(Ea(z, s, χ))a satisfies the functional equation

E(z, s, χ) = Φ(s)E(z, 1− s, χ).

Proof. It turns out, that the proof of the untwisted case, i.e., with χ = 1, as
in Chapter 6 of [4], essentially transfers to the twisted case. However, the ar-
gument has to be changed significantly in one point. Iwaniec uses Fredholm’s
theory of integral operators, in particular a power series expansion of the re-
solvent (Appendix A.4 in [4]). The latter cannot be used for Integral operators
in vector bundles, as it is based on a point-wise estimate of integral kernels
using Hadamard’s inequality (see formula (A.14) in [4]). This formula has to
be replaced with the following argument from the theory of pseudo differential
operators.

Let λ ∈ C and F ⊂ H the given fundamental domain. We consider a given
kernel K : F ×F → End(V ). By abuse of notation we write K for the induced
operator as well. Assuming the operator norm ‖K(z, w)‖op to be bounded,
we conclude that the operator K is Hilbert-Schmidt, as F has finite volume.
Therefore, K is compact and the map C → B(L2(Γ\H, χ)), λ 7→ (I − λK)−1

is holomorphic outside a countable set of poles which can only accumulate at
∞. Let Tλ(z, w) denote the kernel of K(I −λK)−1. If the kernel K is smooth,
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then K is a smoothing operator, i.e., a pseudo differential operator of symbol
class S∞ [7] and as the smoothing operators form an ideal, the operator Tλ is
a smoothing operator whenever defined, i.e., as long as 1

λ is not an eigenvalue
of K. Therefore, the kernel Tλ(z, w) is holomorphic in λ and smooth in z, w.
Now, as in [4], for given f one considers solutions of the Fredholm equation

g = f + λKg,

i.e., g = (I − λK)−1f , or

g = f + λK(I − λK)−1f.

The point about this last equation is, that the right hand side is a meromorphic
function in λ, defined on the entire complex plane except for countably many
poles. As in [4], it is found that after suitable modifications, the Eisenstein
series Ea(z, s, χ) takes the place of g and the analytic continuation in λ, which
is a polynomial in s, yields the analytic continuation of the Eisenstein series.

For the functional equation we argue as follows. Let F (s, z) be the difference

F (s, z) = E(z, s, χ)− Φ(s)E(z, 1− s, χ).

The Fourier expansion shows that F (s, z) is rapidly decreasing at every cusp,
hence it is in L2(Γ\H, χ). Further we have ∆F (s, z) = s(1 − s)F (s, z). Let
Ga,b = Ga −Gb, then it follows that

Ga,bF (s, z) =

(
1

s(1− s)− a(1− a)
− 1

s(1− s)− b(1− b)

)
F (s, z).

The singularity on the diagonal of Ga vanishes in the difference Ga − Gb by
Proposition 5.1. If Re(a) and Re(b) are sufficiently large, by Proposition 2.9
and Proposition 5.1, the sum

∑
γ∈ΓGa,b(z, γw) converges locally uniformly and

defines a continuous integral operator on L2(Γ\H, χ). Now assume that F (s, z)
is not zero. Then, being analytic in s, it can only vanish for s in a discrete set.
Therefore, by the above equation, the operator Ga,b has an unbounded set of
eigenvalues which contradicts its boundedness. It follows that F (s, z) must be
zero. �
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