• 제목/요약/키워드: unit-regular ring

검색결과 25건 처리시간 0.024초

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

A NOTE ON STRONGLY *-CLEAN RINGS

  • CUI, JIAN;WANG, ZHOU
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.839-851
    • /
    • 2015
  • A *-ring R is called (strongly) *-clean if every element of R is the sum of a projection and a unit (which commute with each other). In this note, some properties of *-clean rings are considered. In particular, a new class of *-clean rings which called strongly ${\pi}$-*-regular are introduced. It is shown that R is strongly ${\pi}$-*-regular if and only if R is ${\pi}$-regular and every idempotent of R is a projection if and only if R/J(R) is strongly regular with J(R) nil, and every idempotent of R/J(R) is lifted to a central projection of R. In addition, the stable range conditions of *-clean rings are discussed, and equivalent conditions among *-rings related to *-cleanness are obtained.

UN RINGS AND GROUP RINGS

  • Kanchan, Jangra;Dinesh, Udar
    • 대한수학회보
    • /
    • 제60권1호
    • /
    • pp.83-91
    • /
    • 2023
  • A ring R is called a UN ring if every non unit of it can be written as product of a unit and a nilpotent element. We obtain results about lifting of conjugate idempotents and unit regular elements modulo an ideal I of a UN ring R. Matrix rings over UN rings are discussed and it is obtained that for a commutative ring R, a matrix ring Mn(R) is UN if and only if R is UN. Lastly, UN group rings are investigated and we obtain the conditions on a group G and a field K for the group algebra KG to be UN. Then we extend the results obtained for KG to the group ring RG over a ring R (which may not necessarily be a field).

GENTRAL SEPARABLE ALGEBRAS OVER LOCAL-GLOBAL RINGS I

  • Kim, Jae-Gyeom
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.61-64
    • /
    • 1993
  • In this paper, we show that if R is a local-global domain then the Question holds. McDonald and Waterhouse in [6] and Estes and Guralnick in [5] introduced the concept of local-global rings (so called rings with many units) independently. A local-global ring is a commutative ring R with 1 satisfying; if a polynomial f in R[ $x_{1}$, .., $x_{n}$] represents a unit over $R_{P}$ for every maximal ideal P in R, then f represents a unit over R. Such rings include semilocal rings, or more generally, rings which are von Neumann regular mod their Jacobson radical, and the ring of all algebraic integers.s.s.

  • PDF

ON LIFTING OF STABLE RANGE ONE ELEMENTS

  • Altun-Ozarslan, Meltem;Ozcan, Ayse Cigdem
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.793-807
    • /
    • 2020
  • Stable range of rings is a unifying concept for problems related to the substitution and cancellation of modules. The newly appeared element-wise setting for the simplest case of stable range one is tempting to study the lifting property modulo ideals. We study the lifting of elements having (idempotent) stable range one from a quotient of a ring R modulo a two-sided ideal I by providing several examples and investigating the relations with other lifting properties, including lifting idempotents, lifting units, and lifting of von Neumann regular elements. In the case where the ring R is a left or a right duo ring, we show that stable range one elements lift modulo every two-sided ideal if and only if R is a ring with stable range one. Under a mild assumption, we further prove that the lifting of elements having idempotent stable range one implies the lifting of von Neumann regular elements.

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.

2-GOOD RINGS AND THEIR EXTENSIONS

  • Wang, Yao;Ren, Yanli
    • 대한수학회보
    • /
    • 제50권5호
    • /
    • pp.1711-1723
    • /
    • 2013
  • P. V$\acute{a}$mos called a ring R 2-good if every element is the sum of two units. The ring of all $n{\times}n$ matrices over an elementary divisor ring is 2-good. A (right) self-injective von Neumann regular ring is 2-good provided it has no 2-torsion. Some of the earlier results known to us about 2-good rings (although nobody so called at those times) were due to Ehrlich, Henriksen, Fisher, Snider, Rapharl and Badawi. We continue in this paper the study of 2-good rings by several authors. We give some examples of 2-good rings and their related properties. In particular, it is shown that if R is an exchange ring with Artinian primitive factors and 2 is a unit in R, then R is 2-good. We also investigate various kinds of extensions of 2-good rings, including the polynomial extension, Nagata extension and Dorroh extension.

The Relation Between Units and Nilpotents

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Kyungpook Mathematical Journal
    • /
    • 제62권2호
    • /
    • pp.213-227
    • /
    • 2022
  • We discuss the relation between units and nilpotents of a ring, concentrating on the transitivity of units on nilpotents under regular group actions. We first prove that for a ring R, if U(R) is right transitive on N(R), then Köthe's conjecture holds for R, where U(R) and N(R) are the group of all units and the set of all nilpotents in R, respectively. A ring is called right UN-transitive if it satisfies this transitivity, as a generalization, a ring is called unilpotent-IFP if aU(R) ⊆ N(R) for all a ∈ N(R). We study the structures of right UN-transitive and unilpotent-IFP rings in relation to radicals, NI rings, unit-IFP rings, matrix rings and polynomial rings.

MORPHIC PROPERTY OF A QUOTIENT RING OVER POLYNOMIAL RING

  • Long, Kai;Wang, Qichuan;Feng, Lianggui
    • 대한수학회보
    • /
    • 제50권5호
    • /
    • pp.1433-1439
    • /
    • 2013
  • A ring R is called left morphic if $$R/Ra{\simeq_-}l(a)$$ for every $a{\in}R$. Equivalently, for every $a{\in}R$ there exists $b{\in}R$ such that $Ra=l(b)$ and $l(a)=Rb$. A ring R is called left quasi-morphic if there exist $b$ and $c$ in R such that $Ra=l(b)$ and $l(a)=Rc$ for every $a{\in}R$. A result of T.-K. Lee and Y. Zhou says that R is unit regular if and only if $$R[x]/(x^2){\simeq_-}R{\propto}R$$ is morphic. Motivated by this result, we investigate the morphic property of the ring $$S_n=^{def}R[x_1,x_2,{\cdots},x_n]/(\{x_ix_j\})$$, where $i,j{\in}\{1,2,{\cdots},n\}$. The morphic elements of $S_n$ are completely determined when R is strongly regular.

THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN A NONCOMMUTATIVE RING

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1647-1659
    • /
    • 2008
  • Let R be a ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. First, we investigate some connected conditions of the zero-divisor graph $\Gamma(R)$ of a noncommutative ring R as follows: (1) if $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diameter of $\Gamma(R)$, denoted by diam($\Gamma(R)$) (resp. girth of $\Gamma(R)$, denoted by g($\Gamma(R)$)) is equal to or less than 3; (2) if X is a union of finite number of orbits under the left (resp. right) regular action on X by G, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3, in addition, if R is local, then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertices in $\Gamma(R)$; (3) if R is unit-regular, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3. Next, we investigate the graph automorphisms group of $\Gamma(Mat_2(\mathbb{Z}_p))$ where $Mat_2(\mathbb{Z}_p)$ is the ring of 2 by 2 matrices over the galois field $\mathbb{Z}_p$ (p is any prime).