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and Yeon Sook Seo

Abstract. We focus on the structure of the set of noncentral idempo-

tents whose role is similar to one of central idempotents. We introduce the
concept of quasi-Abelian rings which unit-regular rings satisfy. We first

observe that the class of quasi-Abelian rings is seated between Abelian

and direct finiteness. It is proved that a regular ring is directly finite if
and only if it is quasi-Abelian. It is also shown that quasi-Abelian prop-

erty is not left-right symmetric, but left-right symmetric when a given

ring has an involution. Quasi-Abelian property is shown to do not pass
to polynomial rings, comparing with Abelian property passing to polyno-

mial rings.

1. A concept related to noncentral idempotents

Throughout this paper all rings are associative with identity unless otherwise
specified. Let R be a ring and denote 1 the identity of R. Ie(R) is used to
denote the set of all idempotents of R, and I(R) = Ie(R)\{0, 1}. We use J(R),
N∗(R), N∗(R), and N(R) to denote the Jacobson radical, the prime radical,
the upper nilradical (i.e., sum of all nil ideals), and the set of all nilpotent
elements in R, respectively. For n ≥ 2, denote the n by n full matrix ring over
R by Matn(R) and the n by n upper triangular matrix ring over R by Un(R).
We use Eij to denote the n by n matrix with (i, j)-entry 1 and zeros elsewhere.
The polynomial ring with an indeterminate x over R is denoted by R[x]. Let
Z (Zn) denote the ring of integers (modulo n). The preceding notations follow
the literature.

A ring is usually called Abelian if every idempotent is central. A ring is
usually called reduced if it has no nonzero nilpotent elements. It is easily
checked that reduced rings are Abelian but not conversely.

Lemma 1.1. Let R be a ring with I(R) nonempty. Then the following condi-
tions are equivalent:

(1) R is Abelian;
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(2) For every (e, r) ∈ I(R)×R, erm = rme for all m ≥ 1;
(3) For every (e, r) ∈ I(R)×R, erk = rke for some k ≥ 1;
(4) For every (e, r) ∈ I(R)×R, there exists s ∈ R such that er = se.

Proof. (1)⇒(2), (2)⇒(3), and (1)⇒(4) are obvious.
(3)⇒(1): Let the condition (3) hold, and assume on the contrary that there

exist e ∈ I(R) and a ∈ R such that ea(1 − e) 6= 0. Set α = e + ea(1 − e). By
the condition (3), there exists k ≥ 1 such that eαk = αke. But eαk = eα =
α 6= 0 = αe = αke, a contradiction. Thus R is Abelian.

(4)⇒(1): Let the condition (4) hold, and assume on the contrary that there
exist e ∈ I(R) and a ∈ R such that ea(1 − e) 6= 0. Set β = ea(1 − e). By the
condition (4), there exists s ∈ R such that eβ = se. Then 0 6= β = eβ = se ∈
R(1− e) ∩Re = 0, a contradiction. Thus R is Abelian. �

Lemma 1.1 leads us to the following definition.

Definition 1.2. A ring R is said to be right (resp., left) quasi-Abelian provided
that either I(R) is empty, or else for any (e, a) ∈ I(R) × R (resp., (a, e) ∈
R × I(R)) there exists (b, f) ∈ R × I(R) (resp., (f, b) ∈ I(R) × R) such that
ea = bf (resp., ae = fb). The ring R is said to be quasi-Abelian if it is both
right and left quasi-Abelian.

Remark 1.3. Let R be a ring with I(R) nonempty. Then the following can be
easily obtained.

(1) A ring R is right quasi-Abelian if and only if for any e ∈ I(R) and r ∈ R,
there exists f ∈ I(R) such that ea ∈ Rf .

(2) If R is a right quasi-Abelian ring, then for any r ∈ R and e ∈ I(R), there
exist r1, r2 ∈ R and f1, f2 ∈ I(R) such that

(i) er = r1f1 and (1− e)r = r2f2;
(ii) er = erf1 = er1f1 and (1− e)r = (1− e)rf2 = (1− e)r2f2;
(iii) r = er + (1− e)r = erf1 + (1− e)rf2.

Abelian rings are clearly quasi-Abelian, but not conversely by the following.

Example 1.4. Consider the non-Abelian ring R = U2(Z2) and the fact that

I(R) =

{
E1 =

(
1 0
0 0

)
, E2 =

(
1 1
0 0

)
, E3 =

(
0 0
0 1

)
, E4 =

(
0 1
0 1

)}
.

Then

E1R = E2R =

{
0, E1, E2,

(
0 1
0 0

)}
, E3R = {0, E3} , E4R = {0, E4} ;

and

RE1 = {0, E1} , RE2 = {0, E2} , RE3 = RE4 =

{
0, E3, E4,

(
0 1
0 0

)}
.

So every matrix in each EiR is contained in some REj , concluding that R
is right quasi-Abelian. The left quasi-Abelian case is similarly shown.
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The condition of quasi-Abelian is not left-right symmetric as the following
shows.

Example 1.5. (1) Let K be a field and define a function σ : K[t] → K[t]
by σ(f(t)) = f(t2), where K[t] is a polynomial ring with an indeterminate t
over K. Let R0 be the skew polynomial ring K[t][x;σ] with an indeterminate
x over K[t], only subject to xf(t) = σ(f(t))x for all f(t) ∈ K[t], where every
polynomial of K[t][x;σ] is expressed by a0 + a1a + · · · + anx

n with ai ∈ K[t].
Next let R be the subring(

K R0x
0 R0

)
=

(
K K[t][x;σ]x
0 K[t][x;σ]

)
of U2(R0).

Let E = ( a c0 b ) ∈ I(R). Then a2 = a, b2 = b and ac+cb = c. E ∈ I(R) implies
that either (a, b) = (1, 0) (i.e., E = ( 1 c

0 0 )) or (a, b) = (0, 1) (i.e., E = ( 0 c
0 1 )).

Thus

I(R) =

{(
1 c
0 0

)
,

(
0 d
0 1

)
| c, d ∈ K[t][x;σ]x

}
.

We claim that R is right quasi-Abelian. To see that, let E = ( 1 c
0 0 ) , F =

( 0 d
0 1 ) ∈ I(R) and A = ( u v

0 w ) ∈ R. Then EA =
(
u v+cw
0 0

)
and FA = ( 0 dw

0 w ).
Consider the following computation:(

u v + cw
0 0

)
=

(
u 0
0 0

)(
1 u−1(v + cw)
0 0

)
when u 6= 0;(

0 v + cw
0 0

)
=

(
1 0
0 0

)(
0 v + cw
0 1

)
when u = 0;

and (
0 dw
0 w

)
=

(
u dw
0 w

)(
0 0
0 1

)
,

noting that (
1 u−1(v + cw)
0 0

)
,

(
0 v + cw
0 1

)
,

(
0 0
0 1

)
∈ I(R).

Therefore R is right quasi-Abelian.
Next, assume that R is left quasi-Abelian. Let B = ( 0 tx

0 t ) ∈ R and G =
( 0 0

0 1 ) ∈ I(R). Then BG = ( 0 tx
0 t ). Assume that

BG =

(
0 α
0 1

)(
a b
0 c

)
=

(
0 αc
0 c

)
for some ( 0 α

0 1 ) ∈ I(R) and ( a b0 c ) ∈ R. Then c = t and αc = tx. Note that α is
of the form a1x+ · · ·+ anx

n with ai ∈ K[t]. This yields

tx = αt = (a1x+ · · ·+ anx
n)t = a1t

2x+ · · ·+ ant
2nxn,

which is impossible. Therefore R is not left quasi-Abelian.
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(2) Under the same condition of the preceding construction in (1), let

R =

(
R0 xR0

0 K

)
=

(
K[t][x;σ] xK[t][x;σ]

0 K

)
,

where f(t)x = xσ(f(t)) for all f(t) ∈ K[t] and every polynomial of K[t][x;σ]
is expressed by a0 + xa1 + · · ·+ xnan with ai ∈ K[t].

Then R is not right quasi-Abelian but left quasi-Abelian via a similar com-
putation to (1).

Recall that an involution on a ring R is a function ∗ : R→ R which satisfies
the properties that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, 1∗ = 1, and (x∗)∗ = x
for all x, y ∈ R. We get 0∗ = 0 because 0∗ = (0 + 0)∗ = 0∗ + 0∗, and
e∗ = (ee)∗ = e∗e∗ implies that e∗ ∈ Ie(R) for all e ∈ Ie(R). It is also easily
shown that u∗ ∈ U(R) for all u ∈ U(R), where U(R) denotes the group of all
units in R.

We see in the following a condition under which the quasi-Abelian property
is left-right symmetric.

Proposition 1.6. Let R be a ring with an involution ∗. Then the following
conditions are equivalent:

(1) R is right quasi-Abelian;
(2) R is left quasi-Abelian.

Proof. First note that e∗ ∈ I(R) for all e ∈ I(R). Note that e 6= 0 and e 6= 1,
entailing 1− e ∈ I(R). If e∗ = 0, then e = (e∗)∗ = 0∗ = 0, a contradiction. So
e∗ 6= 0. If e∗ = 1, then 0 = (0∗)∗ = ((e(1−e))∗)∗ = ((1−e)∗e∗)∗ = ((1−e)∗)∗ =
1− e, a contradiction. So e∗ 6= 1.

(1)⇔(2): Let R be right quasi-Abelian, and (a, e) ∈ R × I(R). Then there
exists (b, f) ∈ R× I(R) such that e∗a∗ = bf , noting e∗ ∈ I(R). Thus we have

ae = ((ae)∗)∗ = (e∗a∗)∗ = (bf)∗ = f∗b∗.

But f∗ ∈ I(R), so R is left quasi-Abelian. The converse can be similarly
proved. �

By Proposition 1.6, a ring with an involution is quasi-Abelian when it is
right or left quasi-Abelian.

The condition “R is a ring with an involution ∗” in Proposition 1.6 is not
superfluous as we see the ring R in Example 1.5(1) which is right quasi-Abelian
but not left quasi-Abelian. In fact, this ring cannot have any involution by
applying Proposition 1.6. We examine this fact in details in the following.

Remark 1.7. Let R be the ring R in Example 1.5(1). Then R is right quasi-
Abelian but not left quasi-Abelian. So R is not able to have any involution by
Proposition 1.6. We check this fact on a case-by-case computation. Assume on
the contrary that R has an involution ∗. We first examine the basic properties
of the involution in R as follows. Note that N(R) =

(
0 R0x
0 0

)
and recall that

E∗ ∈ I(R) for all E ∈ I(R) by the proof of Proposition 1.6. Let A,B ∈ R.
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(1) If AB 6= 0, then 0 6= AB = ((AB)∗)∗ = (B∗A∗)∗ and so B∗A∗ 6= 0
(otherwise, B∗A∗ = 0 implies AB = 0). Especially, if A 6= 0, then A∗ 6= 0,
letting B = 1R where 1R denotes the identity matrix in R.

(2) If A2 = 0, then 0 = (A2)∗ = A∗A∗. This implies that A∗ ∈ N(R) for all
A ∈ N(R).

(3) Since 1R = (E11 + E22)∗ = E∗11 + E∗22 and E∗11, E
∗
22 ∈ I(R), we have

E∗11 =

(
1 c
0 0

)
, E∗22 =

(
0 −c
0 1

)
or E∗11 =

(
0 d
0 1

)
, E∗22 =

(
1 −d
0 0

)
,

where c, d ∈ R0x.
Suppose that E∗11 = ( 1 c

0 0 ) (and so E∗22 =
(

0 −c
0 1

)
). For 0 6= f ∈ R0x,

0 6=
(

0 f
0 0

)
∈ N(R), and so we let

(
0 f
0 0

)∗
=

(
0 f ′

0 0

)
,

where f ′ 6= 0 by (1) and (2). Hence

0 6=
(

0 f
0 0

)∗
=

(
E11

(
0 f
0 0

))∗
=

(
0 f
0 0

)∗
E∗11 =

(
0 f ′

0 0

)(
1 c
0 0

)
= 0.

This induces a contradiction. Thus we conclude that

E∗11 =

(
0 d
0 1

)
and E∗22 =

(
1 −d
0 0

)
.

(4) Let A =
(
a 0
0 f

)
∈ R with 0 6= a, f . Then A∗ =

(
a′ g
0 f ′

)
, where a′ 6= 0 and

f ′ 6= 0. Indeed, if A∗ =
(

0 g
0 f ′

)
∈ R with 0 6= f ′, then

0 6= (E12A)∗ = A∗E∗12 =

(
0 g
0 f ′

)(
0 h
0 0

)
= 0 where 0 6= h ∈ R0x

by (1) and (2), noting that 0 6= E12 ∈ N(R). This is a contradiction. Next, if

A∗ =
(
a′ g
0 0

)
∈ R with 0 6= a′, then 0 6= (AE12)∗ = E∗12A

∗ = 0. This is also a
contradiction.

Therefore we have A∗ =
(
a′ g
0 f ′

)
with a′ 6= 0 and f ′ 6= 0.

(5) Let A = ( 1 0
0 x ) ∈ R. Then

A∗ =

(
1 0
0 x

)∗
=

(
E11 +

(
0 0
0 x

))∗
= E∗11+

(
0 0
0 x

)∗
=

(
0 d
0 1

)
+

(
0 0
0 x

)∗
.

By (4), we must have ( 0 0
0 x )

∗
=
(
k e
0 f ′

)
for some 0 6= k ∈ K, e ∈ K[t][x;σ]x

and f ′ ∈ K[t][x;σ]. Here if f ′ 6= 0, then

0 6= E∗12

(
k e
0 f ′

)
=

((
0 0
0 x

)
E12

)∗
= 0,

a contradiction. Thus ( 0 0
0 x )

∗
= ( k e0 0 ). It then follows that

A∗ =

(
0 d
0 1

)
+

(
k e
0 0

)
=

(
k d+ e
0 1

)
,



30 E.-K. CHO, T. K. KWAK, Y. LEE, Z. PIAO, AND Y. S. SEO

entailing A∗ ∈ U(R). This forces A ∈ U(R), a contradiction.

Following the literature, a ring R is called directly finite (or Dedekind finite)
if ab = 1 implies ba = 1 for a, b ∈ R. It is easily checked that Abelian rings
are directly finite. The class of directly finite rings contains rings that satisfy
either the ascending or the descending chain condition for principal right ideals
generated by idempotents by [4, Theorem 1]. So left or right Artinian rings are
directly finite. This implies that there exist many directly finite rings which
are non-Abelian. Moreover we have the following.

Example 1.8. Let R =
( Z Z2

0 Z
)

and consider

A =

(
2 1
0 0

)
, E =

(
1 0
0 0

)
∈ R.

Then E ∈ I(R) and EA = A. Assume that there exists(
B =

(
a b
0 c

)
, F =

(
d e
0 f

))
∈ R× I(R)

such that A = BF . Then ad = 2 and d2 = d, forcing a = 2 and d = 1. But
F ∈ I(R) and so f = 0. This yields(

2 1
0 0

)
= A = BF =

(
2 b
0 c

)(
1 e
0 0

)
=

(
1 2e
0 0

)
,

a contradiction. Thus R is not right quasi-Abelian. But R is directly finite by
[3, Proposition 2.7(1)] since N∗(R) = N∗(R) = N(R).

Following von Neumann [6], a ring R (possibly without identity) is said to
be regular if for each a ∈ R there exists b ∈ R such that a = aba. Such a
ring is also called von Neumann regular by Goodearl [2]. It is shown that R is
regular if and only if every principal right (left) ideal of R is generated by an
idempotent in [2, Theorem 1.1]. This result implies that every regular ring R
is semiprimitive (i.e., J(R) = 0).

Following Ehrlich [1], a ring R is called unit-regular if for each a ∈ R there
exists a unit u ∈ R such that a = aua. Every unit-regular ring is directly finite
by [2, Proposition 5.2], and clearly regular. But there exists a directly finite
regular ring but not unit-regular by [2, Example 5.10]. We see that there exists
a regular ring which is not directly finite by Example 1.10. So if a regular ring
is directly finite, then it is right quasi-Abelian as we see in the following.

Theorem 1.9. (1) A right or left quasi-Abelian ring is directly finite.
(2) Directly finite regular rings are quasi-Abelian.
(3) Unit-regular rings are quasi-Abelian.
(4) Semisimple Artinian rings are quasi-Abelian.

Proof. (1) Let R be a right quasi-Abelian ring and suppose that ab = 1 for
a, b ∈ R. Assume on the contrary that ba 6= 1. Then ba ∈ I(R). Since R is
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quasi-Abelian, there exists (c, e) ∈ R× I(R) such that (ba)b = ce. This yields

b(1− e) = (bab)(1− e) = ce(1− e) = 0.

So we have 1 − e = ab(1 − e) = a0 = 0 because ab = 1. Thus e = 1, a
contradiction because e ∈ I(R). Thus R is directly finite. The left case can be
similarly proved.

(2) Let R be a directly finite regular ring and (e, a) ∈ I(R)× R. It suffices
to consider the case of ea 6= 0. Since R is regular, eabea = ea for some b ∈ R.
Here (bea)2 = bea. Here 0 6= ea = eabea implies bea 6= 0. Next if bea = 1, then
eab = 1 because R is directly finite, and so we obtain

0 = (1− e)eab = 1− e 6= 0,

a contradiction. So bea ∈ I(R). We have now ea = (ea)(bea) with bea ∈ I(R),
implying that R is right quasi-Abelian. The left case can be similarly proved.

(3) Let R be a unit-regular ring. Then R is directly finite by [2, Proposition
5.2]. Thus R is quasi-Abelian by (2).

(4) is an immediate consequence of (2), or obtained from (3) because semi-
simple Artinian rings are unit-regular by [2, Theorem 4.1]. �

Observe that the converse of Theorem 1.9(1) does not hold by Example 1.8.
In fact, the ring R is not left quasi-Abelian either, considering an involution ∗
by defining (

a b
0 c

)∗
=

(
c b
0 a

)
.

The class of regular rings and the class of right quasi-Abelian rings do
not imply each other by the following example and Example 1.4, noting that
E12AE12 = 0 for any A ∈ U2(Z2).

Example 1.10. Let R be the ring of column finite infinite matrices over a field.
Then R is regular. But it is not directly finite since CA = 1 and AC = E 6= 1.
Thus R is not right quasi-Abelian by Theorem 1.9(1).

By Example 1.8 and Theorem 1.9(1), we can now say that the concept
of right (left) quasi-Abelian ring is a ring property that is between Abelian
property and direct finiteness.

Corollary 1.11. For a regular ring R the following conditions are equivalent:
(1) R is directly finite;
(2) R is right quasi-Abelian;
(3) R is left quasi-Abelian.

Proof. The proof is done by help (1) and (2) of Theorem 1.9. �

By Corollary 1.11, a regular ring is quasi-Abelian when it is right or left
quasi-Abelian.

Recall that Abelian regular rings are reduced by [2, Theorem 3.2]. So,
based on Theorem 1.9(2), one may ask whether directly finite regular rings
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are Abelian. However the conclusion “quasi-Abelian” of Theorem 1.9(2) can-
not be replaced by the condition “Abelian” by the following example.

Example 1.12. Let D be a division ring. Consider R = Matn(D) for n ≥ 2.
Then R is a directly finite regular ring by [2, Theorem 1.7 and Proposition 5.5],
but not Abelian. Note that R is quasi-Abelian by Theorem 1.9(2).

Considering Theorem 1.9(3), one may ask whether Mat2(R) is quasi-Abelian
when R is a quasi-Abelian ring. But there exists a domain (hence a quasi-
Abelian ring) R such that Mat2(R) is not directly finite by [7, Theorem 1.0],
and so it is not quasi-Abelian by Theorem 1.9(1).

2. Matrices and polynomials over quasi-Abelian rings

In this section we study more properties of quasi-Abelian rings in relation
to various kinds of ring extensions which have roles in ring theory. It is well
known that U2(R) over any ring R is not Abelian. But we consider the case of
U2(R) being quasi-Abelian as follows, comparing with Example 1.12.

Theorem 2.1. Let R be a domain. Then the following conditions are equi-
valent:

(1) R is a division ring;
(2) Un(R) is a right quasi-Abelian ring for all n ≥ 2;
(3) Un(R) is a left quasi-Abelian ring for all n ≥ 2.

Proof. (1)⇒(2). Let E = U2(R) and suppose that R is a division ring. Since
R is a division ring, we have

I(E) =

{(
1 α
0 0

)
,

(
0 β
0 1

)
| α, β ∈ R

}
.

Consider the product ( 1 α
0 0 ) ( a b0 c ) for ( a b0 c ) ∈ E. Then(

1 α
0 0

)(
a b
0 c

)
=

(
a b+ αc
0 0

)
=

(
a 0
0 0

)(
1 a−1(b+ αc)
0 0

)
when a 6= 0

and(
1 α
0 0

)(
a b
0 c

)
=

(
0 b+ αc
0 0

)
=

(
0 b+ αc
0 0

)(
0 0
0 1

)
when a = 0,

noting that
(

1 a−1(b+αc)
0 0

)
, ( 0 0

0 1 ) ∈ I(E).

Next consider the product
(

0 β
0 1

)
( a b0 c ) for ( a b0 c ) ∈ E. Then(

0 β
0 1

)(
a b
0 c

)
=

(
0 βc
0 c

)
=

(
0 βc
0 c

)(
0 0
0 1

)
,

noting that ( 0 0
0 1 ) ∈ I(E).

Therefore E is a right quasi-Abelian ring.



A STRUCTURE OF NONCENTRAL IDEMPOTENTS 33

Let E′ = U3(R). Since R is a division ring, we have

I(E′) =


1 α1 α2

0 0 0
0 0 0

 ,

0 α3 α3α4

0 1 α4

0 0 0

 ,

0 0 α5

0 0 α6

0 0 1

 ,

1 0 α7

0 1 α8

0 0 0

 ,

1 α9 −α9α10

0 0 α10

0 0 1

 ,

0 α11 α12

0 1 0
0 0 1

 | αi ∈ R
 .

Let a = (aij) ∈ E′. Recall that E is right quasi-Abelian by the argument
above. We use this fact freely.

(i) Consider e =
(

1 α1 α2
0 0 0
0 0 0

)
∈ I(E′). Then e0 =

(
1 α1
0 0

)
∈ I(E), and so there

exist f0 =
(
f1 f2
0 f3

)
∈ I(E) and b0 =

(
b1 b2
0 b3

)
∈ E such that e0a0 = b0f0, where

a0 = ( a11 a120 a22 ) ∈ E. Consider

b =

b1 b2 a13 + α1a23 + α2a33

0 b3 0
0 0 0

 and f =

f1 f2 0
0 f3 0
0 0 1

 ∈ E′.
Here f0 ∈ I(E) implies exactly one of f1 and f3 is zero, and so f ∈ I(E′).
Moreover we get ea = bf .

(ii) Consider e =
(

0 α3 α3α4
0 1 α4
0 0 0

)
∈ I(E′). Then ea = (bij) with b11 = 0. Let

b = (bij) and f = E22 + E33 ∈ E′. Then f ∈ I(E′) and ea = bf .

(iii) Consider e =
(

0 0 α5
0 0 α6
0 0 1

)
∈ I(E′). Then ea = (bij) with b11 = 0. Let

b = (bij) and f = E22 + E33 ∈ E′. Then f ∈ I(E′) and ea = bf .

(iv) Consider e =
(

1 0 α7
0 1 α8
0 0 0

)
∈ I(E′). Then ea =

(
a11 a12 a13+α7a33
0 a22 a23+α8a33
0 0 0

)
.

(iv)-1-1. Assume that a11 6= 0 and a22 6= 0. Then we let

b =

a11 a12 0
0 a22 0
0 0 0

 and

f =

1 0 a−1
11 [(a13 + α7a33)− a12a

−1
22 (a23 + α8a33)]

0 1 a−1
22 (a23 + α8a33)

0 0 0

 ∈ E′.
Then f ∈ I(E′) and ea = bf .

(iv)-1-2. Assume that a11 6= 0 and a22 = 0. Then we let

b =

a11 0 a13 + α7a33

0 0 a23 + α8a33

0 0 0

 and f =

1 a−1
11 a12 0

0 0 0
0 0 1

 ∈ E′.
Then f ∈ I(E′) and ea = bf .
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(iv)-2. Assume that a11 = 0. Then we let

b =

0 a12 a13 + α7a33

0 a22 a23 + α8a33

0 0 0

 and f =

0 0 0
0 1 0
0 0 1

 ∈ E′.
Then f ∈ I(E′) and ea = bf .

(v) Consider e =
(

1 α9 −α9α10
0 0 α10
0 0 1

)
∈ I(E′). Then

ea =

a11 a12 + α9a22 a13 + α9a23 − α9α10a33

0 0 α10a33

0 0 a33

 .

(v)-1. If a11 6= 0, then we let

b =

a11 0 a13 + α9a23 − α9α10a33

0 0 α10a33

0 0 a33

 and

f =

1 a−1
11 (a12 + α9a22) 0

0 0 0
0 0 1

 ∈ E′.
Then f ∈ I(E′) and ea = bf .

(v)-2. If a11 = 0, then we let

b =

0 a12 + α9a22 a13 + α9a23 − α9α10a33

0 0 α10a33

0 0 a33

 and f =

0 0 0
0 1 0
0 0 1

 ∈ E′.
Then f ∈ I(E′) and ea = bf .

(vi) Consider e =
(

0 α11 α12
0 1 0
0 0 1

)
∈ I(E′). Then ea = (bij) with b11 = 0. Let

b = (bij) and f = E22 + E33 ∈ E′. Then f ∈ I(E′) and ea = bf .
Therefore E′ = U3(R) is a right quasi-Abelian ring by the computation of

the preceding six cases.
We next summarize the computation of U3(R) via four cases. Let e = (eij) ∈

I(U3(R)), e0 = ( e11 e120 e22 ), a0 = ( a11 a120 a22 ), and b = ea = (bij) ∈ U3(R). Then

b0 = e0a0 =
(
b11 b12
0 b22

)
.

(I) Suppose that e11 = 0 or a11 = 0. This is the cases of (i) when a11 = 0, (ii),
(iii), (iv)-2, (v)-2, and (vi) of U3(R). Then b11 = 0, and so ea = (bij)(E22+E33).
Note E22 + E33 ∈ I(U3(R)).

(II) Suppose that e11 = 1, rank(e0) = 1 (i.e., e22 = 0), and a11 6= 0.
This is the cases of (i) when a11 6= 0 and (v)-1 of U3(R). Then there exist
c0 = (cst) ∈ U2(R) and f0 = (fst) ∈ I(U2(R)) such that e0a0 = c0f0. Letting

c =

c11 c12

∑3
i=1 e1iai3

0 c22

∑3
i=2 e2iai3

0 0 e33a33

 and f =

f11 f12 0
0 f22 0
0 0 1

 ,
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we have ea = cf . Note that f0 ∈ I(U2(R)) implies f ∈ I(U3(R)).
(III) Suppose that rank(e0) = 2 (i.e., e0 = E11 + E22), and a11 6= 0,

rank(a0) = 1 (i.e., a22 = 0). Then e33 = 0. This is the case of (iv)-1-2 of U3(R).
Then e0a0 = E11(e0a0) and E11 ∈ I(U2(R)). So there exist c0 = (cst) ∈ U2(R)
and f0 = (fst) ∈ I(U2(R)) such that e0a0 = c0f0. Letting

c =

c11 c12

∑3
i=1 e1iai3

0 c22

∑3
i=2 e2iai3

0 0 e33a33

 and f =

f ′11 f ′12 0
0 f ′22 0
0 0 1

 ,

we have ea = cf . Note that f ′0 ∈ I(U2(R)) implies f ∈ I(U3(R)).
(IV) Suppose that rank(e0) = 2 (i.e., e0 = E11 + E22), and rank(a0) = 2

(i.e., aii 6= 0 for all i = 1, 2). Then e33 = 0. Note aii = bii for all i = 1, 2. This
is the case of (iv)-1-1 of U3(R). So letting

c =

a11 b12 0
0 a22 0
0 0 0

 and f =

1 0 a−1
11 [
∑3
i=1 e1iai3 − a12a

−1
22 (
∑3
i=2 e2iai3)]

0 1 a−1
22 (
∑3
i=2 e2iai3)

0 0 0

,
we have f ∈ I(U3(R)) and ea = cf .

We now extend the argument of U3(R) to the general situation Un(R) for
n ≥ 4. We will proceed by induction on n, based on the affirmative results for
the cases of n = 2, 3 as above.

Let E′′ = Un(R) for n ≥ 4 and e = (eij) ∈ I(E′′), a = (aij) ∈ E′′. Write
b = ea = (bij). Set e0 = (e′st), a0 = (a′st), b0 = (b′st) ∈ Un−1(R) such that
e′st = est, a

′
st = ast, b

′
st = bst for all 1 ≤ s, t ≤ n − 1. Then e0 ∈ Ie(Un−1(R))

and e0a0 = b0.

Case 1. Suppose that e11 = 0 or a11 = 0. Then b11 = 0, and so ea =
b(E22 + E33 + · · ·+ Enn). Note E22 + E33 + · · ·+ Enn ∈ I(E′′).

Case 2. Suppose that e11 = 1, rank(e0) < n − 1 (i.e., ejj = 0 for some
2 ≤ j ≤ n − 1), and a11 6= 0. Then e0 ∈ I(Un−1(R)). So there exist f0 =
(f ′st) ∈ I(Un−1(R)) and c0 = (c′hk) ∈ Un−1(R) such that e0a0 = c0f0. Let
c = (cij) ∈ E′′ with cij = c′ij for 1 ≤ i, j ≤ n−1 and cin = bin for i = 1, . . . , n;
and f = (fij) ∈ E′′ with fij = f ′st for all 1 ≤ i, j ≤ n and f1n = f2n = · · · =
f(n−1)n = 0, fnn = 1. Then we have ea = cf . Note that f0 ∈ I(Un−1(R))
implies f ∈ I(E′′)).

Case 3. Suppose that rank(e0) = n − 1 (i.e., e0 = E11 + E22 + · · · +
E(n−1)(n−1)), and a11 6= 0, rank(a0) < n− 1. Then ahh = 0 for some 2 ≤ h ≤
n − 1. Say that k is the largest integer such that akk = 0. Set a′0 = (a′st) ∈
Uk(R) with a′st = ast for all 1 ≤ s, t ≤ k, and e′0 = E11 + · · · + E(k−1)(k−1) ∈
Uk(R). Then e′0 ∈ I(Uk(R)) and (E11 + · · ·+E(k−1)(k−1) +Ekk)a′0 = e′0[(E11 +
· · · + E(k−1)(k−1) + Ekk)a′0]. So there exist f ′0 = (f ′st) ∈ I(Uk(R)) and c′0 =
(c′st) ∈ Uk(R) such that e′0a

′
0 = c′0f

′
0. Let c = (cij) ∈ E′′ with cij = c′ij for

1 ≤ i, j ≤ k, and clm = blm for k + 1 ≤ l,m ≤ n; and f = (fij) ∈ E′′ with
fij = f ′st for all 1 ≤ i, j ≤ k, and fss = 1 for all s = k + 1, . . . , n, fst = 0 for
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all k+ 1 ≤ s, t ≤ n with s 6= t. Then ea = cf . Note that f ′0 ∈ I(Uk(R)) implies
f ∈ I(E′′).

Case 4. Suppose that rank(e0) = n − 1 (i.e., e0 = E11 + E22 + · · · +
E(n−1)(n−1)), and rank(a0) = n− 1 (i.e., aii 6= 0 for all i = 1, . . . , n− 1). Then
enn = 0 and aii = bii for all i = 1, . . . , n− 1. Let c = (cij) ∈ E′′ with cij = bij
for 1 ≤ i, j ≤ n− 1, and cin = 0 for i = 1, . . . , n; and f = (fij) ∈ E′′ such that
fii = 1 for i = 1, . . . , n − 1, fnn = 0, and fst = 0 for all 1 ≤ s, t ≤ n − 1 with
s 6= t; and

f(n−1)n = a−1
(n−1)(n−1)b(n−1)n,

f(n−2)n = a−1
(n−2)(n−2)[b(n−2)n − b(n−2)(n−1)f(n−1)n],

f(n−3)n = a−1
(n−3)(n−3)[b(n−3)n − (b(n−3)(n−2)f(n−2)n + b(n−3)(n−1)f(n−1)n)],

...

f1n = a−1
11 [b1n − (

n−1∑
k=2

b1kfkn)].

Then ea = cf . Note that fnn = 0 implies f ∈ I(E′′).
Therefore E′′ = Un(R) for n ≥ 4 is right quasi-Abelian by Cases 1, 2, 3, and

4.
(2)⇒(1). Let E = U2(R) be right quasi-Abelian, and assume on the contrary

that R is not a division ring. Say that a is a nonzero nonunit in R. Since R is
a domain, we also have

I(E) =

{(
1 α
0 0

)
,

(
0 β
0 1

)
| α, β ∈ R

}
,

as in the case of R being a division ring.
Consider the product ( 1 0

0 0 )
(
a 1+a
0 0

)
and let(

1 0
0 0

)(
a 1 + a
0 0

)
=

(
a 1 + a
0 0

)
=

(
b c
0 d

)(
s t
0 u

)
for some

(
b c
0 d

)
∈ E and ( s t0 u ) ∈ I(E). Then s must be 1, entailing b = a and

t 6= 0, u = 0. Thus we have(
a 1 + a
0 0

)
=

(
a c
0 d

)(
1 t
0 0

)
=

(
a at
0 0

)
.

This yields 1 + a = at and a(t − 1) = 1. This implies that a is a unit, a
contradiction to the choice of a. Therefore R is a division ring.

The proof of (1)⇔(3) is similar to the proof (1)⇔(2). �

Consider the subring U2(Z) of U2(Q), where Q is the field of rational num-
bers. Then U2(Z) is not quasi-Abelian by Theorem 2.1(2), in spite of U2(Q)
being quasi-Abelian by Theorem 2.1(1). This implies that the class of quasi-
Abelian rings is not closed under subrings.
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We next consider homomorphic images of right quasi-Abelian rings. First we
can say that the class of right quasi-Abelian rings is not closed under homomor-
phic images. Indeed, by [2, Example 5.11], there exists a directly finite regular
ring (hence quasi-Abelian by Theorem 1.9(2)) R with a right and left primitive
ideal P such that R/P is not directly finite (hence not right quasi-Abelian by
Theorem 1.9(1)).

We will find a condition under which homomorphic images preserve the right
quasi-Abelian property. An ideal I of a ring R is usually said to be idempotent-
lifting if idempotents in R/I can be lifted to R. It is well-known that nil ideals
are idempotent-lifting.

Theorem 2.2. (1) Let R be a right quasi-Abelian ring and I be a proper ideal
of R. Suppose that I ∩ I(R) = ∅ and I is idempotent-lifting. Then R/I is a
right quasi-Abelian ring.

(2) A direct product of rings is right quasi-Abelian if and only if each indi-
vidual ring is.

Proof. (1) Let ε + I ∈ I(R/I) and a + I ∈ R/I for ε, a ∈ R. Since I is
idempotent-lifting, there exists e ∈ Ie(R) such that ε + I = e + I. If e = 1 or
e = 0, then ε + I /∈ I(R/I) and so e ∈ I(R). Since R is right quasi-Abelian,
there exist f ∈ I(R) and b ∈ R such that ea = bf . Here f ∈ I(R) implies
f + I 6= 0; and since I ∩ I(R) = ∅, f + I 6= 1 + I (otherwise, 0 6= 1 − f ∈ I,
contrary to I ∩ I(R) = ∅). Thus f + I ∈ I(R/I) such that (ε + I)(a + I) =
(e + I)(a + I) = ea + I = bf + I = (b + I)(f + I), showing that R/I is right
quasi-Abelian.

(2) For given a family {Rγ | γ ∈ Γ} of rings, we denote the direct product
of Rγ ’s by R =

∏
γ∈ΓRγ . Let Rγ be right quasi-Abelian for all γ. Consider

(eγ) ∈ I(R) and (rγ) ∈ R. Then we have the following two cases:
(i) There exists a proper nonempty subset Γ1 of Γ such that eα ∈ I(Rα) for

all α ∈ Γ1 and eβ ∈ {0Rβ , 1Rβ} for all β ∈ Γ\Γ1; and
(ii) there exists a proper nonempty subset Γ2 of Γ such that eα′ = 0Rα′ for

all α′ ∈ Γ2 and eβ′ = 1Rβ′ for all β′ ∈ Γ\Γ2.

Consider the case of (i). Since every Rγ is right quasi-Abelian, there exists
gα ∈ I(Rα) and tα ∈ Rα such that eαrα = tαgα for all α ∈ Γ1. Set (fγ) ∈ Ie(R)
and (sγ) ∈ R be such that

fα = gα for all α ∈ Γ1 and fβ = eβ for all β ∈ Γ\Γ1;

and
sα = tα for all α ∈ Γ1 and sβ = rβ for all β ∈ Γ\Γ1.

Then (eγ)(rγ) = (sγ)(fγ) because eβrβ = sβrβ for all β ∈ Γ\Γ1, noting that
eβ is central in Rβ . Moreover (fβ) is obviously contained in I(R).

Consider the case of (ii). Here (eγ) is central in R, and (eγ)(rγ) = (rγ)(eγ)
follows.

Conversely, let R be right quasi-Abelian and suppose that e ∈ I(Rα) and
r ∈ Rα for α ∈ Γ. If er = 0, then we are done. So assume that er 6= 0.
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Consider (eγ) ∈ Ie(R) and (rγ) ∈ R such that

eα = e and eβ = 1β for all β ∈ Γ\{α};
and

rα = r and rβ = 1β for all β ∈ Γ\{α}.
Then (eγ) ∈ I(R) because e ∈ I(Rα). Since R is right quasi-Abelian, there exist
(fγ) ∈ I(R) and (sγ) ∈ R such that (eγ)(rγ) = (sγ)(fγ). Clearly fγ ∈ I(Rγ).
But since 1β = eβrβ = sβfβ for all β, we must get fβ = 1β (otherwise,
fβ /∈ Ie(Rβ)). So fα 6= 1α for (fγ) to be in I(R). Moreover fα 6= 0α because
0 6= er = eαrα = sαfα. Consequently fα ∈ I(Rα), and therefore Rα is right
quasi-Abelian. �

From Theorem 2.2, we can obtain an information for upper triangular matrix
rings to be right quasi-Abelian.

Proposition 2.3. (1) Let R be a ring and n ≥ 2. If Un(R) is a right quasi-
Abelian ring, then so is R.

(2) Let R,S be rings and RMS be an R-S-bimodule. If (R M
0 S ) is a right

quasi-Abelian ring, then R and S are both right quasi-Abelian.

Proof. (1) Suppose that Un(R) is a right quasi-Abelian ring. Consider the
nilpotent ideal I = {A ∈ Un(R) | each diagonal entry of A is zero} of Un(R).
Then I is clearly idempotent-lifting and I ∩ I(Un(R)) = ∅. Moreover, Un(R)/I
∼= ⊕ni=1Ri where Ri = R for all i. So R is right quasi-Abelian by Theorem 2.2.
The proof of (2) is similar. �

Recall in [5, Lemma 8] that a ring R is Abelian if and only if R[x] is Abelian
and that if R is Abelian, then every idempotent of R[x] is in R. We extend
this fact a little in the following.

Proposition 2.4. For a ring R the following conditions are equivalent:
(1) R is Abelian;
(2) R[x] is Abelian;
(3) Every idempotent of R[x] is in R.

Proof. It suffices to prove (3) implying (1), by help of [5, Lemma 8]. Let the
condition (3) hold. Assume on the contrary that there exist e2 = e, a ∈ R such
that ea(1− e) 6= 0. Consider f(x) = e+ ea(1− e)x ∈ R[x]. Then f(x)2 = f(x),
but f(x) is not contained in R, a contradiction to the condition (3). Thus R is
Abelian. �

Based on [5, Lemma 8], one may conjecture that the right quasi-Abelian
property can go up to polynomials. But there exists a quasi-Abelian ring over
which the polynomial ring is not quasi-Abelian as we see in the following.

Proposition 2.5. (1) The right quasi-Abelian property does not go up to poly-
nomial rings.

(2) For a ring R, if R[x] is a right quasi-Abelian ring, then so is R.
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Proof. (1) Consider the ring R = U2(K) over a field K. Then R is quasi-
Abelian by Theorem 2.1(1). On the other hand, K[x] is a domain but not a
division ring, and so U2(K[x]) is not right quasi-Abelian by Theorem 2.1(2).
This concludes that R[x] is not right quasi-Abelian, since R[x] = U2(K)[x] ∼=
U2(K[x]).

(2) Assume that R[x] is right quasi-Abelian. Let a ∈ R and e ∈ I(R).
Since R[x] is right quasi-Abelian, there exist g(x) =

∑n
j=0 bjx

j ∈ R[x] and

f(x) =
∑m
i=0 fix

i ∈ I(R[x]) such that ea = g(x)f(x) and f0 ∈ I(R). Then
ea = b0f0 and so R is right quasi-Abelian. �

We end this note by raising the following.

Question. Let R be a ring. If R[x] is a right quasi-Abelian ring, then is R an
Abelian ring?
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