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MORPHIC PROPERTY OF A QUOTIENT RING OVER

POLYNOMIAL RING

Kai Long, Qichuan Wang, and Lianggui Feng

Abstract. A ringR is called left morphic ifR/Ra ∼= l(a) for every a ∈ R.
Equivalently, for every a ∈ R there exists b ∈ R such that Ra = l(b) and
l(a) = Rb. A ring R is called left quasi-morphic if there exist b and c in R
such that Ra = l(b) and l(a) = Rc for every a ∈ R. A result of T.-K. Lee
and Y. Zhou says that R is unit regular if and only if R[x]/(x2) ∼= R ∝ R is
morphic. Motivated by this result, we investigate the morphic property of

the ring Sn
def
= R[x1, x2, . . . , xn]/({xixj}), where i, j ∈ {1, 2, . . . , n}. The

morphic elements of Sn are completely determined when R is strongly
regular.

1. Introduction

Morphic rings were first introduced by W. K. Nicholson and E. Sánchez
Campos in [6]. A ring R is called left morphic if R/Ra ∼= l(a) for every a ∈ R.
Equivalently, for every a ∈ R, there exists b ∈ R such that Ra = l(b) and
l(a) = Rb [6, Lemma 1]. Right morphic rings are defined analogously. A left
and right morphic ring is simply called a morphic ring. If there exist b, c ∈ R
such that Ra = l(b) and l(a) = Rc, the element a is called left quasi-morphic [1].
Morphic and quasi-morphic rings were discussed in great detail in [1], [6] and
[7]. The morphic property of the trivial extension R ∝ M of a ring R with a
bimodule M over R is discussed in [2]. In particular, R is unit regular if and
only if R[x]/(x2) is morphic [5].

Motivated by these results, we investigate the morphic property of the ring

Sn
def
= R[x1, x2, . . . , xn]/({xixj}), where i, j ∈ {1, 2, . . . , n}. By converting to

the case of the elements of the type α = e + fx1 + a2x2 + · · · + anxn, where
e, f are idempotents in R, and ai ∈ (1 − e)R(1 − e), i ≥ 2, We completely
determine the morphic elements of Sn [Theorem 6]. Further, from the proof
of this theorem, we know that the result is also right to left quasi-morphic
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elements in Sn (Remark 1). The case of n = 2 has a very close relationship
with trivial extension (Remark 2).

All rings here are associative with identity. The set of units of a ring R is
denoted by U(R). We simply write l(a) as its left annihilators, and r(a) as
its right annihilators. The n × n matrix ring over R is denoted by Mn(R).
We write Z for the ring of integers and Zn for integers module n, respectively.
Regular rings here mean von Neumann regular rings.

2. The unit elements in R[x1, x2, . . . , xn]/({xixj})

Denote Sn = R[x1, x2, . . . , xn]/({xixj}), n ≥ 2, and α = a0 +
∑n

i=1 aixi in
Sn, where ai ∈ R, xixj = 0, for all i, j ∈ {1, 2, . . . , n} and xi commute with R.
Throughout this article, we adopt this notation, and n ≥ 2 is indispensable.

Lemma 1. Let Sn and R be as above, denote U(Sn) as the set of units of ring

Sn. Then U(Sn) = {u+
∑n

i=1 rixi | u ∈ U(R), ri ∈ R}.

Proof. First of all, the identity of Sn is the same with R, we denote 1Sn
= 1R =

1. Assume α = a0 +
∑n

i=1 aixi in Sn is a unit, then there exists an element
β = a0

′ +
∑n

i=1 ai
′xi such that

αβ = (a0 +

n
∑

i=1

aixi)(a0
′ +

n
∑

i=1

ai
′xi)

= a0a0
′ +

n
∑

i=1

(a0ai
′ + a0

′ai)xi = 1.

Hence we have a0a0
′ = 1. Similarly, we can get a0

′a0 = 1 by considering
βα = 1. Thus U(Sn) ⊂ {u+

∑n

i=1 rixi | u ∈ U(R), ri ∈ R}.
Conversely, assume uv = vu = 1, then

(u+

n
∑

i=1

rixi)(v −

n
∑

i=1

vrivxi) = (v −

n
∑

i=1

vrivxi)(u +

n
∑

i=1

rixi) = 1.

Thus U(Sn) ⊃ {u +
∑n

i=1 rixi | u ∈ U(R), ri ∈ R}. Hence the proof is
completed. �

If R is unit regular, we have the following result, which can help us to convert
α ∈ Sn into a simpler form.

Claim 1. Let R be a unit regular ring. Then for any α = a0 +
∑n

i=1 aixi in
Sn, we have α = usn(e+ fx1 + a2x2 + · · ·+ anxn)vsn , where usn , vsn ∈ U(Sn),
e, f are idempotents in R, and f, ai ∈ (1− e)R(1− e), i ≥ 2.

Proof. Since R is unit regular, every element of R is the product of a unit and
an idempotent. By multiplying α with a suitable unit of R we can assume
α = e0 + a1x1 + · · ·+ anxn. Then we have

n−1
∏

i=0

(

1− (1 − e0)an−ixn−i

)

· α ·

n
∏

i=1

(

1− aixi

)
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= e0 + (1− e0)a1(1− e0)x1 + · · ·+ (1 − e0)an(1− e0)xn.

We also have (1− e0)a1(1− e0) = u0f , u0 ∈ U
(

(1− e0)R(1− e0)
)

, f ∈ (1−
e0)R(1−e0) is idempotent, since (1−e0)R(1−e0) is unit regular by [3]. Further
there exists an element v0 ∈ U

(

(1 − e0)R(1 − e0)
)

, such that u0v0 = 1 − e0.
Hence (e0 + u0)(e0 + v0) = e0 + u0v0 = 1. That is to say e0 + v0 ∈ U(R), then

(e0 + v0)α = e0 + fx1 + a2
′x2 + · · ·+ an

′xn.

All the factors are units of Sn by Lemma 1, thus the claim is proved. �

Claim 2. Let α′ be an element of Sn satisfying α′ = e+fx1+a2x2+· · ·+anxn,
where e, f are idempotents in R, and f, ai ∈ (1− e)R(1− e), i ≥ 2. Then

l(α′) = l(e) ∩ l(f) ∩ l(a2) ∩ · · · ∩ l(an) + l(e)x1 + l(e)x2 + · · ·+ l(e)xn.

Proof. Assume r0 +
∑n

i=1 rixi ∈ l(α′), then

(r0 +

n
∑

i=1

rixi)(e+ fx1 +

n
∑

i=2

aixi) = r0e+ (r0f + r1e)x1 +

n
∑

i=2

(r0ai + rie)xi

= 0.

So we have

(∗) r0e = 0, r0f + r1e = 0, r0ai + rie = 0, i ≥ 2.

Noticing that ef = fe = aie = eai = 0, i ≥ 2 and e2 = e, by multiplying e on
the respective two sides of equations (∗), we get

r0e = r0f = r0ai = 0, r1e = 0, rie = 0, i ≥ 2.

Hence l(α′) ⊂ l(e)∩ l(f)∩ l(a2)∩ · · · ∩ l(an) + l(e)x1 + l(e)x2 + · · ·+ l(e)xn,
and it is a routine way to verify l(α′) ⊃ l(e)∩ l(f)∩ l(a2)∩· · ·∩ l(an)+ l(e)x1+
l(e)x2 + · · ·+ l(e)xn. Thus the result is established. �

3. The morphic elements in Sn

The following lemma comes from the paper [1] of V. Camillo, W. K. Nichol-
son and Z. Wang.

Lemma 2 ([1]). Let R be a left quasi-morphic ring. Then the intersection of

finite principal left ideals of R is again principal.

A ring is called strongly regular if a ∈ a2R for every a ∈ R [4]. Strongly
regular rings are unit regular, hence are morphic and quasi-morphic [1, 6]. It
is well known that R is strongly regular if and only if R is regular and every
idempotent in R is center.

Lemma 3. Let R be a strongly regular ring. Then for any a, b ∈ R, Rab ⊂ Ra,
particularly if b ∈ U , Rab = Ra.

Proof. Since R is strongly regular, for any a ∈ R, there exist u ∈ U(R) and an
idempotent element e such that a = ue and Rab = Rueb = Reb = Rbe ⊂ Re =
Ra. Of course, if b ∈ U , then “⊂” can be replaced by “=”. �
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Lemma 4. Let R be a strongly regular ring. Then for any α ∈ Sn, we have

l(α) = l(e + fx1 + a2x2 + · · · + anxn), where e, f are idempotents in R, and

f, ai ∈ (1− e)R(1− e), i ≥ 2.

Proof. By Claim 1, we have α = usn(e + fx1 + a2x2 + · · · + anxn)vsn , where
usn , vsn ∈ U(Sn), and e, f are idempotents in R, and f, ai ∈ (1−e)R(1−e), i ≥
2. Since u−1

sn
∈ U(Sn), by Lemma 1, we can assume u−1

sn
= u+r1x1+ · · ·+rnxn,

where u ∈ U(R), ri ∈ R, i = 1, 2, . . . , n. Then

l(α) = l(e+ fx1 + a2x2 + · · ·+ anxn)u
−1
sn

= {(t0 + t1x1 + · · ·+ tnxn)(u + r1x1 + · · ·+ rnxn) |

t0 ∈ l(e) ∩ l(f) ∩ l(a2) ∩ · · · ∩ l(an), ti ∈ l(e), i ≥ 1}

= {t0u+ (t1u+ t0r1)x1 + · · ·+ (tiu+ t0ri)xi + · · ·

+ (tnu+ t0rn)xn | t0 ∈ l(e) ∩ l(f) ∩ l(a2) ∩ · · · ∩ l(an),

ti ∈ l(e), i ≥ 1}.

By Lemma 2 and Lemma 3, we know that t0u, t0ri ∈ l(e) ∩ l(f) ∩ l(a2) ∩
· · ·∩ l(an), tiu ∈ l(e). Noticing that l(e)∩ l(f)∩ l(a2)∩· · ·∩ l(an) ⊂ l(e), hence
tiu+ t0ri is in l(e). Thus

(∗∗)
l(α) = l(e+ fx1 + a2x2 + · · ·+ anxn)u

−1
sn

⊂ l(e+ fx1 + a2x2 + · · ·+ anxn).

In fact, by the proof, we know that the equation (∗∗) is also right for an
arbitrary u−1

sn
∈ U(Sn). Then

l(e+ fx1 + a2x2 + · · ·+ anxn) = l(e+ fx1 + a2x2 + · · ·+ anxn)usu
−1
s

⊂ l(e+ fx1 + a2x2 + · · ·+ anxn)u
−1
s

= l(α).

Combing these together, we get l(α) = l(e+ fx1+a2x2+ · · ·+anxn), where
e, f are idempotents in R, and f, ai ∈ (1− e)R(1− e), i ≥ 2. �

Above lemma tells us that if α = e+fx1+a2x2+ · · ·+anxn is left morphic,
and there is an element β such that Snα = l(β), l(α) = Snβ, then we can
further assume that β has the form of e′ + f ′x1 + a2

′x2 + · · · + an
′xn, where

e′, f ′ are idempotents in R, and f ′, ai
′ ∈ (1− e′)R(1− e′), i ≥ 2.

Lemma 5. Let R be a strongly regular ring, α = e+fx1+a2x2+ · · ·+anxn in

Sn, where e, f are idempotents in R, and f, ai ∈ (1− e)R(1− e), i ≥ 2. Then

α is left quasi-morphic ⇒ Rf = Ra2 = · · · = Ran.

Proof. If e = 1, then f, ai ∈ (1− e)R(1− e) = 0, and Rf = Ra2 = · · · = Ran =
0. So we assume α is quasi-morphic and e 6= 1. By Lemma 4 and Claim 2, we
have

Snα = {t0e+ (t1e+ t0f)x1 + · · ·+ (tie+ t0ai)xi + · · ·
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+ (tne+ t0an)xn | ti ∈ R}

= l(β)

= l(e′) ∩ l(f ′) ∩ l(a2
′) ∩ · · · ∩ l(an

′) + l(e′)x1

+ l(e′)x2 + · · ·+ l(e′)xn.

Then there must be Re + Rf = Re + Rai = l(e′). Multiplying both sides by
1− e, we get Rf = Rai, i = 2, 3, . . . , n. �

Theorem 6. Let R be a strongly regular ring, denote by T the set of morphic

elements of ring Sn. Then T = {usne | usn ∈ U(Sn), e
2 = e ∈ R}.

Proof. Since multiplying units does not change the morphic property of an
element [6], by Claim 1, we can assume α = e+ fx1 + a2x2 + · · ·+ anxn in Sn,
where e, f are idempotents in R, and f, ai ∈ (1− e)R(1− e), i ≥ 2.

By the proof of Lemma 5, we get Re = l(e′) ∩ l(f ′) ∩ l(a2
′) ∩ · · · ∩ l(an

′),
Re+Rf = Re+Rai = l(e′), i = 2, 3, . . . , n. Thus l(β) = Re+

∑n

i=1(Re+Rf)xi.
Considering the element of the type α0 = fx1 + ex2, since

α0 ∈ Re+ (Re+Rf)x1 + · · ·+ (Re+Rf)xn

= l(β) = Snα

= {t0e+ (t1e+ t0f)x1 + · · ·+ (tie+ t0ai)xi + · · ·+ (tne+ t0an)xn | ti∈R}

so we have f = t1e+ t0f, e = t2e + t0a2.
Multiplying both sides by e, we get t1e = 0, e = t2e, and f = t0f, t0a2 = 0.

By Lemma 5 and noticing that R is strongly regular, we have a2 = rf = fr,
then R(1 − f)a2 = R(1 − f)fr = 0. That is to say l(f) ⊂ l(a2). Assume
1 − t0 = r0, r0 ∈ l(f), then t0a2 = (1 − r0)a2 = a2 = 0. Thus Rf = Ra2 =
· · · = Ran = 0, so f = a2 = · · · = an = 0.

Hence T ⊂ {usne | usn ∈ U(Sn), e
2 = e ∈ R}. Since T ⊃ {usne | usn ∈

U(Sn), e
2 = e ∈ R} is trivial, we complete the proof. �

Remark 1. In fact, our proof just uses the property that R is strongly regular
and Snα = l(β), hence the theorem is also right for left quasi-morphic elements
in Sn.

Remark 2. The case of n = 2 has a very close relationship with trivial extension,
since

R ∝ (R ∝ R) ∼=

{(

a 0 b c
0 a 0 b
0 0 a 0
0 0 0 a

)

∣

∣

∣
a, b, c ∈ R

}

∼= R[x, y]/(x2, y2, xy).

Corollary 7. The ring Sn could never be a morphic ring.

Proof. We proof the corollary by showing that the element of the type x1 + x2

could never be a morphic element.
Assume x1 +x2 is morphic. There must be an element β = a0

′ +
∑n

i=1 ai
′xi

such that

l(x1 + x2) = Rx1 +Rx2 + · · ·+Rxn = Snβ
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= {(a0a0
′ +

n
∑

i=1

(a0ai
′ + aia0

′)xi | a0, ai, , a0
′, ai

′ ∈ R}.

Then a0
′ = 0, ai

′ ∈ U(R), and l(β) = Rx1 +Rx2 + · · ·+Rxn. But we have

Sn(x1 + x2) = {(a0 +
n
∑

i=1

aixi)(x1 + x2) | a0, ai ∈ R}

= {a0x1 + a0x2 | a0 ∈ R} 6= l(β).

This is a contradiction.
Hence the element of the type x1 + x2 could never be a morphic element,

and the ring Sn could never be a morphic ring. �

Further, we know that every idempotent esn ∈ Sn is morphic. By Theorem 6,
we assume esn = usne, then

esn
2 = usneusne = usn

2e = usne, so usne = e, that is esn = e.

Corollary 8. Let R be a strongly regular ring. Then the idempotents in Sn

are just the idempotents in R.

Proof. Here we give another normal way to prove the corollary, and take n = 2
for example.

Suppose α = a+ bx1 + cx2 ∈ S2 is idempotent, we get

(a+ bx1 + cx2)
2
= a2 + (ab+ ba)x1 + (ac+ ca)x2 = a+ bx1 + cx2

then

a2 = a, ab+ ba = b, ac+ ca = c

thus

ab+ aba = ab, aba = 0.

Since R is strongly regular, every idempotent is in center. Then ab = ba =
aba = 0 thus b = 0. With the same method we can get c = 0. �

Finally, we give an example that R is unit regular, and an element α ∈ Sn

is morphic but not of the form usne.

Example 9. Let R = M2(Z2), considering the element α =
(

1 0
0 0

)

+
(

0 1
0 0

)

x ∈
S2. We show that α is a morphic element but could not be the form of us2e.

Proof. First verify the morphic property of α, denote

A =
(

1 0
0 0

)

, B =
(

0 1
0 0

)

and we have

A2 = A, AB +BA = B

⇒ α2 = (A+Bx)
2
= A2 + (AB +BA)x = A+Bx = α.

Thus α is an idempotent in S2, so it is a morphic element. But if

α = us2e = (u + ax+ by)e = ue+ aex
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⇒ A = ue, B = ae,

then
B = au−1A =

(

∗ ∗

∗ ∗

)(

1 0
0 0

)

=
(

∗ 0
∗ 0

)

6=
(

0 1
0 0

)

.

This is a contradiction. �
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