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Abstract. We discuss the relation between units and nilpotents of a ring, concentrating

on the transitivity of units on nilpotents under regular group actions. We first prove that

for a ring R, if U(R) is right transitive on N(R), then Köthe’s conjecture holds for R, where

U(R) and N(R) are the group of all units and the set of all nilpotents in R, respectively.

A ring is called right UN-transitive if it satisfies this transitivity, as a generalization, a

ring is called unilpotent-IFP if aU(R) ⊆ N(R) for all a ∈ N(R). We study the structures

of right UN-transitive and unilpotent-IFP rings in relation to radicals, NI rings, unit-IFP

rings, matrix rings and polynomial rings.

1. Preliminaries

All rings considered in this article are associative with identity unless otherwise
stated. Let R be a ring. The group of all units and the set of all idempotents in
R are written by U(R) and I(R), respectively. A nilpotent element of R is said

* Corresponding Author.
Received November 17, 2021; revised March 8, 2022; accepted March 8, 2022.
2020 Mathematics Subject Classification: 16U60, 16N40, 16W10
Key words and phrases: transitivity of units, right UN-transitive ring, unilpotent-IFP ring,
unit, nilpotent, nilradical, NI ring.

213



214 J. S. Cheon, T. K. Kwak, Y. Lee and Y. J. Seo

to be a nilpotent for simplicity. The Wedderburn radical (i.e., sum of all nilpotent
ideals), the upper nilradical (i.e., the sum of all nil ideals), the lower nilradical (i.e.,
the intersection of all prime ideals), and the set of all nilpotents in R are denoted
by N0(R), N∗(R), N∗(R), and N(R), respectively. Write N(R)′ = N(R)\{0}. It
is well-known that N0(R) ⊆ N∗(R) ⊆ N∗(R) ⊆ N(R). The polynomial ring with
an indeterminate x over a ring R is denoted by R[x]. We denote by Zn the ring of
integers modulo n. Denote the n by n (n ≥ 2) full (resp., upper triangular) matrix
ring over R by Matn(R) (resp., Tn(R)). Use eij for the matrix with (i, j)-entry 1
and elsewhere 0.

A ring R is usually called reduced if N(R) = 0. Due to Bell [2], a ring R is
called IFP if ab = 0 for a, b ∈ R implies aRb = 0. Both commutative rings and
reduced ring are IFP clearly. There are many non-reduced commutative rings (e.g.,
Znl for n, l ≥ 2), and many noncommutative reduced rings (e.g., direct products
of noncommutative domains). A ring is usually called abelian if every idempotent
is central. IFP rings are abelian by a simple computation. A ring R is called NI
[14] if N∗(R) = N(R). It is clear that R is NI if and only if N(R) forms an ideal if
and only if R/N∗(R) is reduced. It is easily checked that IFP rings are NI but not
conversely.

Following [11], a ring R is said to be unit-IFP if ab = 0 for a, b ∈ R implies
aU(R)b = 0. Unit-IFP rings are abelian by [11, Lemma 1.2]. IFP rings are clearly
unit-IFP. The rings below show that the classes of unit-IFP rings and NI rings do
not imply each other.

Example 1.1. (1) Let K = Z2 and A = K〈a, b〉 be the free algebra generated by
the noncommuting indeterminates a, b over K. Let I be the ideal of A generated
by b2 and set R = A/I. Identify a, b with their images in R for simplicity. Note

that the ring coproduct R = R1 ∗K R2 with R1 = K[a] and R2 = K[b]
K[b]b2K[b] , where

K[a] (resp., K[b]) is the polynomial ring with an indeterminate a (resp., b) over K.
Then R is unit-IFP but not NI by [11, Example 1.1] and [1, Example 4.8].

(2) Consider Tn(R) over an NI ring R for n ≥ 2. Then Tn(R) is NI by [8,
Proposition 4.1] but not unit-IFP by [11, Lemma 1.2] since Tn(R) is not abelian.

2. Transitivity and Unilpotent-IFP Rings

In this section we introduce two kinds of ring properties through which we study
the relation between units and nilpotents. The first is related to the transitivity
of units on nilpotents under regular group actions and the second is related to the
property of inserting units into nilpotent products of elements.

Recall first the following definitions. Let R be a ring and suppose that there
exist two (left and right) regular actions of U(R) on N(R). The orbit of a ∈ N(R)
is or(a) = {au | u ∈ U(R)} = aU(R) (resp., ol(a) = {ua | u ∈ U(R)} = U(R)a)
under the right (resp., left) regular action of U(R) on N(R). We write o(a) when
ol(a) = or(a).

For a ring R, U(R) shall be called right (resp., left) transitive on N(R) provided
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that N(R) = 0 or else, if there exists a ∈ N(R)′ such that or(a) = N(R)′ (resp.,
ol(a) = N(R)′) under the right (resp., left) regular action. If U(R) is both right
and left transitive on N(R), then U(R) is said to be transitive on N(R). Observe
that U(R) in a reduced ring R is transitive on N(R) by definition. However there
exists a unit-IFP ring that does not satisfy the transitivity as in the part (2) of the
following remark.

Remark 2.1. (1) Let R be a non-reduced ring. We claim that if U(R) is right
(resp., left) transitive on N(R) then or(q) = N(R)′ (resp., ol(q) = N(R)′) for any
q ∈ N(R)′. Let U(R) be right transitive onN(R). Then or(a) = aU(R) = N(R)′ for
some a ∈ N(R)′. For any q ∈ N(R)′, there exists u ∈ U(R) such that au = q. Then
a = qu−1, hence it implies that or(a) = qu−1U(R) = or(q). Thus or(q) = N(R)′

for any q ∈ N(R)′. The argument for the left case is done by symmetry.

(2) Consider the unit-IFP ring R in Example 1.1(1). Then U(R) = {k0 + k1b+
bfb | k0 ∈ K\{0}, k1 ∈ K and f ∈ R} by [13, Theorem 1.2], and N(R) = {kb+bfb |
k ∈ K and f ∈ R} with N(R)2 = 0 by [13, Theorem 1.3]. So or(kb + bfb) =
{k0kb + b(k0f)b | k0 ∈ K\{0}} = ol(kb + bfb) ( N(R)′ for any 0 6= kb + bfb ∈
N(R)′. In fact, if k = 0 then b /∈ or(kb + bfb) = {b(k0f)b}; if bfb = 0 then
bab /∈ or(kb + bfb) = {k0kb}; and if k 6= 0, bfb 6= 0 then b, bab /∈ or(kb + bfb) =
{k0kb + b(k0f)b | k0k 6= 0 and b(k0f)b 6= 0)}. Thus U(R) is neither right nor left
transitive on N(R).

We shall call a ring R right (resp., left) UN-transitive if U(R) is right (resp., left)
transitive on N(R), and R is called UN-transitive if U(R) is transitive on N(R).
We first have the following by Remark 2.1(1).

Lemma 2.2. A non-reduced ring R is right (resp., left) UN-transitive if and only
if or(a) = N(R)′ (resp., ol(a) = N(R)′) for any a ∈ N(R)′.

Given a ring R and k ≥ 1, write Nilk(R) = {a ∈ R | ak = 0}. Note N(R) =
∪∞

i=1Nili(R). Note that Köthe’s conjecture (i.e., the sum of two nil left ideals is
nil) holds for a given ring R when N(R) is additively closed.

Proposition 2.3. Let R be a right or left UN-transitive ring. Then we have the
following assertions.

(1) N(R)2 = 0.

(2) N(R) = Nil2(R) and N(R) is a subring of R.

(3) Köthe’s conjecture holds for R.

Proof. (1) If N(R) = 0, then we are done. Assume N(R) 6= 0. Let q ∈ N(R)′, say
qn = 0 with n ≥ 2. Then N(R)′ = or(q) by Lemma 2.2, whence qn−1 = qu for
some u ∈ U(R). Multiplying by q on the left, we get 0 = q2u and so q2 = 0. This
concludes N(R) = Nil2(R).

Further, we claim N(R)2 = 0. Let p, q ∈ N(R)′. Then p2 = 0 = q2 as above.
Since or(p) = N(R)′ = or(q) by Lemma 2.2, pu1 = q and qu2 = p for some
u1, u2 ∈ U(R). So qpu1 = q2 = 0 and pqu2 = p2 = 0, whence pq = 0 = qp.

(2) N(R) = Nil2(R) by (1). Let p, q ∈ N(R). Then (p+q)2 = p2+pq+qp+q2 =
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0 by (1), so that p+ q ∈ N(R). Consequently, N(R) is a subring of R.

(3) This is evident from (2).

The proof for the left UN-transitive case is similar. 2

Each converse of Proposition 2.3 needs not hold by Remark 2.1(2). The rings
below shall provide the motivation for the main argument in this article.

Example 2.4. (1) Let D be a division ring and R = T2(D). Then R is NI with

N(R) =

(

0 D
0 0

)

and U(R) = {(aij) ∈ R | a11, a22 ∈ U(D)}, noting U(D) =

D\{0}. So, for any M =

(

0 a
0 0

)

∈ N(R)′ (i.e., a 6= 0), we have

ol(M) =

(

0 U(D)a
0 0

)

= U(D)e12 and or(M) =

(

0 aU(D)
0 0

)

= U(D)e12.

Thus ol(M) = or(M) = N(R)′ and so R is UN-transitive.

(2) We follow the construction in [6, Example 1.2(2)] which applies [15, Defi-
nition 1.3]. Let A be a commutative ring with an endomorphism σ and M be an
A-module. For A ⊕ M , the addition and multiplication are given by (r1,m1) +
(r2,m2) = (r1 + r2,m1 +m2) and (r1,m1)(r2,m2) = (r1r2, r1m2 +m1σ(r2)). Then
this construction also forms a ring.

For a field K, let K(x) be the quotient field of the polynomial ring K[x] and

σ be the non-surjective monomorphism of K(x) defined by σ
(

f(x)
g(x)

)

= f(x2)
g(x2) . Let

R = K(x)⊕K(x) with the preceding multiplication. Note that U(R) = U(K(x))⊕
K(x) = K(x)′ ⊕ K(x), where K(x)′ = K(x)\{0}. Then R is isomorphic to the
subring

{(

h(x) k(x)
0 σ(h(x))

)

| h(x), k(x) ∈ K(x)

}

of T2(K(x)),

via (h(x), k(x)) 7→

(

h(x) k(x)
0 σ(h(x))

)

,

by the argument in [6, Example 1.2(2)]. Since T2(K(x)) is clearly NI, R is NI by [8,
Proposition 2.4]. Note that N(R) = {0} ⊕K(x) = N∗(R) and R/N∗(R) ∼= K(x).

For any a = (0, f(x)) ∈ N(R)′, we have

ol(a) = (K(x)′ ⊕K(x))(0, f(x)) = {0} ⊕K(x)′f(x) = {0} ⊕K(x)′(= N(R)′)

and or(a) = (0, f(x))(K(x)′⊕K(x)) = {0}⊕f(x)σ(K(x)′). Here if f(x) ∈ σ(K(x)′)
then f(x)σ(K(x)′) = σ(K(x)′); and if f(x) /∈ σ(K(x)′) then 1 /∈ f(x)σ(K(x)′).
Thus f(x)σ(K(x)′) ( K(x)′, and or(a) ( ol(a) follows. These also imply that R is
left UN-transitive but not right UN-transitive.

(3) Let R = K(x)⊕K(x) be the ring and σ be the non-surjective monomorphism
of K[x], as in (2). Give R the multiplication (r1,m1)(r2,m2) = (r1r2, σ(r1)m2 +
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m1r2) which is defined by [15, Definition 1.3]. Then this construction also forms a
ring, and R is isomorphic to the subring

{(

h(x) 0
k(x) σ(h(x))

)

| h(x), k(x) ∈ K(x)

}

of T ′

2(K(x)),

via (h(x), k(x)) 7→

(

h(x) 0
k(x) σ(h(x))

)

,

by the argument in [6, Example 1.2(1)], where T ′

n(R) denotes the n by n lower
triangular matrix ring over R. Then, by a similar argument to (2), R is an NI ring
with U(R) = K(x)′ ⊕K(x) and N(R) = {0} ⊕K(x) = N∗(R).

Let a = (0, f(x)) be arbitrary in N(R)′. Then we can show that ol(a) ( or(a)
by the symmetric computation to (2), and moreover R is right UN-transitive but
not left UN-transitive on N(R).

Next we consider a generalized condition of one-sided UN-transitivity by con-
sidering “⊆”, in place of “=”.

Proposition 2.5. (1) For a ring R, the following conditions are equivalent:

(i) ab ∈ N(R) for a, b ∈ R implies aU(R)b ⊆ N(R);

(ii) a ∈ N(R) implies ras ∈ N(R) for all r, s ∈ U(R);

(iii) ol(a) ⊆ N(R) for all a ∈ N(R);

(iv) or(a) ⊆ N(R) for all a ∈ N(R);

(v) If a1 · · ·an ∈ N(R) for a1, . . . , an ∈ R and n ≥ 2, then for all u1, . . . , un+1 ∈
U(R), u1a1u2a2 · · ·unanun+1 ∈ N(R).

(2) Let R be a ring which satisfies any of the preceding conditions. Then u+a ∈
U(R) for all u ∈ U(R) and a ∈ N(R).

Proof. (1) (i) ⇒ (ii): Assume that (i) holds. Let a ∈ N(R). Then we have the
following implications: a = 1a ∈ N(R) ⇒ 1ra ∈ N(R) for all r ∈ U(R) ⇒ ra =
(ra)1 ∈ N(R) ⇒ (ra)s1 ∈ N(R) for all s ∈ U(R) ⇒ ras ∈ N(R).

(v) ⇒ (i), (ii) ⇒ (iii) and (iii) ⇒ (iv) are obvious. The proof of (i) ⇒ (v) is
done by using the condition (i), iteratively.

(iv)⇒ (i): Assume that (iv) holds. Let ab ∈ N(R) for a, b ∈ R. Then ba ∈ N(R)
and so or(ba) = baU(R) ⊆ N(R) by assumption. Thus aU(R)b ⊆ N(R), showing
that the condition (i) is satisfied.

(2) Note that 1 + n ∈ U(R) for all n ∈ N(R). Let u ∈ U(R) and a ∈ N(R).
Then u+ a = u(1+ u−1a) and we have u−1(u+ a) = 1+u−1a. Since u−1a ∈ N(R)
by (1), 1 + u−1a ∈ U(R). Thus u+ a = u(1 + u−1a) ∈ U(R). 2

Based on the facts above, we consider the following as a generalization of not
only one-sided UN-transitive rings, but unit-IFP rings and NI rings.

A ring shall be called unilpotent-IFP if it satisfies any of the conditions in
Proposition 2.5(1). In this case, we will usually use the condition (i).
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Every NI ring R is unilpotent-IFP since R/N∗(R) is reduced, and every unit-
IFP ring is also unilpotent-IFP by [11, Lemma 1.2], but each converse needs not hold
by Example 1.1. Moreover it is clear that the class of unilpotent-IFP rings contains
right (left) UN-transitive rings, but not conversely by Example 1.1 or Example
2.4(2, 3).

The non-unilpotent-IFP rings below provide useful manner to argue about the
unilpotent-IFPness of given rings.

Example 2.6. (1) Consider Matn(A) over any ring A for n ≥ 2, and take α =
e21, γ = e22 and β = e21 + e12 + e33 + · · · + enn in Matn(A). Then αγ = 0 but
αβγ = e22 ∈ I(Matn(A)), noting β ∈ U(Matn(A)). Hence αU(Matn(A))γ *
N(Matn(A)).

(2) Consider the rings constructed in [10, Example 2(2)]. Let K = Z2, the
field of integers modulo 2, A = K[a], and B = K[b], where K[a] and K[b] be the
polynomial rings with indeterminates a and b over K, respectively. Let J be the
ideal of B generated by b2. Set C = A ⊕ A and D = B/J . Identify b with its
image for simplicity. Let R = C ∗K D which stands for the ring coproduct of C
and D over K. Then 1 + b is a unit and (1, 0)b(0, 1) is a nilpotent of R, in fact,
[b(1, 0)b(0, 1)]2 = 0. But

[(1 + b)(1, 0)b(0, 1)]2
n

= (1, 0)b(0, 1)[b(1, 0)b(0, 1)]2
n
−1 + [b(1, 0)b(0, 1)]2

n

,

which is not a nilpotent, for all n. Hence [b(1, 0)b(0, 1)]U(R)[b(1, 0)b(0, 1)] * N(R).

Based on the structures of rings in Example 2.4, a ring R shall be called left
unilpotent-duo (resp., right unilpotent-duo) if or(a) ⊆ ol(a), i.e., aU(R) ⊆ U(R)a
(resp., ol(a) ⊆ or(a), i.e., U(R)a ⊆ aU(R))) for all a ∈ N(R). A ring is said to be
unilpotent-duo if it is both left and right unilpotent-duo. Reduced rings are clearly
unilpotent-duo. This unilpotent-duo property is not left-right symmetric as we see
in Example 2.4(2, 3). In fact the ring R in Example 2.4(2) is left unilpotent-duo but
not right unilpotent-duo; while, the ring R in Example 2.4(3) is right unilpotent-duo
but not left unilpotent-duo.

Theorem 2.7. (1) Every right or left unilpotent-duo ring is unilpotent-IFP.

(2) Let R be a ring with an involution ∗. Then
(i) R is left unilpotent-duo if and only if it is right unilpotent-duo.
(ii) R is left UN-transitive if and only if it is right UN-transitive. Especially,

if R is non-reduced right UN-transitive, there exists a ∈ N(R)′ such that

ol(a) = ol(a
∗) = or(a) = or(a

∗) = N(R)′.

(3) Let R be a non-reduced ring. If R is UN-transitive with o(a) = N(R)′ for
some a ∈ N(R)′, then R is unilpotent-duo.

Proof. (1) Let R be a right unilpotent-duo ring and suppose a ∈ N(R) for a ∈ R.
Then an = 0 for some n ≥ 1. Let u ∈ U(R). Since R is right unilpotent-duo,
ua = au1 for some u1 ∈ U(R) and u1ua = au2 for some u2 ∈ U(R). Continuing in



Relation Between Units and Nilpotents 219

this manner, there exists un ∈ U(R) such that un−1ua = aun where un−1 ∈ U(R)
for n ≥ 2. Then

(ua)n = ua(ua)n−1 = a(u1ua)(ua)
n−2 = a2(u2ua)(ua)

n−3 = · · ·

= an−1(un−1ua) = anun = 0,

and hence ua ∈ N(R). Thus R is unilpotent-IFP. The proof for the left unilpotent-
duo ring is similar.

2-(i) Let R be left unilpotent-duo and suppose that a ∈ N(R) and u ∈ U(R).
Then a∗ ∈ N(R) and u∗ ∈ U(R). Since R is left unilpotent-duo, a∗u∗ = va∗ for
some v ∈ U(R). This yields

ua = ((ua)∗)∗ = (a∗u∗)∗ = (va∗)∗ = av∗ ∈ aU(R),

implying that R is right unilpotent-duo. The converse is shown similarly.
2-(ii) First, if N(R) = 0 then we are done. We assume N(R) 6= 0 and let R

be left UN-transitive. Then ol(a) = U(R)a = N(R)′ for some a ∈ N(R)′. Let
b ∈ N(R)′ with b = ua for some u ∈ U(R). Then a∗u∗ = b∗ ∈ N(R). Since
N(R)′ = U(R)a, b∗ = a∗u∗ = va for some v ∈ U(R), and so

b = (b∗)∗ = (va)∗ = a∗v∗ ∈ a∗U(R).

This implies N(R)′ = a∗U(R) = or(a
∗), noting a∗U(R) ⊆ N(R)′ by Proposition

2.5. Therefore R is right UN-transitive. The converse is similar to above.
Next, suppose that R is non-reduced UN-transitive. Then, by the preceding

argument, there exists a ∈ N(R)′ such that

U(R)a = ol(a) = N(R)′ = or(a
∗) = a∗U(R).

From this, we obtain a∗ = ua and a = a∗v for some u, v ∈ U(R); hence a = u−1a∗

and a∗ = av−1. Thus we also have

N(R)′ = ol(a) = U(R)a = U(R)u−1a∗ = U(R)a∗ = ol(a
∗)

and
N(R)′ = or(a

∗) = a∗U(R) = av−1U(R) = aU(R) = or(a).

Therefore ol(a
∗) = ol(a) = or(a

∗) = or(a) = N(R)′.
(3) Suppose that R is UN-transitive with o(a) = N(R)′ for some a ∈ N(R)′.

Consider U(R)b with b ∈ N(R)′ and let c = ub ∈ U(R)b. Since N(R)′ = o(a) =
U(R)a = aU(R), b = ga = ag1 for some g, g1 ∈ U(R). So we have

c = ub = uga = ag2 = ag1g
−1
1 g2 = bg−1

1 g2 ∈ bU(R),

where (ug)a = ag2 for some g2 ∈ U(R) because N(R)′ = o(a). Thus R is right
unilpotent-duo. The proof of left unilpotent-duo case is similar. 2
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The converse of Theorem 2.7(1) does not hold in general by Example 3.8(1) to
follow.

Let K be a commutative ring and G be any group. Recall the standard invo-
lution ∗ on the group ring KG in [3], i.e., (

∑

aigi)
∗ =

∑

aig
−1
i for all ai ∈ K and

gi ∈ G. Thus we obtain the following as a corollary of Theorem 2.7.

Corollary 2.8. Let K be a commutative ring and G be any group. Then we have
the following results.

(1) The group ring KG is left unilpotent-duo if and only if it is right unilpotent-
duo.

(2) The group ring KG is left UN-transitive if and only if it is right UN-
transitive.

One may ask whether if R is a commutative ring then R is UN-transitive.
However the answer is negative by the following.

Example 2.9. Consider the infinite direct product R =
∏

∞

i=1 Z2i , and the subring
S of R generated by the direct sum ⊕∞

i=1Z2i and the identity of R.
Let (ai) ∈ N(R)′ such that or((ai)) = (ai)U(R) = N(R)′. Then (ai)

k = 0 for
some k ≥ 2, and (b(i)j) ∈ (ai)U(R) for all i ≥ 1, where b(i)i = 2 and b(i)j = 0 for
i 6= j. From (ai)U(R) = N(R)′, we obtain that [(ai)(ui)]

k = (ai)
k(ui)

k = 0 for all
(ui) ∈ U(R); hence (ci)

k = 0 for all (ci) ∈ N(R). However (b(i)j)
k 6= 0 for all i ≥

k+1, and so (b(i)j) /∈ N(R)′ for all i ≥ k+1. This induces a contradiction because
(b(i)j)

i = 0. Thus there cannot exist (ai) ∈ N(R)′ such that or((ai)) = N(R)′.
That is, R is not UN-transitive.

Let (ai) ∈ N(S)′ such that or((ai)) = (ai)U(S) = N(S)′. Then there exists
h ≥ 2 such that ai = 0 for all i ≥ h. So, letting (dj) ∈ S such that dh = 2 and
dj = 0 for all j 6= h, (dj) /∈ (ai)U(S) and (dj) /∈ N(S)′ follows. This induces a
contradiction because (dj)

h = 0. Thus there cannot exist (ai) ∈ N(S)′ such that
or((ai)) = N(S)′. That is, S is not UN-transitive.

Recall that unilpotent-IFP rings need not be NI by Example 1.1(1). We see
conditions under which unilpotent-IFP rings may be NI. Note that for a ring R, if
R is one-sided UN-transitive, then R is unilpotent-IFP.

Theorem 2.10. Let R be a non-reduced ring and suppose that there exists a ∈
N(R)′ such that aR ⊆ N(R). If R is right or left UN-transitive, then R is an NI
ring such that N0(R) = N∗(R) = N∗(R) = N(R) = aR = RaR and N∗(R)2 = 0.

Proof. By hypothesis, aR ⊆ N(R) with a ∈ N(R)′. Suppose that R is right
UN-transitive. Then or(a) = N(R)′ by Lemma 2.2, whence we have

N(R)′ = aU(R) ⊆ aR ⊆ N(R),

from which we infer that aR = N(R) = aU(R) ∪ {0}.

Now consider RaR. Since aR is nil, we see that ras ∈ N(R) for all r, s ∈ R. By
Proposition 2.3, N(R) is a trivial subring of R (i.e., N(R)2 = 0) and so RaR is also
nil, entailing RaR = N(R) = N∗(R). Furthermore, aR = bR for any b ∈ N(R)′
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since or(a) = N(R)′ = or(b) by Lemma 2.2. Consequently we now have

RaR = N(R) = aR = bR = RbR = N∗(R) for any b ∈ R,

concluding that R is NI. Moreover since N(R)2 = 0 by Proposition 2.3(1), we see
that N0(R) = N∗(R) = N∗(R) = N(R) and N∗(R)2 = 0.

The proof of the left transitive case can be done by symmetry. 2

Regarding Theorem 2.10, it is evident that if R is an NI ring then R is a
unilpotent-IFP ring such that aR ⊆ N(R) for all a ∈ N(R). But Example 2.9
illuminates that there exists an NI ring which is neither right nor left UN-transitive.

Polynomial rings over NI rings need not be NI by Smoktunowicz [16]. But if
given a ring R satisfies the condition of Theorem 2.10, then R[x] is NI as we see in
the following.

Corollary 2.11. Let R be a non-reduced ring and suppose that there exists a ∈
N(R)′ such that aR ⊆ N(R). If R is left or right UN-transitive, then R[x] is an NI
ring such that N(R[x]) = N∗(R[x]) = R[x]aR[x].

Proof. By hypothesis and Theorem 2.10, we first obtain that N∗(R)2 = 0 and
N0(R) = N∗(R) = N∗(R) = N(R) = aR = RaR. Then R[x] is an NI ring such
that N(R[x]) = N∗(R[x]) = N∗(R)[x], by help of the proof of [8, Proposition 4.4].
This yields

N(R[x]) = N∗(R[x]) = N∗(R)[x] = (aR)[x] = (RaR)[x] = R[x]aR[x].

2

Remark 2.12. Let R be a ring and let a ∈ N(R)′. Then ak = 0 for some k ≥ 2.
Assume N∗(R) = aR = RaR. Then we have

N∗(R)k = (aR)k = (aR)(aR)(aR)k−2 = (aaR)(aR)k−2 = · · ·

= (ak−1R)(aR) = ak−1aR = 0.

Next argue about the actual form of elements in N∗(R)k. Let bi ∈ N∗(R) for
i = 1, 2, . . . , k. Then bi = aci for some ci ∈ R. So we have

b1b2 · · · bk = (ac1)(ac2) · · · (ack) = (ac1)(ac2)(ac3) · · · (ack) = aad1c2(ac3) · · · (ack)

= a2d1c2(ac3) · · · (ack) = a2ad2c3(ac4) · · · (ack) = a3d2c3(ac4) · · · (ack)

= · · · = ak−1dk−2ck−1(ack) = ak−1adk−1ck = akdk−1ck = 0,

where c1a = ad1, d1c2a = ad2, . . . , dk−2ck−1a = adk−1 with dj ∈ R for j =
1, 2, . . . , k − 1.
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3. Structure of Unilpotent-IFP Rings

In this section we study the structure of unilpotent-IFP rings as well as the
relations between unilpotent-IFP rings and related rings, studying the structures of
some kinds of unilpotent-IFP rings which are considered ordinarily in (noncommu-
tative) ring theory.

We first note that the class of unilpotent-IFP rings is not closed under homo-
morphic images, since every ring is a homomorphic image of a free ring (which
is reduced and therefore unilpotent-IFP). But we obtain elementary properties for
unilpotent-IFP rings as follows. The direct product of rings Ri (i ∈ Λ) is denoted
by

∏

i∈ΛRi.

Proposition 3.1. (1) If S is a subring of a unilpotent-IFP ring R with the identity
of R, then S is unilpotent-IFP.

(2) Let I be a nil ideal of a ring R. Then R/I is unilpotent-IFP if and only if
so is R.

(3) Let {Ri | i ∈ Λ} be a family of rings and R =
∏

i∈ΛRi, where Λ is finite.
Then Ri is a unilpotent-IFP ring for all i ∈ Λ if and only if R is unilpotent-IFP.

Proof. (1) Note that U(S) ⊆ U(R) and N(S) = S ∩ N(R). Suppose that R is
unilpotent-IFP and let a ∈ N(S) and u ∈ U(S). Then au ∈ N(R)∩S = N(S), and
so S is unilpotent-IFP.

(2) Let I be a nil ideal of R. Note that

N(R/I) = {a+ I | a ∈ N(R)} and U(R/I) = {u+ I | u ∈ U(R)} .

For a ∈ N(R) and u ∈ U(R), au+ I ∈ N(R/I) if and only if au ∈ N(R). Thus the
proof can be shown easily.

(3) Since Λ is finite, N(R) =
∏

i∈Λ N(Ri). Note U(R) =
∏

i∈Λ U(Ri). For
a = (ai)i ∈ N(R) and u = (ui)i ∈ U(R), au = (aiui)i ∈ N(R) if and only if
aiui ∈ N(Ri) for all i ∈ Λ since Λ is finite. Thus the proof can be shown easily. 2

We next study some sorts of unilpotent-IFP rings which are able to provide
plentiful information to related studies. For a ring R and n ≥ 2, let Dn(R) be the
ring of all matrices in Tn(R) whose diagonal entries are all equal and Vn(R) be the
ring of all matrices (aij) in Dn(R) such that ast = a(s+1)(t+1) for s = 1, . . . , n −
2 and t = 2, . . . , n− 1. Note that Vn(R) is isomorphic to R[x]/xnR[x].

Let R be any ring and n ≥ 2. Then Matn(R) is not unilpotent-IFP by Example
2.6(1), and Tn(R) cannot be unit-IFP by help of [11, Lemma 1.2(2)], but we have
the following.

Proposition 3.2. Let R be a ring and n ≥ 2. The following conditions are
equivalent:

(1) R is unilpotent-IFP;
(2) Tn(R) is unilpotent-IFP;
(3) Dn(R) is unilpotent-IFP;
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(4) Vn(R) is unilpotent-IFP.

Proof. It suffices to show (1) ⇒ (2) by Proposition 3.1(1). Let R be unilpotent-
IFP. Consider the nil ideal I = {(aij) ∈ Tn(R) | aii = 0 for all i} of Tn(R). Then
Tn(R)/I is isomorphic to an n-copies of R; hence Tn(R)/I is unilpotent-IFP by
Proposition 3.1(3). Thus Tn(R) is unilpotent-IFP by Proposition 3.1(2). 2

By the same idea as in the proof of Proposition 3.2, we consider a similar
proposition which also provides examples of unilpotent-IFP rings, being concerned
with modules.

Proposition 3.3. Let R,S be rings and RMS be an (R,S)-bimodule. Then T =
(

R M
0 S

)

is unilpotent-IFP if and only if R and S are unilpotent-IFP.

The following is an application of Proposition 2.5(1). Let R be an algebra over
a commutative ring S. Following Dorroh [4], the Dorroh extension of R by S is the
Abelian group R × S with multiplication given by (s1, r1)(s2, r2) = (s1s2, s1r2 +
s2r1 + r1r2) for ri ∈ R and si ∈ S.

Proposition 3.4. Let R be an algebra with identity over a commutative reduced
ring S. Then R is unilpotent-IFP if and only if so is the Dorroh extension D of R
by S.

Proof. It suffices to show the necessity by help of Proposition 3.1(1). Clearly s
is identified with s1 in R for all s ∈ S. Note that R = {r + s | (r, s) ∈ D} and
N(D) = (0, N(R)) since S is a commutative reduced ring.

Suppose that R is unilpotent-IFP. Let (u, b) ∈ U(D), then u ∈ U(S). Say
(u, b)−1 = (u−1, c). Since (u, b)(u−1, c) = (1, 0) = (u−1, c)(u, b), uc+ u−1b+ bc = 0,
and u−1b + uc+ cb = 0. Thus (u + b)(u−1 + c) = 1 = (u−1 + c)(u + b) in R, and
so u + b ∈ U(R). Now consider (0, a) ∈ N(D). Then a(u + b) ∈ N(R) since R is
unilpotent-IFP, and it implies that (0, a)(u, b) = (0, a(u+ b)) ∈ N(D). Therefore D
is unilpotent-IFP by Proposition 2.5(1). 2

In what follows we consider some conditions under which the set of all nilpo-
tent elements in unilpotent-IFP rings forms a subring, which it is compared with
Proposition 2.3.

Proposition 3.5. Let R be a unilpotent-IFP ring with N(R) = Nil2(R). Then we
have the following results.

(1) N(R) is a subring of R, and ab = −ba for all a, b ∈ N(R).

(2) N(R) is a commutative subring of R, when R is of characteristic 2.

Proof. (1) Let a, b ∈ N(R) = Nil2(R). Since R is unilpotent-IFP, (ab)2 = a2b +
abab = a(1 + b)ab ∈ N(R) from a(ab) = 0 ∈ N(R) and 1 + b ∈ U(R). Thus
ab ∈ N(R) and ba ∈ N(R) follows. Since (ab)2 = 0 and (ba)2 = 0, (a + b)4 =
(ab + ba)2 = abab + baba = (ab)2 + (ba)2 = 0 and so a + b ∈ N(R). Hence N(R)
forms a subring of R. Moreover, (a+ b)2 = 0 implies that ab+ ba = 0.

(2) It is an immediate consequence of (1). 2
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The following elaborates Proposition 3.5.

Example 3.6. (1) We recall the unit-IFP (and so unilpotent-IFP) ring R in Ex-
ample 1.1. Then N(R) = Kb+ bRb = Nil2(R) as mentioned earlier; hence N(R) is
a commutative subring of R.

(2) We recall the ring R as in Example 2.6(2). Then it is obvious U (C) =
{(1, 1)} by [10, Example 2(2)]. So we have that:

N(R) = {(c, 0)r(0, d), (0, e)s(f, 0), btb, b | r, s, t ∈ R and c, d, e, f ∈ A}

and U(R) = {1 + kw | k ∈ K and w ∈ N(R)}, entailing N(R) = Nil2(R). The
characteristic of R is 2, but N(R) is not closed under multiplication as can be
seen by (a, 0)b(0, a)b /∈ N(R). So R is not unilpotent-IFP by Proposition 3.5. In
fact, (a, 0)(0, a)b = 0 but (a, 0)b(0, a)b = (a, 0)(1 + b)(0, a)b /∈ N(R) (in spite of
1 + b ∈ U(R)).

Recall that Köthe’s conjecture holds for a given ring R when N(R) is additively
closed. So Köthe’s conjecture holds for a unilpotent-IFP ring R with N(R) =
Nil2(R) by Proposition 3.5 as well as for a left or right UN-transitive ring by
Proposition 2.3.

Theorem 3.7. (1) A ring R is unilpotent-IFP and satisfies Köthe’s conjecture if
and only if R/N∗(R) is a unit-IFP ring.

(2) A ring R is NI if and only if N(R) is a subring of R such that ab ∈ N(R)
for a, b ∈ R implies a(R\N(R))b ⊆ N(R).

Proof. (1) Suppose that R is unilpotent-IFP and satisfies Köthe’s conjecture. Then
S = R/N∗(R) clearly satisfies Köthe’s conjecture, and S is unilpotent-IFP by
Proposition 3.1(2). Assume that ab = 0 for a, b ∈ S. Then bxa ∈ N(S) for all x ∈ S.
Note U(S) = {u+N∗(R) | u ∈ U(R)}. Since S unilpotent-IFP, bxau ∈ N(S) for
all u ∈ U(S) by Proposition 2.5(1). This yields aubx ∈ N(S), and thus aub gen-
erates a nil right ideal in S. But N∗(S) = 0 and S satisfies Köthe’s conjecture, so
S contains no nonzero nil one-sided ideals. Therefore aub = 0, proving that S is
unit-IFP.

Conversely, suppose that R/N∗(R) is unit-IFP. Then it is unilpotent-IFP and
satisfies Köthe’s conjecture by definition and [11, Theorem 1.3(1)], respectively.
So R obviously satisfies Köthe’s conjecture and is unilpotent-IFP by Proposition
3.1(2).

(2) The necessity is obvious. For the converse, let ab ∈ N(R) for a, b ∈ R.
Since N(R) is a subring of R and ba ∈ N(R), we get aN(R)b ⊆ N(R). Conse-
quently we have aRb ⊆ N(R) by the condition that ab ∈ N(R) for a, b ∈ R implies
a(R\N(R))b ⊆ N(R). Then R is NI by [12, Corollary 1.4]. 2

Regarding Theorem 3.7(1), nilpotents always form a subring in a unilpotent-
IFP ring satisfying Köthe’s conjecture. Indeed, if R is unilpotent-IFP satisfying
Köthe’s conjecture, then R/N∗(R) is unit-IFP, so nilpotents there form a subring,
which in turn implies that nilpotents of R form a subring of R.
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Consider the necessity of Theorem 3.7(2). If a ring R satisfies the condition that
ab ∈ N(R) for a, b ∈ R implies a(R\N(R))b ⊆ N(R). Then R is unilpotent-IFP.
For, if the ring R above is not unilpotent-IFP, then there exist a, b ∈ R such that
ab ∈ N(R) and aU(R)b * N(R). Then aub /∈ N(R) for some u ∈ U(R), contrary
to aub ∈ a(R\N(R))b ⊆ N(R). So one may ask whether if R is a unilpotent-IFP
ring such that N(R) is a subring of R then R is NI. But the answer is negative by
the unilpotent-IFP ring R in Example 1.1(1) that is not NI. Note that N(R) is a
subring of R by [1, Theorem 4.7 and Corollary 3.3], and that bba = 0, baba /∈ N(R)
and baba ∈ b(R\N(R))ba.

The following elaborates upon the relations among the concepts above.

Example 3.8. (1) There exists a unilpotent-IFP ring that is neither right nor left
unilpotent-duo. Let R1 be the ring R in Example 2.4(2) that is left unilpotent-duo
but not right unilpotent-duo; and let R2 be the ring R in Example 2.4(3) that is right
unilpotent-duo but not left unilpotent-duo. Set R = R1×R2. Then R is unilpotent-
IFP by Theorem 2.7(1) and Proposition 3.1(3). Note U(R) = U(R1)× U(R2) and
N(R) = N(R1)×N(R2). So R is neither right nor left unilpotent-duo.

(2) There exists an IFP ring that is neither right nor left unilpotent-duo. We
use the ring in [7, Example 2]. Let A = Z2〈a0, a1, a2, b0, b1, b2, c〉 be the free algebra
with noncommuting indeterminates a0, a1, a2, b0, b1, b2, c over Z2; and let B = {f ∈
A | the constant term of f is zero}. Let I be the ideal of A generated by

a0b0, a1b2 + a2b1, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a2b2, a0rb0, a2rb2,

(a0 + a1 + a2)r(b0 + b1 + b2), and r1r2r3r4,

where r, r1, r2, r3, r4 ∈ B; and set R = A/I. Then R is IFP by the argument in
[7, Example 2]. Identify a0, a1, a2, b0, b1, b2, c with their images in R for simplicity.
Note U(R) = {1+g | g ∈ B} = 1+B since B4 = 0. Consider or(c) and ol(c). Then
or(c) * ol(c) and or(c) + ol(c) because c(1 + a0) /∈ ol(c) and (1 + a0)c /∈ or(c) for
(1 + a0) ∈ U(R). For assuming c(1 + a0) = (1 + g1)c and (1 + a0)c = c(1 + g2) for
some gi ∈ B, we get 0 6= ca0 = g1c and 0 6= a0c = cg2 (i.e., ca0− g1c, a0c− cg2 ∈ I),
contrary to the construction of I. Therefore R is neither right nor left unilpotent-
duo.

The following diagram shows all implications among the concepts above.

IFP rings → NI rings

ց ց

ր unit-IFP rings → unilpotent-IFP rings

ր

• reduced rings → right (left) UN-transitive rings

ց ր

right (left) unilpotent-duo rings
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In what follows we consider a condition under which the ring properties men-
tioned above coincide. Following [5], a ring R is said to be von Neumann regular if
for each a ∈ R there exists b ∈ R such that a = aba.

Proposition 3.9. For a von Neumann regular ring R, the following conditions are
equivalent:

(1) R is reduced; (2) R is IFP; (3) R is unit-IFP; (4) R is abelian; (5) R is
right(left) UN-transitive; (6) R is unilpotent-IFP; (7) R is right or left unilpotent-
duo.

Proof. The implications (1) ⇒ (2), (1) ⇒ (7), (2) ⇒ (3) and (3) ⇒ (6) are obvious.
(3) ⇒ (4), (1) ⇔ (4) and (7) ⇒ (6) are shown by [11, Lemma 1.2(2)], [5, Theorem
3.2] and Theorem 2.7(1), respectively.

The implications (1) ⇒ (5) and (5) ⇒ (6) are obvious.

(6) ⇒ (4): Let R be unilpotent-IFP. Assume on the contrary that there exist
e2 = e, r ∈ R such that er(1 − e) 6= 0. Say a = er(1 − e). Then a2 = 0 and so
1 − a ∈ U(R). Since R is von Neumann regular, a = aba for some b ∈ R. Then
bab(1 − ab) = 0. Since R is unilpotent-IFP, bab(1 − a)(1 − ab) ∈ N(R) because
1− a ∈ U(R). But

bab(1− a)(1 − ab) = (bab− ba)(1− ab) = −ba+ ba2b = −ba /∈ N(R),

contrary to bab(1− a)(1 − ab) ∈ N(R). Thus R is abelian. 2

Recall that a ring R is said to be directly finite (or Dedekind finite) if ab = 1
implies ba = 1 for a, b ∈ R. It is well-known that abelian rings are directly finite.
NI rings are directly finite by [8, Proposition 2.7(1)]. We also obtain this result as
a corollary of the following.

Proposition 3.10. Every unilpotent-IFP ring is directly finite.

Proof. Let R be a unilpotent-IFP ring and assume on the contrary that R is not
directly finite. Then ab = 1 and ba 6= 1 for some a, b ∈ R. In what follows we
refer to the argument for one-sided inverses in [9, page 1]. Consider x = 1− ba and
y = b− b2a = b(1− ba). Then xy = 0. Since z = (1− ba)a ∈ N(R), 1 + z ∈ U(R).
Then x(1 + z)y = xzy ∈ N(R) because R is unilpotent-IFP. But

xzy = (1− ba)((1− ba)a)(b(1− ba)) = 1− ba /∈ N(R),

contrary to xzy ∈ N(R). Thus R is directly finite. 2

The converse of Proposition 3.10 needs not hold as can be seen by Matn(D),
over a division ring D for n ≥ 2, which is Artinian (hence directly finite) but not
unilpotent-IFP by Example 2.6(1).
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