• Title/Summary/Keyword: uniqueness theorems

Search Result 98, Processing Time 0.019 seconds

FUNDAMENTAL THEOREM FOR LIGHTLIKE CURVES

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • The purpose of this paper is to prove the fundamental existence and uniqueness theorems for lightlike curves in a 6-dimensional semi-Euclidean space Rq of index q, since the general n-dimensional cases are too complicated.

  • PDF

NOTE FOR THE TRIPLED AND QUADRUPLE FIXED POINTS OF THE MIXED MONOTONE MAPPINGS

  • Wu, Jun;Liu, Yicheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.993-1005
    • /
    • 2013
  • In this paper, to include more generalized cases, the authors present a modified concept for the tripled and quadruple fixed point of the mixed monotone mappings. Also, they investigate the existence and uniqueness of fixed point of the ordered monotone operator with the Matkowski contractive conditions in the partial ordered metric spaces. As the direct consequences, the existence of coupled fixed point, tripled fixed point and quadruple fixed point are explored at the common framework and some previous results in [T. G. Bhaskar and V. Lakshmikan-tham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393; V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897; E. Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Computers and Mathematics with Applications (2012), doi:10.1016/j.camwa.2012.02061] are improved. Finally, some fixed point theorems are proved.

NONLOCAL BOUNDARY VALUE PROBLEMS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

  • Asawasamrit, Suphawat;Kijjathanakorn, Atthapol;Ntouyas, Sotiris K.;Tariboon, Jessada
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1639-1657
    • /
    • 2018
  • In this paper, we initiate the study of boundary value problems involving Hilfer fractional derivatives. Several new existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating our results are also presented.

EXISTENCE RESULTS FOR ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF NONLINEAR SECOND-ORDER IMPULSIVE qk-DIFFERENCE EQUATIONS

  • Ntouyas, Sotiris K.;Tariboon, Jessada;Thiramanus, Phollakrit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.335-350
    • /
    • 2016
  • Based on the notion of $q_k$-derivative introduced by the authors in [17], we prove in this paper existence and uniqueness results for nonlinear second-order impulsive $q_k$-difference equations with anti-periodic boundary conditions. Two results are obtained by applying Banach's contraction mapping principle and Krasnoselskii's fixed point theorem. Some examples are presented to illustrate the results.

UTILIZING ISOTONE MAPPINGS UNDER GERAGHTY-TYPE CONTRACTION TO PROVE MULTIDIMENSIONAL FIXED POINT THEOREMS WITH APPLICATION

  • Deshpande, Bhavana;Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.279-295
    • /
    • 2018
  • We study the existence and uniqueness of fixed point for isotone mappings of any number of arguments under Geraghty-type contraction on a complete metric space endowed with a partial order. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. Our results generalize, extend and unify several classical and very recent related results in the literature in metric spaces.

𝓗-SIMULATION FUNCTIONS AND Ωb-DISTANCE MAPPINGS IN THE SETTING OF Gb-METRIC SPACES AND APPLICATION

  • Tariq Qawasmeh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.557-570
    • /
    • 2023
  • The conceptions of generalized b-metric spaces or Gb-metric spaces and a generalized Ω-distance mappings play a key role in proving many important theorems in existence and uniqueness of fixed point theory. In this manuscript, we establish a new type of contraction namely, Ωb(𝓗, 𝜃, s)-contraction, this contraction based on the concept of a generalized Ω-distance mappings which established by Abodayeh et.al. in 2017 together with the concept of 𝓗-simulation functions which established by Bataihah et.al [10] in 2020. By utilizing this new notion we prove new results in existence and uniqueness of fixed point. On the other hand, examples and application were established to show the importance of our results.