DOI QR코드

DOI QR Code

UTILIZING ISOTONE MAPPINGS UNDER GERAGHTY-TYPE CONTRACTION TO PROVE MULTIDIMENSIONAL FIXED POINT THEOREMS WITH APPLICATION

  • Deshpande, Bhavana (Department of Mathematics, Govt. P. G. Arts and Science College) ;
  • Handa, Amrish (Department of Mathematics, Govt. P. G. Arts and Science College)
  • Received : 2018.03.03
  • Accepted : 2018.11.24
  • Published : 2018.11.30

Abstract

We study the existence and uniqueness of fixed point for isotone mappings of any number of arguments under Geraghty-type contraction on a complete metric space endowed with a partial order. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. Our results generalize, extend and unify several classical and very recent related results in the literature in metric spaces.

Keywords

References

  1. H. Aydi, E. Karapinar & W. Shatanawi: Coupled fixed point results for (${\psi},{\varphi}$)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 62 (2011), no. 12, 4449-4460. https://doi.org/10.1016/j.camwa.2011.10.021
  2. M. Borcut & V. Berinde: Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 218 (2012), no. 10, 5929-5936. https://doi.org/10.1016/j.amc.2011.11.049
  3. V. Berinde & M. Borcut: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 74 (2011), 4889-4897. https://doi.org/10.1016/j.na.2011.03.032
  4. M. Berzig & B. Samet: An extension of coupled fixed point's concept in higher dimension and applications. Comput. Math. Appl. 63 (2012), no. 8, 1319-1334. https://doi.org/10.1016/j.camwa.2012.01.018
  5. T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  6. B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
  7. B.S. Choudhury & A. Kundu: (${\psi},{\alpha},{\beta}$)-weak contractions in partially ordered metric spaces. Appl. Math. Lett. 25 (2012), no. 1, 6-10. https://doi.org/10.1016/j.aml.2011.06.028
  8. B.S. Choudhury, N. Metiya & M. Postolache: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013:152.
  9. B. Deshpande & A. Handa: Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations. Afr. Mat. 26 (2015), no. (3-4), 317-343. https://doi.org/10.1007/s13370-013-0204-0
  10. B. Deshpande & A. Handa: Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces. Adv. Fuzzy Syst. Volume 2014, Article ID 348069.
  11. H.S. Ding, L. Li & S. Radenovic: Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces. Fixed Point Theory Appl. 2012:96.
  12. I.M. Erhan, E. Karapinar, A. Roldan & N. Shahzad: Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014:207.
  13. D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
  14. J. Harjani & K. Sadarangani: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. 71 (2009), 3403-3410. https://doi.org/10.1016/j.na.2009.01.240
  15. J. Harjani & K. Sadarangani: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 72 (2010), no. (3-4), 1188-1197. https://doi.org/10.1016/j.na.2009.08.003
  16. X.Q. Hu: Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2011, Article ID 363716.
  17. N.M. Hung, E. Karapinar & N.V. Luong: Coupled coincidence point theorem for O-compatible mappings via implicit relation. Abstr. Appl. Anal. 2012, Article ID 796964.
  18. E. Karapinar: Quadruple fixed point theorems for weak ${\phi}$-contractions. ISRN Mathematical Analysis 2011, Article ID 989423.
  19. E. Karapinar & V. Berinde: Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces. Banach J. Math. Anal. 6 (2012), no. 1, 74-89. https://doi.org/10.15352/bjma/1337014666
  20. E. Karapinar & N.V. Luong: Quadruple fixed point theorems for nonlinear contractions. Comput. Math. Appl. 64 (2012), no. 6, 1839-1848. https://doi.org/10.1016/j.camwa.2012.02.061
  21. E. Karapinar & A. Roldan: A note on n-Tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces. J. Inequal. Appl. 2013, Article ID 567.
  22. E. Karapinar, A. Roldan, C. Roldan & J. Martinez-Moreno: A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2013, Article ID 310.
  23. E. Karapinar, A. Roldan, J. Martinez-Moreno & C. Roldan: Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces. Abstr. Appl. Anal. 2013, Article ID 406026.
  24. E. Karapinar, A. Roldan, N. Shahzad & W. Sintunavarat: Discussion on coupled and tripled coincidence point theorems for ${\phi}$-contractive mappings without the mixed g-monotone property. Fixed Point Theory Appl. 2014, Article ID 92.
  25. V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  26. N.V. Luong & N.X. Thuan: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
  27. N.V. Luong & N.X. Thuan: Coupled fixed points in ordered generalized metric spaces and application to integro-differential equations. Comput. Math. Appl. 62 (2011), no. 11, 4238-4248. https://doi.org/10.1016/j.camwa.2011.10.011
  28. S.A. Al-Mezel, H. Alsulami, E. Karapinar & A. Roldan: Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal. Volume 2014, Article ID 287492.
  29. J.J. Nieto, R.L. Pouso & R. Rodriguez-Lopez: Fixed point theorems in partially ordered sets. Proc. Amer. Math. Soc. 132 (2007), no. 8, 2505-2517.
  30. J.J. Nieto & R. Rodriguez-Lopez: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), no. 3, 223-239. https://doi.org/10.1007/s11083-005-9018-5
  31. A.C.M. Ran & M.C.B. Reurings: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
  32. A. Roldan, J. Martinez-Moreno & C. Roldan: Multidimensional fixed point theorems in partially ordered metric spaces. J. Math. Anal. Appl. 396 (2012), 536-545. https://doi.org/10.1016/j.jmaa.2012.06.049
  33. A. Roldan & E. Karapinar: Some multidimensional fixed point theorems on partially preordered G*-metric spaces under (${\psi},{\varphi}$)-contractivity conditions. Fixed Point Theory Appl. 2013, Article ID 158.
  34. A. Roldan, J. Martinez-Moreno, C. Roldan & E. Karapinar: Multidimensional fixed-point theorems in partially ordered complete partial metric spaces under (${\psi},{\varphi}$)-contractivity conditions. Abstr. Appl. Anal. 2013, Article ID 634371.
  35. A. Roldan, J. Martinez-Moreno, C. Roldan & E. Karapinar: Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545-558.
  36. B. Samet: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 72 (2010), no. 12, 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
  37. B. Samet, E. Karapinar, H. Aydi & V.C. Rajic: Discussion on some coupled fixed point theorems. Fixed Point Theory Appl. 2013:50. https://doi.org/10.1186/1687-1812-2013-50
  38. W. Shatanawi, B. Samet & M. Abbas: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Modelling 55 (2012), no. (3-4), 680-687. https://doi.org/10.1016/j.mcm.2011.08.042
  39. S.Wang: Coincidence point theorems for G-isotone mappings in partially ordered metric spaces. Fixed Point Theory Appl. (2013), 1687-1812-2013-96. https://doi.org/10.1186/1687-1812-2013-96
  40. S. Wang: Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2014:137. https://doi.org/10.1186/1687-1812-2014-137