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NOTE FOR THE TRIPLED AND QUADRUPLE FIXED

POINTS OF THE MIXED MONOTONE MAPPINGS

Jun Wu and Yicheng Liu

Abstract. In this paper, to include more generalized cases, the authors
present a modified concept for the tripled and quadruple fixed point of
the mixed monotone mappings. Also, they investigate the existence and
uniqueness of fixed point of the ordered monotone operator with the
Matkowski contractive conditions in the partial ordered metric spaces.
As the direct consequences, the existence of coupled fixed point, tripled
fixed point and quadruple fixed point are explored at the common frame-
work and some previous results in [T. G. Bhaskar and V. Lakshmikan-

tham, Fixed point theory in partially ordered metric spaces and applica-

tions, Nonlinear Anal. 65 (2006), 1379–1393; V. Berinde and M. Borcut,
Tripled fixed point theorems for contractive type mappings in partially

ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889–4897; E.
Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlin-

ear contractions, Computers and Mathematics with Applications (2012),
doi:10.1016/j.camwa.2012.02061] are improved. Finally, some fixed point
theorems are proved.

1. Introduction

The contraction fixed point theorem is a key and handy tool to explore the
unknown situations in the real world. There are various extensive investiga-
tion for the fixed point theorems with contractive conditions in metric space,
cone metric space, partially ordered metric space and so on. For the success-
ful applications to the differential and integral equations, fixed point theorems
for the mixed monotone mapping are speedy developed in recent decade. In
2006, Gnana-Bhaskar and Lakshmikantham [4] introduced the concept of cou-
pled fixed point and proved some coupled fixed point theorems for the mixed
monotone mappings. Recently, the notions of tripled fixed point and quadruple
fixed point were introduced by the authors in literatures [3] and [12], respec-
tively. Meanwhile, the corresponding fixed point theorems were proved. Also,
the notion of g-monotone property was introduced by Lakshmikantham and
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Ciric in [14] and the coincidence point theorem was shown. More details for
the direction of the coupled fixed point theory and applications can be referred
in [1, 2, 5, 7, 8, 9, 10, 11, 13, 15, 18, 19, 20], and the references therein.

In this paper, to include more common cases, we present a modified concept
for the tripled and quadruple fixed point for the mixed monotone mappings.
Also, we investigate the existence and uniqueness of fixed point of the ordered
monotone operator with the Matkowski contractive conditions in the partial
ordered metric spaces. As the direct consequences, the existence of coupled
fixed point, tripled fixed point and quadruple fixed point are explored at the
common framework and some previous results are improved. Finally, some
fixed point theorems are proved.

Let (X,≤) be a partially ordered set, the subset E ⊂ X is said to be a
totally ordered subset if either x ≤ y or y ≤ x holds for all x, y ∈ E. We say
the elements x and y are comparable if either x ≤ y or y ≤ x holds. It is said
that the triple (X,≤, d) is a partially (totally) ordered complete metric space
if (X,≤) is a partially (totally) ordered set and (X, d) is a complete metric
space. It is said that the operator F : X → X is non-decreasing monotone
with respect to the order ≤ if for any x, y ∈ X with x ≤ y then F (x) ≤ F (y).
Let Φ denote all the increasing functions φ : [0,+∞) → [0,+∞) which satisfy
that limn→+∞ φn(r) = 0 for all r > 0.

Definition 1.1 (Bhaskar and Lakshmikantham [4]). Let (X,≤) be a partially
ordered set and F : X × X → X . The mapping F is said to has the mixed
monotone property if F is monotone non-decreasing in its first argument and
is monotone nonincreasing in its second argument, that is, for any x, y ∈ X ,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y) and

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1).

Definition 1.2 (Bhaskar and Lakshmikantham [4]). An element (x, y) ∈ X2

is said to be a coupled fixed point of the mapping F : X2 → X if F (x, y) = x

and F (y, x) = y.

Lemma 1.1 ([16, 17]). Let φ : [0,+∞) → [0,+∞) be increasing and if for

t > 0, limn→+∞ φn(t) = 0. Then φ(t) < t.

2. Definitions of tripled and quadruple fixed point

Berinde and Borcut [3] introduced the notion of mixed monotone property
for the mappings from X3 to X .

Definition 2.1 ([3]). Let (X,≤) be a partially ordered set and F : X3 → X

be a mapping. We say that F has the mixed monotone property if F (x, y, z)
is monotone non-decreasing in x and z, and it is monotone non-increasing in
y, that is, for any x, y, z ∈ X the implications below hold

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y, z) ≤ F (x2, y, z);
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y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y2, z) ≤ F (x, y1, z);

z1, z2 ∈ X, z1 ≤ z2 ⇒ F (x, y, z1) ≤ F (x, y, z2).

Also, Karapinar and Luong [12] introduced the following mixed monotone
property for the mappings from X4 to X .

Definition 2.2 ([12]). Let (X,≤) be a partially ordered set and F : X4 → X

be a mapping. We say that F has the mixed monotone property if F (x, y, z, w)
is monotone non-decreasing in x and z, and it is monotone non-increasing in y
and w, that is, for any x, y, z, w ∈ X the implications below hold:

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y, z, w) ≤ F (x2, y, z, w);

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y2, z, w) ≤ F (x, y1, z, w);

z1, z2 ∈ X, z1 ≤ z2 ⇒ F (x, y, z1, w) ≤ F (x, y, z2, w);

w1, w2 ∈ X, w1 ≤ w2 ⇒ F (x, y, z, w2) ≤ F (x, y, z, w1).

Following the concept in [3], an element (x, y, z) ∈ X3 is called a tripled
fixed point of F : X3 → X if F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.

Similarly, Karapinar and Luong [12] introduced the concept of quadruple fixed
point: an element (x, y, z, w) ∈ X4 is called a quadruple fixed point of F : X4 →
X if F (x, y, z, w) = x, F (y, z, w, x) = y, F (z, w, x, y) = z and F (w, x, y, z) = w.

For a mapping F : X3 → X , if there is an element (x0, y0, z0) ∈ X3 satisfying
F (x0, y0, z0) = x0, F (y0, z0, y0) = y0 and F (z0, y0, x0) = z0, can we call the
element (x0, y0, z0) a tripled fixed point of F? For the Berinde and Borcut’s
definition, it is invalid. Also, the concept quadruple fixed point suffered the
same situation.

To avoid to suffer this situation, we introduce the modified concept of tripled
and quadruple fixed point as follows.

Definition 2.3. An element (x, y, z) ∈ X3 is called a tripled fixed point of
F : X3 → X if

F (x, y, z) = x, (F (y, x, y) or )F (y, z, y) = y and F (z, y, x) = z.

Definition 2.4. An element (x, y, z, w) ∈ X4 is called a quadruple fixed point
of F : X4 → X if

(F (x, y, z, w) or )F (x,w, z, y) = x, (F (y, z, w, x) or )F (y, x, w, z) = y,

(F (z, w, x, y) or )F (z, y, x, w) = z and (F (w, x, y, z) or )F (w, z, y, x) = w.

Definition 2.5. Let k be an positive integer, an element x ∈ X is called a
fixed point of F : Xk → X if F (x, x, . . . , x) = x.

3. Auxiliary results

The following two propositions can be found in the literature [6], but the
proofs have some subtle differences. We put them for the sake of completeness.
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Proposition 3.1. Let (X,�, ρ) be a partially ordered complete metric space

and G : X → X be a monotone non-decreasing operator with respect to the

order � on X. Assume

(i) there is a ϕ ∈ Φ such that

(1) ρ(G(x̃), G(ỹ)) ≤ ϕ(ρ(x̃, ỹ)) for each x̃, ỹ ∈ X with x̃ � ỹ.

(ii) there exists an x̃0 ∈ X such that x̃0 � G(x̃0).
(iii) either (a) G is a continuous operator or (b) if a nondecreasing monotone

sequence x̃n in X tends to x̄, then x̃n � x̄ for all n. Then the operator G has

a fixed point in X.

Proof. Definite a sequence {x̃n} in X by

(2) x̃n = G(x̃n−1) for n = 1, 2, . . . .

Considering x̃0 � G(x̃0) and the operator G is non-decreasing monotone with
respect to the order �, we have

x̃0 � x̃1 � x̃2 � · · · � x̃n � · · · .
If there exists n0 such that x̃n0

= x̃n0+1, then x̃n0
= G(x̃n0

) and x̃n0
is a fixed

point of G. Then the result of Proposition 3.1 trivially holds.
Suppose now that x̃n 6= x̃n+1 for all n. Setting an = ρ(x̃n+1, x̃n), noting

that the sequence {x̃n} is nondecreasing sequence in X , we have

(3)
an+1 = ρ(x̃n+2, x̃n+1) = ρ(G(x̃n+1), G(x̃n))

≤ ϕ(ρ(x̃n+1, x̃n)) = ϕ(an) for n = 0, 1, . . . .

Thus we obtain that

0 < an+2 ≤ ϕ(an+1) ≤ ϕ2(an) ≤ ϕ3(an−1) ≤ · · · ≤ ϕn+2(a0).

Since ϕ ∈ Φ, we conclude that limn→∞ ρ(x̃n+1, x̃n) = limn→∞ an = 0.
Now, we would prove that {x̃n} is a Cauchy sequence in X . In fact, for

an arbitrary ε > 0, since limn→∞ ϕn(ε) = 0, it follows from Lemma 1.1 that
ϕ(ε) < ε. So there is N ∈ Z+ such that aN ≤ ε− ϕ(ε). Let x̃ ∈ Ω := {x̃ ∈ X :
ρ(x̃, x̃N ) ≤ ε, x̃N � x̃}, then by the triangle inequality

ρ(G(x̃), x̃N ) ≤ ρ(G(x̃), G(x̃N )) + ρ(G(x̃N ), x̃N )

≤ ϕ(ρ(x̃, x̃N )) + aN < ϕ(ε) + aN

≤ ϕ(ε) + ε− ϕ(ε) = ε.

Also, x̃N � G(x̃N ) � G(x̃). This means that the set Ω is invariant for the
operator G. Clearly, x̃N ∈ Ω. Thus x̃N+p ∈ Ω for all p ∈ Z+. So, the sequence
{x̃n} is a Cauchy sequence in X . Since (X, ρ) is a complete metric space, there
exists a point x̄ ∈ X such that limn→∞ x̃n = x̄.

Suppose that (a) in the assumption (iii) holds. Then by (2), we have

x̄ = lim
n→∞

x̃n = lim
n→∞

G(x̃n−1) = G(x̄).



NOTE FOR THE TRIPLED AND QUADRUPLE FIXED POINTS 997

Let us assume that the assumption (b) holds, then x̃n � x̄ for all n ∈ Z+.
Thus from the assumption (i), we have

ρ(x̄, G(x̄)) ≤ ρ(x̄, G(x̃n)) + ρ(G(x̃n), G(x̄))

≤ ρ(x̄, x̃n+1) + ϕ(ρ(x̃n, x̄)) → 0 as n→ ∞.

So ρ(x̄, G(x̄)) = 0.
For both cases, the operator G has a fixed point x̄ in X . The proof of

Proposition 3.1 is complete. �

Let D = {x̃ ∈ X : x̃ and G(x̃) are comparable}. Then we have:

Proposition 3.2. Let (X,�, ρ) be a partially ordered complete metric space

and G : X → X be a monotone non-decreasing operator with respect to the

order � on X. Assume (i) in Proposition 3.1 and one of following conditions

hold:
(a) G is a continuous operator;
(b) if a monotone sequence x̃n in X tends to x̄, then x̃n and x̄ are comparable

for all n.

Then the operator G has a fixed point in X if and only if D 6= φ. Furthermore,

if D is a totally ordered nonempty subset, then the operator G has a unique

fixed point in X

Proof. It is easy to see that all the fixed points of G fall in the set D. Thus if
the operator G has a fixed point in X , then D 6= φ.

We suppose the condition (a) holds. If D 6= φ and x̃0 ∈ D, then there are
two cases: x̃0 � G(x̃0) or G(x̃0) � x̃0. For the first case, following Proposi-
tion 3.1, we claim that the operator G has a fixed point in X . For the other
case: G(x̃0) � x̃0, noting the symmetry of the metric, we see that the for-
mula (1) holds for ỹ � x̃. Thus ρ(G(x̃), G(ỹ)) ≤ ϕ(ρ(x̃, ỹ)) for each x̃, ỹ ∈ X

satisfying x̃ is comparable with ỹ. Constructing the sequence {x̃n} in X by
x̃n = G(x̃n−1) for n = 1, 2, . . ., we have

· · · � x̃n � · · · � x̃2 � x̃1 � x̃0.

Following the similar proof of Proposition 3.1 and resetting Ω := {x̃ ∈ X :
ρ(x̃, x̃N ) ≤ ε, x̃ � x̃N}, we conclude that the sequence {x̃n} tends to a fixed
point of G.

Now we assume the condition (b) holds. Similar with the case (a), we see
that the monotone sequence {x̃n} is a Cauchy sequence and label the limit
point as x̄. Thus x̄ is comparable with x̃n for all n ∈ Z+. Then we have

ρ(x̄, G(x̄)) ≤ ρ(x̄, G(x̃n)) + ρ(G(x̃n), G(x̄))

≤ ρ(x̄, x̃n+1) + ϕ(ρ(x̃n, x̄)) → 0 as n→ ∞.

Thus the operator G has a fixed point x̄ in X .
Next, we suppose thatD is a totally ordered nonempty subset. It is sufficient

to prove the uniqueness of fixed point of F̃ . Let x̃ and ỹ be two fixed points



998 JUN WU AND YICHENG LIU

of G, then x̃ is comparable with ỹ, G(x̃) = x̃ and G(ỹ) = ỹ. Following the
assumption (i), we have

ρ(x̃, ỹ) = ρ(G(x̃), G(ỹ)) ≤ ϕ(ρ(x̃, ỹ)) ≤ ϕ2(ρ(x̃, ỹ)) ≤ · · · ≤ ϕn(ρ(x̃, ỹ)).

Thus ρ(x̃, ỹ) = 0, that is x̃ = ỹ. The proof of Proposition 3.2 is complete. �

Let Φ1 denote all the functions φ : [0,+∞) → [0,+∞) which satisfy that
limt→r φ(t) > 0 for all r > 0 and limt→0+ φ(t) = 0. Let Ψ denote all the
functions ψ : [0,+∞) → [0,+∞) which satisfy (i) ψ(t) = 0 if and only if t = 0,
(ii) ψ is continuous and non-decreasing, (iii) ψ(s + t) ≤ ψ(s) + ψ(t) for all
s, t ∈ [0,+∞).

Lemma 3.1. If ψ ∈ Ψ and φ ∈ Φ1, then for r ≥ 0,

ϕ(r) := 4 sup
0≤t≤r

{ψ−1[
1

4
ψ(r) − φ(r)]}

is well-defined and ϕ ∈ Φ.

Proof. Since 1
4
ψ(r) ≤ ψ(r), ψ is continuous and (monotone) non-decreasing,

ψ−1 is well-defined. Obviously, the function ϕ is increasing. Noting that ψ(s+
t) ≤ ψ(s) + ψ(t) for all s, t ∈ [0,+∞), we have

1

4
ψ(r) =

1

4
ψ(
r

4
+
r

4
+
r

4
+
r

4
) ≤ ψ(

r

4
) for all r ≥ 0.

Thus, for r > 0, there is a t0 ∈ (0, r], such that

ϕ(r) = 4 lim
t→t0

ψ−1[
1

4
ψ(t)− φ(t)]

= 4ψ−1[
1

4
ψ(t0)− lim

t→t0
φ(t)]

< t0 ≤ r.

Then, for r > 0, by

0 ≤ ϕn(r) ≤ ϕn−1(r) ≤ · · · ≤ ϕ(r).

Thus there is a constant a ≥ 0 such that limn→∞ ϕn(r) = a. If a > 0, by
ϕn+2(r) = ϕ(ϕn+1(r)) ≤ ϕn+1(r), we see that limr→a+ ϕ(r) = a. On the other
hand, there is a ta ∈ (0, a] such that

lim
r→a+

ϕ(r) = 4 lim
t→ta

ψ−1[
1

4
ψ(t)− φ(t)] = 4ψ−1[

1

4
ψ(ta)− lim

t→ta
φ(t)]

< 4ψ−1[
1

4
ψ(ta)] ≤ ta ≤ a.

This is a contradiction. Thus limn→∞ ϕn(r) = 0 for all r > 0, then ϕ ∈ Φ. �

Following Proposition 3.1, we have the next corollaries.
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Corollary 3.1 ([12], Theorem 11]). Let (X,≤) be a partially ordered set and

(X, d) be a complete metric space. Let F : X4 → X be a mapping having the

mixed monotone property on X. Assume that for all x ≤ u, v ≤ y, z ≤ r and

t ≤ w

(4)

ψ(d(F (x, y, z, w), F (u, v, r, t)))

≤ 1

4
ψ(d(x, u) + d(y, v) + d(z, r) + d(w, t))

− φ(d(x, u) + d(y, v) + d(z, r) + d(w, t)),

where φ ∈ Φ1 and ψ ∈ Ψ. Suppose that F is a continuous mapping or X has

the following properties:
(i) if non-decreasing sequence xn tends to x, then xn ≤ x for all n,

(ii) if non-increasing sequence yn tends to y, then y ≤ yn for all n. If there

exist x0, y0, z0, w0 ∈ X such that

x0 ≤ F (x0, y0, z0, w0), F (y0, z0, w0, x0) ≤ y0,

z0 ≤ F (z0, w0, x0, y0), F (w0, x0, y0z0) ≤ w0,

then there exist x, y, z, w ∈ X such that

F (x, y, z, w) = x and F (y, z, w, x) = y, F (z, w, x, y) = z and F (w, x, y, z) = w.

Proof. Define the partial order � in X4 be defined by

P � Q ⇔ x ≤ u, v ≤ y, z ≤ r, t ≤ w

and ρ(P,Q) := d(x, u) + d(y, v) + d(z, r) + d(w, t) for P = (x, y, z, w), Q =
(u, v, r, t) ∈ X4. It is easy to see that (X4,�, ρ) is a partially ordered complete
metric space. Define the operator G : X4 → X4 by, for P = (x, y, z, w),

G(P ) = (F (x, y, z, w), F (y, z, w, x), F (z, w, x, y), F (w, x, y, z)),

then we would prove that G is nondecreasing monotone operator on X4 for the
order �. In fact, for P1 = (x1, y1, z1, w1) � P2 = (x2, y2, z2, w2), then by the
mixed monotone property of F on X (see Definition 2.2), we have

F (x1, y1, z1, w1) ≤ F (x2, y1, z1, w1) ≤ F (x2, y1, z2, w1)

≤ F (x2, y2, z2, w1) ≤ F (x2, y2, z2, w2).

Similarly, we have

F (y2, z2, w2, x2) ≤ F (y2, z1, w2, x1) ≤ F (y1, z1, w1, x1),

F (z1, w1, x1, y1) ≤ F (z2, w1, x2, y1) ≤ F (z2, w2, x2, y2),

F (w2, x2, y2, z2) ≤ F (w2, x1, y2, z1) ≤ F (w1, x1, y1, z1).

Thus G(P1) � G(P2). This implies that G is a nondecreasing monotone oper-
ator on X4 for the order �.

On the other hand, by Lemma 3.1, there is a ϕ ∈ Φ such that

ρ(G(P ), G(Q)) = d(F (x, y, z, w), F (u, v, r, t)) + d(F (z, w, x, y), F (r, t, u, v))

+ d(F (y, x, w, z), F (v, u, t, r)) + d(F (w, z, y, x), F (t, r, v, u))
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≤ 4ψ−1[
1

4
ψ(ρ(P,Q))− φ(ρ(P,Q))]

= ϕ(ρ(P,Q)).

Also, there is a P0 = (x0, y0, z0, w0) ∈ X4 such that P0 � G(P0). Meanwhile,
if the nondecreasing sequence Pn = (xn, yn, zn, wn) ∈ X4 tends to the P =
(x, y, z, w) ∈ X4, then xn and zn are non-decreasing in X tend to x and z, yn
and wn are non-increasing in X tend to y and w, respectively. Thus by the
property (i) and (ii), we have Pn � P .

Following all above arguments, we see that the assumptions in Proposition
3.1 hold. Thus the operator G has a fixed point P = (x, y, z, w) ∈ X4, that is,

(x, y, z, w) = (F (x, y, z, w), F (y, z, w, x), F (z, w, x, y), F (w, x, y, z)).

Thus we have

F (x, y, z, w) = x, F (y, z, w, x) = y, F (z, w, x, y) = z and F (w, x, y, z) = w.

The proof of Corollary 3.1 is complete. �

Corollary 3.2. If the assumption (4) is replaced by there exist constants ci ∈
[0, 1)(i = 1, 2, 3, 4) such that c1 + c2 + c3 + c4 < 1 and

d(F (x, y, z, w), F (u, v, r, t)) ≤ c1d(x, u) + c2d(y, v) + c3d(z, r) + c4d(w, t))

for all x ≤ u, v ≤ y, z ≤ r and t ≤ w, then the results in Corollary 3.1 are true.

Proof. Similar arguments as the proof of Corollary 3.1, let ϕ(r) = (c1 + c2 +
c3 + c4)r for r ≥ 0 and re-estimate the formula

ρ(G(P ), G(Q)) = d(F (x, y, z, w), F (u, v, r, t)) + d(F (z, w, x, y), F (r, t, u, v))

+ d(F (y, x, w, z), F (v, u, t, r)) + d(F (w, z, y, x), F (t, r, v, u))

≤ (c1 + c2 + c3 + c4)ρ(P,Q) = ϕ(ρ(P,Q))

for P,Q ∈ X4. Thus the results in Corollary 3.1 are true. �

Corollary 3.3 ([3]). Let (X,≤) be a partially ordered set and (X, d) be a

complete metric space. Let F : X3 → X be a mapping having the mixed

monotone property on X. Assume that there exist constants a, b, c ∈ [0, 1) such
that a+ b+ c < 1 for which

d(F (x, y, z), F (u, v, w)) ≤ ad(x, u) + bd(y, v) + cd(z, w)

for all x ≤ u, v ≤ y, z ≤ w. Assume that F is a continuous mapping or X has

the following properties:
(i) if non-decreasing sequence xn tends to x, then xn ≤ x for all n,

(ii) if non-increasing sequence yn tends to y, then y ≤ yn for all n. If there

exist x0, y0, z0 ∈ X such that

x0 ≤ F (x0, y0, z0), F (y0, x0, y0) ≤ y0, z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z) = x and F (y, x, y) = y and F (z, y, x) = z.
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Proof. For a given constant r ∈ (a + b + c, 1), R = (x, y, z) ∈ X3 and S =
(u, v, w) ∈ X3, define

ρ(R,S) :=

{

(r − a)d(x, u) + (r − a)d(y, v) + (r − a− b)d(z, w) as c = 0,
(b + c)d(x, u) + (b+ 2c)d(y, v) + cd(z, w) as c 6= 0,

then (X3,�, ρ) is a partially ordered complete metric space, where the order
� is given by

R � S ⇔ x ≤ u, v ≤ y, z ≤ w.

Also, define the operator G : X3 → X3 by

G(R) = (F (x, y, z), F (y, x, y), F (z, y, x)) for R = (x, y, z) ∈ X3.

By the mixed monotone property of F , we conclude that G is monotone non-
decreasing for the order �. Then there exists an R0 = (x0, y0, z0) ∈ X3 such
that R0 � G(R0).

On the other hand, as c = 0, we have

ρ(G(R), G(S))

= (r − a)d(F (x, y, z), F (u, v, w)) + (r − b)d(F (y, x, y), F (v, u, v))

+ (r − a− b)d(F (z, y, x), F (w, v, u))

≤ (r − a)[ad(x, u) + bd(y, v) + cd(z, w)]

+ (r − a)[ad(y, v) + bd(x, u) + cd(y, v)]

+ (r − a− b)[cd(x, u) + bd(y, v) + ad(z, w)]

≤ r[(r − a)d(x, u) + (r − a)d(y, v) + (r − a− b)d(z, w)]

= rρ(R,S).

For c 6= 0, we have

ρ(G(R), G(S))

= (b+ c)d(F (x, y, z), F (u, v, w)) + (b+ 2c)d(F (y, x, y), F (v, u, v))

+ cd(F (z, y, x), F (w, v, u))

≤ (b+ c)[ad(x, u) + bd(y, v) + cd(z, w)]

+ (b + 2c)[ad(y, v) + bd(x, u) + cd(y, v)]

+ c[cd(x, u) + bd(y, v) + ad(z, w)]

≤ r[b + c)d(x, u) + (b+ 2c)d(y, v) + cd(z, w)]

= rρ(R,S).

Thus ρ(G(R), G(S)) ≤ rρ(R,S). Taking ϕ(t) = rt for t > 0, from Proposition
3.1, we conclude that G has a fixed point R = (x, y, z) ∈ X3. Thus there exist
x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.
�
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Remark 3.1. Additionally, in Corollary 3.3, if F (y0, z0, y0) ≤ y0 holds. We
redefine the operator G : X3 → X3 by

G(ã) = (F (x, y, z), F (y, z, y), F (z, y, x)) for ã = (x, y, z) ∈ X3,

then it follows from the proof of Corollary 3.3 that there exist x, y, z ∈ X such
that

F (x, y, z) = x, F (y, z, y) = y and F (z, y, x) = z.

4. Fixed point theorems

Theorem 4.1. Let (X,≤) be a totally ordered set and (X, d) be a complete

metric space. Let F : X3 → X be a mapping having the mixed monotone

property on X. Assume that there exist constants a, b, c ∈ [0, 1) such that

a+ b+ c < 1 for which

d(F (x, y, z), F (u, v, w)) ≤ ad(x, u) + bd(y, v) + cd(z, w)

for all x ≤ u, v ≤ y, z ≤ w. Assume that F is a continuous mapping or X has

the following properties:
(i) if non-decreasing sequence xn tends to x, then xn ≤ x for all n,

(ii) if non-increasing sequence yn tends to y, then y ≤ yn for all n. If there

exist x0, y0, z0 ∈ X such that one of following assumptions holds:

(a) x0 ≤ F (x0, y0, z0), z0 ≤ F (z0, y0, x0) and F (y0, x0, y0) ≤ y0;

(b) x0 ≤ F (x0, y0, z0), z0 ≤ F (z0, y0, x0) and F (y0, z0, y0) ≤ y0,

then F has a unique fixed point in X, that is, there exists a unique x ∈ X such

that F (x, x, x) = x.

Proof. We suppose F (y0, z0, y0) ≤ y0 hold. Basing the Corollary 3.3 and Re-
mark 3.1, we conclude that there exist x, y, z ∈ X such that

F (x, y, z) = x, F (y, z, y) = y and F (z, y, x) = z.

Next we prove z = x. In fact, by direct computation, we have

d(z, x) = d(F (z, y, x), F (x, y, z))

≤ d(F (z, y, x), F (x, y, x)) + d(F (x, y, x), F (x, y, z))

≤ ad(z, x) + cd(z, x)

= (a+ c)d(z, x).

Thus d(z, x) = 0. Then we have F (x, y, z) = F (x, y, x) = x.
On the other hand,

d(y, x) = d(F (y, x, y), F (x, y, x))

≤ d(F (y, x, y), F (x, x, x)) + d(F (x, x, x), F (x, y, x))

≤ (a+ c)d(y, x) + bd(y, x)

= (a+ b+ c)d(y, x).
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It follows from a+ b+ c < 1 that d(y, x) = 0. Then we have x = y. Thus there
exists x ∈ X such that F (x, x, x) = x.

Uniqueness: Let x, y ∈ X satisfy F (x, x, x) = x and F (y, y, y) = y. Since

d(x, y) = d(F (x, x, x), F (y, y, y))

≤ d(F (x, x, x), F (y, x, y)) + d(F (y, x, y), F (y, y, y))

≤ (a+ b+ c)d(x, y),

we obtain d(x, y) = 0. Then we conclude that there exists a unique x ∈ X such
that F (x, x, x) = x. �

Theorem 4.2. Let (X,≤) be a totally ordered set and (X, d) be a complete

metric space. Let F : X4 → X be a mapping having the mixed monotone

property on X. Assume that there exist constants a, b, c, e ∈ [0, 1) such that

a+ b+ c+ e < 1 for which

d(F (x, y, z, w), F (u, v, r, t)) ≤ ad(x, u) + bd(y, v) + cd(z, r) + ed(w, t)

for all x ≤ u, v ≤ y, z ≤ r, t ≤ w. Assume that F is a continuous mapping or

X has the following properties:
(i) if non-decreasing sequence xn tends to x, then xn ≤ x for all n,

(ii) if non-increasing sequence yn tends to y, then y ≤ yn for all n. If there

exist x0, y0, z0, w0 ∈ X such that

(5)
x0 ≤ F (x0, y0, z0, w0), F (y0, z0, w0, x0) ≤ y0,

z0 ≤ F (z0, w0, x0, y0), F (w0, x0, y0z0) ≤ w0,

then F has a unique fixed point in X, that is, there exists a unique x ∈ X such

that F (x, x, x, x) = x.

Proof. It follows from Corollary 3.2 that there exist x, y, z, w ∈ X such that

F (x, y, z, w) = x, F (y, z, w, x) = y, F (z, w, x, y) = z, F (w, x, yz) = w.

Since

d(z, x) = d(F (z, w, x, y), F (x, y, z, w))

≤ d(F (z, w, x, y), F (x,w, x, y)) + d(F (x,w, x, y), F (x,w, z, y))

+ d(F (x,w, z, y), F (x, y, z, y)) + d(F (x, y, z, y), F (x, y, z, w))

≤ ad(z, x) + cd(z, x) + bd(y, w) + ed(y, w),

then we have d(z, x) ≤ b+e
1−a−c

d(y, w).

Symmetrically, we can deduce that d(y, w) ≤ b+e
1−a−c

d(z, x).

It follows from a+ b+ c+ e < 1 that d(y, w) = d(z, x) = 0. Thus z = x and
y = w.

Furthermore, we have

d(x, y) = d(F (x, y, x, y), F (y, x, y, x))

≤ d(F (x, y, x, y), F (x, x, x, x)) + d(F (x, x, x, x), F (y, x, y, x))
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≤ (a+ b+ c+ e)d(x, y).

Thus x = y. The uniqueness is obvious. Then we can conclude that there
exists a unique x ∈ X such that F (x, x, x, x) = x. The proof of Theorem 4.2 is
complete. �

Exmple 4.1. Let X = [0,+∞), d(x, y) = |x− y| and define F : X3 → X by

F (x, y, z) =
1

2
x+

1

5 + y
+

1

4
z + 2.

It is easy to see that F is a mapping having the mixed monotone property and

d(F (x, y, z), F (a, b, c)) ≤ 1

2
d(a, x) +

1

5
d(b, y) +

1

4
d(c, z).

Also, there exist x0 = z0 = 1 and y0 = 10 such that x0 ≤ F (x0, y0, z0), z0 ≤
F (z0, y0, x0) and F (y0, x0, y0) ≤ y0. Since X is a totally ordered set, it follows

from Theorem 4.1 that there is a unique x = 1
2
(3+

√
185) such that F (x, x, x) =

x.

Remark 4.1. If we replace the initial condition (5) in Theorem 4.2 by

x0 ≤ F (x0, w0, z0, y0), F (y0, x0, w0, z0) ≤ y0,

z0 ≤ F (z0, w0, x0, y0), F (w0, x0, y0z0) ≤ w0,

then F also has a unique fixed point in X .
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