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ABSTRACT. In this paper, we deal with the problem of uniqueness of meromorphic func-
tions that share three values, and obtain some theorems which improve some results of
Brosch, Yi and other authors.

1. Introduction and definitions

Let f and g be two nonconstant meromorphic functions on the open complex
plane C, and let a be a finite value in the complex plane. We say that f and g share
the value a CM ( IM ) provided that f —a and g — a have the same zeros counting
multiplicities ( ignoring multiplicities ), and f, g share co CM ( IM ) provided that
1/f, 1/g share 0 CM ( IM ). We do not explain the standard notations of value
distribution theory as those are available in Hayman [4] or Yang and Yi [11].

We denote by S(r, f) any function satisfying S(r, f) = o(T(r, f)) as r — 400
possibly outside a set E of finite Lebesgue measure. A meromorphic function a(z)
is said to be a small function of f,if T(r,a) = S(r, f).

Let f and g be nonconstant meromorphic functions and a be a small meromor-
phic function of f and g. We denote by N(r,a, f,g)( and Ng(r,a, f,g) ) the reduce
counting function of the common zeros of f —a and g — a (with the same multiplic-

ia)_ﬁ(raavf,g) :S(T,f).

We say that f and g share a GIM (some authors use the symbol IM* or “IM” ), if
f=a=>g=aandg=a= f=a. If

ities). We write f = a = g = a to mean that N(r, 7

— 1
N(T’,m

then we say that f and g share a GCM (some authors use the symbol CM* or “CM”
)(see ([8], [11], [15])). Evidently, if f and ¢ share a IM (or CM) then f and g share
a GIM (or GCM ).

)= Ng(r,a, f,g) = S(r, f) and N(r, ; i a) — Ng(r,a, f,g) = S(r,g9),
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Definition 1. Let p be a positive integer. We denote by Ny (r, f) (or Np) (r, f)) the
counting function of all poles of f with multiplicities < p ( ignoring multiplicities).
We recall that Ny,i1(r, f) = N(r, f) = Npy(r, f) and Ngyq(r, f) = N(r, f) —

Np) (Ta f)
Lahiri [5] introduced the notion of weighted sharing by the following definition:

Definition 2. Let k be a nonnegative integer or infinity. For any a € C'|J{oo}, we
denote by Fy(a, f) the set of all a-points of f, where an a-point of multiplicity m
is counted m times if m < k and k + 1 times if m > k. If Ex(a, f) = Ex(a,g), we
say that f, g share (a,k).

Yi [13] proved the following theorem which is extended the results of Ueda [10]
and Ye [12].

Theorem A. Let f and g be two distinct nonconstant meromorphic functions shar-
1
ing 0, 1, co CM, and let a(# 0, 1) be a finite complex number. If N(r, ) #
g—a

T(r,g)+ S(r,g), then a is a Picard exceptional value of g, and f and g satisfy one
of the following three relations:

i) (g—a)(f+a—1)=a(l—a); (i) g+ (a—1)f =a; (ili) g =af.

Recently, the author [1] has proved the following two results.

Theorem B. Let f and g be two distinct nonconstant meromorphic functions shar-
ing (0,k1), (1,k2), (00,ks), where k; (j =1,2,3) are positive integers satisfying

(11) kikoks > kq +k2+k3+2,

and let a(Z£ 0, 1, 0o0) be a small meromorphic function of f and g. Then

_ 1 _
1.2 N =S(r,g), N@a(r,—)=S([).
(12) alr =) = S(rg). Nalr. =) = S(1)
‘ af .
Moreover, if g & {ﬁ7 (1—a)f+a, af} orais a constant then
a4 —

(13) Ns(r, ——) = S(r,9)

. 3\ J—a = r9)-
Theorem C. Under the assumptions of Theorem B, if Ny(r, ) £ T(r,g) +

g—a

— 1
S(r,g), then N(r, = a) = S5(r,g), and f and g satisfy one of the three relations in

Theorem A.

Remark 1. Yi [14, Lemma 2.6] has proved that if f and g are two distinct non-
constant meromorphic functions sharing (0,k1), (1,k2), (c0,ks) where k; (j =
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— 1
1,2,3) are positive integers satisfying (1.1), then N(y(r, ) = S(r,g) and

g—a
— 1
N o(r, fi) = S(r, f), for all @ = 0, 1, oo. That means, f and g share 0,1, 00
—a
GCM.

pe* —1 L pef —1

Example 1. Let f = ¢——— and g =e¢ , where p and ¢ are non-
22 _ e2z

constant rational functions with gp # 1. It is readily checked that f and g share
0, 1, co GCM, but they do not share 0, 1 or oo IM (i.e., f and g do not satisfy
the condition of Weighted sharing ).

Question 1. If the condition “ sharing three values” in Theorems B and C is
replaced by the condition “ sharing three values GCM ”, are Theorems B and C
still true?

We answer this question by the following results which extend Theorem B and
Theorem C.

Theorem 1. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0, 1, oo GCM, and let a (£ 0, 1, o0) be a small meromorphic function of f
and g. Then the conclusions of Theorem B still hold.

Theorem 2. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0, 1, oo GCM, and let a (#£ 0, 1, oco) be a small meromorphic function of f
and 9. 1f Noy(r,——) # T(r.g) + 5(r.9) then N(r, ——) = S(r.q). and f and g
satisfy one of the three relations in Theorem A.

The following corollary applies readily to Theorems 1 and 2.
Corollary 1. Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, co GCM. Ifa, b (£ 0, 1, o0) are distinct small meromorphic functions

of f and g, then either Ns(r, ) = S(r,g) or N(r, %) =5(r,g).
g—a g9 -

Remark 1 tells us that Theorem 1 extends of Theorem B and Theorem 2 extends
of Theorem C.

Example 2. Let f = (e? —1)?, g=¢? — 1 and a = —1, where p is a nonconstant
polynomial. We see that f and g share 0 GIM. Furthermore, f and g share 1, oo
GCM, and N(r,1/(g — a)) = 0, but we see that the conclusions of Theorem A fail
to hold. This shows that the condition “sharing 0, 1, co GCM” in Theorem 2 is
necessary.

2. Lemmas

Lemma 1([11]). Let f and g be two nonconstant meromorphic functions sharing
0,1,00 GIM. Then T(r, ) <3T(r,g) + S(r, ) and T(r,g) < 3T(r, f) + S(r, g).
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The lemma 1 shows that S(r, f) = S(r,g) and we denote them by S(r), unless
otherwise stated.

Lemma 2. Let f and g be two distinct nonconstant meromorphic functions sharing

-1
0,1,00 GIM, and let o = / 1 and H = i The following statements are equiva-
g
lent:

(i) f and g share 0,1,00 GCM;
— 1 — 1
(ii) N(o(r, 7——) + Na(r, H) =S(r), fora=0, 1, oc;

f—a
(iii) N(r,a_a)JrN(r, Hl—a) = S(r), fora=10, co.
Proof. Let
I A SN SN SR |
N T S N (T VY

It is clear that if ¢; = 0 then f = Ag, where A # 0,1 is a constant. Hence, f

o 1 _

and g share 0,1,00 GCM, and N(r, ﬁ) + N(r, 7 A) = S(r). By the second
— 1 —

fundamental theorem of Nevanlinna, we get T'(r, f) = N(r, ?) +S(r)=N(r, f)+

_ 1
S(r), which gives us Ny (r, ?) + No(r, f) = S(r). In fact, one can prove that the

lemma is clear when ¢; = 0 (i = 2,3). Therefore, we consider that ¢; Z 0 (i =
1,2,3)

()= (ii) We first prove that T(r,¢1) = S(r). We can easily verify that the poles
of ¢1 occur at (1) the zeros and poles of f (2) the zeros and poles of g. Since
the poles of ¢; are simple and m(r,¢1) = S(r), then T(r,¢1) = S(r). Similarly,
T(r, 6;) = S(r) (i = 2,3).

We may view that if z is a common zero of f and g with the same multiplicity (> 2)
then z is also a zero of ¢o. Consequently, since (i) occurs then

— 1 1
N o(r, }) < N(r, ¢—) + S(r) <T(r,¢2) + S(r) = S(r).
2
In the same way, we can prove that
— 1 — 1 — 1 — _
N@(r,——=) + Ne(r, =) + N, )+ Ne(r, f) + N(r,g) = S(r).
f-1 g g—1
.. —, 1 — 1 —
(il)=> (iii) We see N(r, E) < No(r, ?) + N(r,g) +8(r) = S(r).
Similarly, N (r, l) + N(r,H) + N(r,a) = S(r).
@
(iii)=> (i) Since ¢1 = % and ¢o = a—, it is obvious that T'(r,¢;) = S(r), (i =
@
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1,2,3).

Let z be a common zero of f and g with multiplicity n and m respectively. If n # m,
then z is a pole of ¢, but the counting function of those points is equal to S(r),
that is, f and g share 0 GCM. Similarly, f and g share 1,00 GCM. This proves
Lemma 2. U

From the proof of Lemma 2, we deduce the following lemma:

Lemma 3. Let f and g be two distinct nonconstant meromorphic functions sharing

’

H H,
0,1,00 GCM. Suppose that 1 = —, ¢ = — and ¢3 = FO are not constant
0

functions, where Hy = %. Then T(T7 i) = (1"), i=1,2,3.

Lemma 4. Let f and g be monconstant meromorphic functions sharing 0,1, 00
GCM such that f is not a linear transformation of g. Then each of the following
holds:

(@) T(r, f) + T(r, g) = No(r) + N(r, é) + Nlrg) + N, - !

-1

)+ S(r);

(i) Noo(r, ig>=s<r>;

(i) No(r, ~) = N()(r,;) + S(r.g), No(ﬂ%) - No(ﬁ%) L S0 ), No(r) =
No(r) + S(r); .

(iv) T'(r, f) = No(r) + No(r, ?) +S(r), T(r,g) = No(r)+ No(r, ?) +S(r);

) N, 897Dy _ Nr ) + No(r) + S(r),

‘ @

where No(r) ( No(r) ) denotes the counting function of the zeros of f—g which are

f,) )
denotes the counting function corresponding to the zeros of f' that are not zeros of
f(f = 1) ( ignoring multiplicities ).

1
not the zeros of g(g—1) , 1/g (ignoring multiplicities) and No(r, ?) ( No(r,

Proof. Since f is not a linear transformation of g then o, H and Hj are nonconstant
o

functions, where o, H and Hy are defined as in Lemmas 2 and 3. Let A = ——%—.

T H

a
[eY

Then from Lemmas 2 and 3, we see that A is a small function of f, and

1—a! -«
(22) f_H_l_a_la g_H—Oé
By (2.2), it is easily verified that
Hp 9'(g—1)
2.3 —O(f=x .
(2.3) 7, = =1

£ o O‘f/()\fl)f}\’
= — — = — — 1 T - = O‘—.
Let F=(f—AN(Ho—1)=a—AHy+ A hen r Y
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/!

If g()\ —1)=X =0, then T(r,a) + T(r, F) = S(r). That is, T(r, Hy) = S(r), and
a

by (2.2) we get T'(r, f) = S(r), which is impossible. Consequently, we have =

=X
%_% . This formula and L 2, 3 yield m(r, ——) + Na(r, ——)
; is formula and Lemmas 2, 3 yield m(r, T, =
o —1- ' Foa ey
S(r), which 1mphes
1
24 T = Ny

Let z be a zero of ¢ with multiplicity n(> 2) such that it is not the zero of g(g —1).
If z is not the pole of f, then from (2.3) and (2.4), we deduce that the counting
function of those points is equal to S(r).

Consider that z is a pole of f with multiplicity i(f)(> 2). Then z is a zero of ¢3
with multiplicity i(¢3) > min{n,i(f) — 1}. If n < i(f) — 1 then, from Lemma 3, it
is obvious that the counting function of those points is equal to S(r).

Assume that n > i(f) — 1. If n = i(f) then 2i(¢3) > n; and if n = i(f) + 1 then

Hj
3i(¢3) > n; and if n > i(f) + 1 then z is a zero of foi —O0(f — \) with multiplicity

0
> n —i(f) > 2. Then from (2.3), (2.4) and Lemma 3, we get that the counting
function of those points is equal to S(r). Consequently, we conclude that

— 1
No(r, ?) = Noy(r, ?) +S(r, 9).

The proof of the rest (iii) follows from (2.3) and (2.4). Again, the identities (2.3)
_ 1.
and (2.4) give us T'(r, f) = Ny(r, 7)\) = No(r, =) + No(r) + S(r,g), which is
- g
(iv). By (iii) and (iv), it is not difficult to show that
(25) N(T,f—g) SN(T,f)+N(2(T,g)+S(T)

By the second fundamental theorem of Nevanlinna, Lemma 2, (2.5) and by using
(iv), we note

T(r, f)+T(r,9)
No(r, ;) + No(r) + N(r, é) + N(r,g) + N(r, giil) — No(r, ;) +S(r)

IN

IN

Num+ﬁm§+ﬁmm+ﬁm )+ S(r)

-1
mf1;+Nwm+a><Nmf§?+wmnm+mw
T(r,f—g)+ Niy(r,g) + S(r)
m(r, f) +m(r,g) + N(r, f) + Na(r,g) + Niy(r, 9) + ()
T(r, f)+T(r,g) + S(r).

IN
2\

INIA
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From this we deduce (i) and (ii).
f—g
g9(g—1)

(1) If 2o is a zero of g(g — 1) then it is a zero of f — g with multiplicity > m.

It remains only to prove (v). Let zy be a zero of with multiplicity m > 1.

1
(2) If 2o is not the zero of g(g — 1), — then it is a zero of f — g with multiplicity m.
g

(3) If 2o is a pole of g with multiplicity i(g) and it is not a pole of f, then i(g) = m.

Suppose that zg is a pole of f and g with multiplicity i(f) and i(g) respectively.

(4) It i(g) < i(f), then m = 2i(g) —i(f). Thus, i(g) > 1 and zp must be a zero of

¢3 with multiplicity > i(g) — 1, where ¢3 # 0 is defined as in (2.1) .

(5) If i(g) = i(f) > 2 and zg is not the zero of f — ¢ then m < 2i(g) and 2y is a zero

of ¢3 with multiplicity > i(g) — 1.

(6) If i(g) = i(f) > 2 and zp is a zero of f — g with multiplicity i(f — g) then

m =1i(f —g) + 2i(g) and zg is a zero of ¢3 with multiplicity > i(g) — 1.

—9_ \hich fall in
g9(g—1)

the case (j), j € {1,2,3,4,5,6}. Therefore, Lemma 2, Lemma 3, and (ii) and (iii) of

Lemma 4, we deduce that N;(r) = S(r), j € {1,4,5,6} and Na(r) = No(r) + S(r).

We denote by N;(r) the counting function of those zeros of

We denote by N7(r) the counting function of those zeros of (f_gl) such that every
99 —

point in that function is a common pole of f and g with multiplicities i(f) and i(g)

respectively, and i(f) < i(g), each point in that function is counted according to

the multiplicities of poles of g. Consequently,

Nl SLZ8) — Na(r) 4 N0+ Nofr) + (1) = N(r:9) + Nofr) + 50),
which is (v). This proves Lemma 4. O

Lemma 5([7]). Let f1 and fo be nonconstant meromorphic functions satisfying

Nir, f2) + N(r, %) = (), T(r fi) £ S(), T(r 25 £ 50, i#4 i j=1, 2

Let a; and b; (i =1, 2) be nonzero small meromorphic functions of fi and fo. Then
T(r,a1 fi+asfo) = T(r,by f1i+ba f2)+S(r), m(r,a1fi+asfa) =m(r, by f1+bsfa)+S(r),
where S(r) = o(max{T'(r, f1), T(r, f2)}).

Lemma 6([6]). Let f1, f2, f3 be nonconstant meromorphic functions such that
fit fo+ f3=1. If f1, fo, f3 are linearly independent, then

T(T, fl) < NQ(Ta i) +N2(7”, i) +N2(7’, i) +N(T7 fl) +N(T’, f2) +N(Tv fS) +S(7”),
fi f2 f3

where No(r, f;) = N(r, fi)—i—N(Q(r, fi) and S(r) = o(max{T'(r, f1), T(r, f2), T(r, f3)}).
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Lemma 7([16]). Let f1 and fo be two distinct nonconstant meromorphic func-
— —, 1
tions satisfying N(r, f;) + N(r, ?) =S(r), i=1, 2. Then either No(r,1, f1, f2) =

K3
S(r, f1, f2) or there exist two integers s, t (|s| + [t| > 0) such that fifi =
1. Here Ny(r,1, f1, f2) is the counting function of the common l-points of fi
and fa, each point in that function is counted only once, and S(r, f1, f2) =

max{S(r, f1), S(r, f2)}.

The proof of the following lemma is omitted, since it can be proved by the sim-
ilar lines of Lemma 7 in [16].

Lemma 8. Let f and g be monconstant meromorphic functions sharing 0,1, 00
GCM. If f is a linear transformation of g, then f and g assume one of the follow-
ing relations:

() g=f; (1) g+f=1(0) (g-1)(f-1) =1 (v) gf =1 (v) (g-A)(f+A-1)
A(l = A); (vi) g+ (A-1)f=A; (vi) g= Af, where A& {0,1} is a constant.

3. Proofs of theorems 1, 2 and corollary 1

3.1. Proofs of theorems 1, 2. We only prove (1.2) for g, because (1.2)
for f can be proved in a similar manner. If f is a linear transformation of g,
from Lemma 8 we see that there are a;, as € C|J{oo} such that a1 # as and

— 1 — 1
N(r, )+ N(r, ) = S(r). Hence, if a & {a1, a2} then, by Nevanlinna’s
g—a g — a2

three small functions theorem, we have T'(r,g) = Ny(r, ) + S(r), which im-

g—a
plies (1.3), otherwise, the possibilities (i)-(iv) of Lemma 8 do not occur, and hence,
the conclusions of Theorems 1 and 2 follow from the possibilities (v)-(vii) of Lemma
8. Therefore, we assume that f is not a linear transformation of g. It is evident

from Lemma 1 and (2.2) that
(3.1) S(r) = max{S(r,a),S(r,H)}.

H—q- 12
Assume that T'(r,«) = S(r). Then from (2.2), we have g — a = —ayHi‘l.
-«

1_
If a + -—a # 0 then from this, (iii) of Lemma 2, (2.2),(3.1) and by applying

a
Nevanlinna’s three small functions, we get

1 — 1
T —o_1==) tSM =N

T(r,g)=T(r,H)+ S(r) = N(r, )+ S(r),

a g —-a
1—
which implies (1.3). We note that the case o + TT%_y gives (ii) of Theorem A,
a
and the remaining conclusions of Theorem 1 and 2 follow from Lemma 2.

Similarly, if T(r,H) = S(r) or T(r, %) = S(r), then we deduce the conclusions
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of Theorems 1 and 2. We may assume that T(r, H), T(r,«) and T(r, %) are not
equal to S(r). Let us put f1 = -G, fo = (1 —a)a, f3=aH, from (2.2) we have

(3.2) G=(g—-a)a—H)=(1-a)a+aH -1
and
(3:3) it fetfz=1

_ 1—(1—
Suppose that T(T‘, f1) = S(T). Then from (3.2), we get H = ft ( a)a.

a
If f{ # 1 then from Lemma 2 and by using the second fundamental theorem of
Nevanlinna, we observe that

77f1+171(17a)a)+5(r)§W(r !

T(r,a) = N(r ’ﬁ)

+5(r) = S5(r),

which is a contradiction. Thus f; = 1, which implies (i) of Theorem A, and the
remaining conclusions of Theorems 1 and 2 follow from Lemma 2. Therefore, it is
enough to prove Theorems 1 and 2, when T'(r, f;) (i = 1,2, 3) are not equal to S(r).
First, we claim

(3.4) T(r, f1) = Noy(r, %) +5(r).

In order to prove (3.4), we suppose that fi, fo and f3 are linearly independent.
Evidently, from (iii) of Lemma 2, (3.3) and by applying Lemma 6 we obtain that

T(r, f1) < Na(r, %) - S(r) < N(r, %) S0,

which is (3.4).
Suppose that fi, fo and f3 are linearly dependent. Then there exist constants
c1, ¢o and cg (not all are zeros) such that

(35) lel + Cgfg =+ Cgfg =0.

Let us prove that ¢; = 0. Otherwise, eliminating f; from (3.3) and (3.5), we get

(1- %)fQ + (1 - zj)fg = 1. From this, (iii) of Lemma 2 and by applying the
1 1

second fundamental theorem of Nevanlinna, we get T'(r, fo) = S(r), which is a
contradiction.
Therefore, ¢; = 0 and cac3 # 0. Identities (3.3) and (3.5) imply that caf1 + (c2 —

¢3)f3 = ca, and from this and (iii) of Lemma 2, we obtain that N (r, ﬁ) = S(r).
|-

Again, (iii) of Lemma 2 and (3.2) yield that N(r, fi) = S(r). Therefore, by using
Nevanlinna’s second fundamental theorem, we get (3.4) and this completes the proof
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of (3.4).
The formula (3.2) can be rewritten as

_(l-a)a+aH-1 G
(3.6) g—a= p— =——5

It follows from Lemma 5 and (3.2) that

(3.7 T(r,G)=T(r,(1 —a)a+aH)+ S(r)=T(r,a— H) + S(r).
Again, by using Lemma 5 and (3.2), we obtain
(3.8) N(r,G)=N(r,(1—a)a+aH)+ S(r) = N(r,a— H) + S(r).

But we know a — H = (fﬁ gl) Then this, (v) of Lemma 4, (3.6) and (3.8) yield
g\g —
(3.9) N(r, ——) = N(r, =) = N(r, ——) + N(r,g) + S(r)
. ) g —a - b G ) a — H 7g
1
= N(r, E) — No(r) + S(r).
Si S +1—a+ dm( L)—S()th ( )=
ince g—a = —5 a o an mn%_lf r), thenm(r, ——) =
m(r,g) + S(r). From this, (3.4), (3.8) and (3.9), we get
1
B10) N ) = mlr )+ Ng) + 5(0)

=m(r,g) + N(r,g) + S(r) =T(r,g) + S(r).
By (3.4) and (3.6), it is not difficult to check
(3.11) Ns(r L)—N* (r i)—kS(r)
. 3 7g_a =43 7g_a )
1
where N(*3(r, ——) is the counting function of the zeros of g — a with multiplicity
—a

> 3 which are the poles of &« — H, the zeros of g — a are counted according to their
multiplicities.

It remains to prove (1.3). To prove this, we discuss the following two cases:

Case 1. Suppose No(r) # S(r), where Ny(r) is defined as in Lemma 4. It follows
from (3.1) and (iii) of Lemma 4 that

(312) No(T) :No(’f',l,a,H)-i-S(T).

From (3.12), one can apply Lemma 7 to « and H that there exist two integers
s, t (|s| + |t| > 0) such that o’ H* = 1. Therefore,

(3.13) FU=1"=g"(g-1)"
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Let 2o be a zero of g —a with multiplicity i(g —a) > 3 such that it is a pole of « — H
with multiplicity i(a — H).

Subcase 1.1. Assume that z is a pole of g with multiplicity i(g). Since s+t # 0,
if zg is a pole of f with multiplicity ¢(f) then, by using (3.13), we get i(f) = i(g),
and hence, zy is not the pole of & — H. It is readily checked that if z; is a zero of
f(f —1), then zg is not the pole of a — H, which is a contradiction. Consequently,
2o is neither the pole of f nor the zero of f(f — 1), from (3.13) it follows that this
possibility does not occur.

Subcase 1.2. Assume that zg is a zero of g (or g — 1 ) with multiplicity i(g) ( or
i(g — 1)). Then 2y must be a zero of a (or a — 1) with multiplicity i(a) (or i(a — 1)
). Tt i(g) # i(a) (or i(g—1) # i(a—1)), then i(g —a) < i(a) (or i(g—a) < i(a—1)).
Suppose that i(g) = i(a) (ori(g—1) =i(a—1) ). If 2o is a zero of G with multiplicity
i(G) then, from (3.6), we get i(g — a) < i(G) +i(ow — H). If 2 is not the zero of G
then i(g — a) <i(a — H).

If g(z0) # 0,1, 00 then, from (3.13), we get f(z0) # 0,1, 00, that is, 2z is not the
pole of @ — H, which is a contradiction. Consequently, from (3.11), the subcases
1.1 and 1.2, and by using (3.4), we conclude

1

(314) N(3(T, g—a

) < Nj(ryao— H) + Ny (r,a— H) + S(r),

where N (r,a— H) (or Ny (r,a— H)) is the counting function of the poles of « — H
that are the common zeros of g and a (or g—1 and a—1) with the same multiplicities,
the poles of & — H are counted according to their multiplicities.

Let zg be a pole of @« — H with multiplicity i(aw — H) such that zp is a common
zero of g and a with multiplicity i(g) and i(a) respectively, and i(a) = i(g). From
(3.13), if zp is a zero of f with multiplicity (f) then i(f) = i(g), and hence, z
is not the pole of a — H. Therefore, from (3.13) that either 2 is a zero of f — 1
or else zp is a pole of f with multiplicity i(f). If the first possibility occurs then
i(a — H) = i(a). Otherwise, we suppose that the second possibility occurs. Then,
from (3.13), we deduce —(s + t)i(f) = si(g) = si(a) and i(a — H) < i(f) + i(g)
which imply i(a — H) < (¢t/(s + t))i(a). From this illustration, we deduce that
Ng(r,a— H) = S(r). Similarly, Ny (r,a — H) = S(r). Therefore, (3.14) gives (1.3).
Case 2. Suppose Ny(r) = S(r). Let 2o be a zero of G with multiplicity i(G) < 2
=9

g9g 1)

If zg is a simple zero of g(g — 1) then it is a zero of f — ¢g with multiplicity > 2.
Since zg is a zero of G, therefore, if zg is a simple pole of g and f then zy must be
a zero of o — H with multiplicity > 2. Since N (5(r,1/(ov — H)) = S(r), we deduce
that the counting function of these points is equal to S(r).

If zp is not any zero of g(g — 1), 1/g then zp must be a zero of f — g.

Suppose that zg is a pole of & — H. Since zq is a zero of G, then we get that if zg is
a simple zero of g(g — 1), then (3.6) leads us that zp must be a zero of g — a, which
is a contradiction, because a(zg) # 0, 1, co. Hence, we deduce that the counting
function of these points is equal to S(r).

such that a(zp) # 0, 1, co. Assume that zp is a zero of a« — H =
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If 2z is not the zero of « — H or

i(G).
It follows from the above, Lemmas 2, 3, (ii) and (iii) of Lemma 4 and (3.4) that

1 1
Noy( ) = Noy(r, 5)+S(r). By (3.4) and (3.9), we obtain that N3(r, )=
g—a

) #T(r,g)+

1
IR then zg is a zero of g — a with multiplicity

T’
g—a
S(r), which is (1.3). By (3.10), we see that the condition Na)(r,

g—a
S(r) in Theorem 2 does not occur.

f

Suppose that g € {ﬁ, (1-a)f +a, af} and a is a constant. Firstly,
a—

let g = af. If z is a zero of g — a with multiplicity > 3 then z is a zero of g/
with multiplicity > 2. Consequently, we deduce (1.3) from (iii) of Lemma 4. If
g:(l—a)f—l—a(org:f%j_l Jyweput G=1—g, F=1—f b=1—a (or
G=1-(1/g), F=1-(1/f), b=1—-(1/a) ) to obtain G = bF, and F and G
share 0, 1, oo GMC. From the first case, we get (1.3). The proofs of Theorems 1
and 2 have completed. O

3.2. Proof of corollary 1. If

af

bf
f+a—1’

(1-a)f +a. afy and g € {5 —.

then we obtain a contradiction. Otherwise, Corollary 1 follows from Theorem 1.

The proof of Corollary 1 has completed. O

4. Applications of the main results

Nevanlinna four values theorem (see [11], Theorem 4.1) says that if two distinct
nonconstant meromorphic functions f and g share four values CM, then f is a
fractional linear transformation of g. The condition “share four values CM” has
been weakened to “f and g share two values CM and two values IM” by Gundersen’s
theorem (see [3]).

Definition 3. Let a € C|J{oo}. If f(2) = a when g(z) = a, then we denote this
property by g(z) = b= f(z) = a.
We note that the definition g(z) = b = f(z) = a impliesto g(z) = b= f(z) = a.

Definition 4. Let k be a positive integer, and let a be a small function of f. We
denote by E(a, f) the set of distinct zeros of f(z) —a ( ignoring multiplicities), and
by Eg)(a, f) the set of distinct zeros of f(z) — a with multiplicity < k ( ignoring
multiplicities).

In 1989, Brosch [2] proved the following theorem which is an extension of a
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result of H. Ueda [9)].

Theorem D. Let f and g be two nonconstant meromorphic functions sharing
0, 1, co CM and let a & {0, 1} be a finite complex number. If f = a = g = a, then
f is a fractional linear transformation of g.

As an application of Theorem 1 and Theorem 2, we extend Theorem D by
showing the following result:

Theorem 3. Let f and g be nonconstant meromorphic functions sharing 0, 1, oo
GCM, and let a(£ 0, 1, co) be a small meromorphic function of f and g such that
g=a= f=aorEy(a,g) CEa,f). Then one assumes of the following relations:
N)g=f; (1) g+f=1witha=1/2; (iii) (g—1)(f—-1) =1 witha=2;(iv) gf =1
witha =—1; (v) (g—a)(f+a—1)=a(l—a); (vi) g+(a—1)f =a; (vii)) g=af.

From Theorem 3, one can be checked the following corollary:

Corollary 2. Let f and g be two nonconstant meromorphic functions sharing
0, 1, co GCM, and let a(# 0, 1, oo, —1, 2, 1/2) be a small meromorphic function
of f and g. If f and g share a GIM or Ey)(a,g) = Es(a, f), then [ = g.

To prove Theorem 3, we need the following fact which extends Theorems 1 and

2 in [16].

Lemma 9. Let f and g be two distinct nonconstant meromorphic functions sharing
0, 1, co GCM such that No(r) # S(r).
(i) f is a linear transformation of g if and only if T(r, f) = No(r) + S(r).

1
(ii) f is not any linear transformation of g if and only if No(r) < §T(1"7 f)+S(r).
Furthermore, if (ii) occurs then there is a nonconstant meromorphic h such that
— 1. — 1
(41) N(r, 1)+ N, h) = S(), Nor) = T(, ) +S(r), No(r) = T, /)+5(r),
and f and g satisfy one of the following relations:

-1 h™" —1
(a) g= kL — 1’ f= h—(k+1) 1

b B hk‘-‘,—l_l - h—(k'i‘l)_l '
®) 9= = w1

h" —1 h™" -1
(€) 9= h—(iri—r) _ 1’ f= RO+1—1) _ 1’

where r and k(> 2) are positive integers such that r and k + 1 are relatively prime
and 1 <r <k.

Proof. According to the assumptions of Lemma 9, then Lemma 8 leads us that if f
is a linear transformation of g then T'(r, f) = No(r) + S(r).
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Suppose that f is not any linear transformation of g. Since No(r) # S(r). From
(3.12) and by applying Lemma 7 we deduce that there exist two integers s, ¢t (|s|+
|t| > 0) such that o H®* = 1. Hence, from (3.13), we get T'(r, f) = T(r,g) + S(r).
Without loss of generality, we can assume that s and t are relatively prime and
s > 0, because Ny(r) # S(r). Hence, there exist two integers u and v such that
us + vt = 1. If we let h = @ “H" then from (2.2) and lemma 2, we have the first
relation in (4.1) and

h? -1 h=®—1
(4.2) 9=1emi—1 = o1
. : . hs—1 hstt -1
Since s and t are relatively prime, then have no common zeros.

h—1" h-1
If z is a zero of f— g such that it is not the zero of f(f—1), 1/f then z is a common
zero of H — 1 and o — 1 that is, z is also a zero of h — 1. It follows that

< N(r,— )+ S(r) = T(r, h) + S(r).

No(r) < 1

Let z is a zero of h—1 such that it is not a zero of f(f—1), 1/f then z is a common
— 1

zero of H — 1 and o — 1 that is T'(r, h) + S(r) = N(r, ﬁ) < No(r) + S(r). The

last two inequalities imply the second relation in (4.1).

Then three cases are needed to be discussed.

Case 1. Suppose that ¢ is a positive. If s +¢ = 2, then s =t = 1, and from

(3.13) we get that f is a linear transformation of g which is a contradiction. So that

s+t > 2. From 4.2, we note that T'(r,g) = (s +¢ — 1)T'(r, h) + S(r), which implies
No(r) =

T(r,g)+S(r) < =T(r,g) + S(r).

N

s+t—1

In this case, we take k = s +t — 1 and r = s. Then the case (a) in the lemma 9
follows from (4.2).

Case 2. Suppose that t <0 and s+¢ > 0. If s =2, then t = —1, and from (3.13)
we get that f is a linear transformation of g which is a contradiction. We assume
that s > 2. It follows from 4.2 that T'(r,g) = (s — 1)T'(r, h) + S(r), that is,

No(r) = ——T(r.g) + S(r) <

1 T(r,g) + S(r).

N |

Here, we take k = s — 1 and r = —t to obtain the case (b) in the lemma 9, by using
(4.2).

Case 3. Suppose that ¢t < 0 and s+t < 0. Obviously, —t > 2. If —t = 2, then
s =1, and from (3.13) we get that f is a linear transformation of g. Suppose that
—t > 2. Then (4.2) gives us that T(r,g) = (=t — 1)T(r, h) + S(r), which implies

No(r) = ———T(r, g) + 8(r) <

~ITi T(r,g) + S(r).

1
2
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If we put k = —(t+ 1) and r = s, then we have case (c) in the lemma 9. It is easy
to prove that r and k are done in the cases a, b, ¢. If T(r, f) = No(r) + S(r) and f
is not any linear transformation of g, then

1
Nolr) < ST(r. ) + S(r),
which is a contradiction. That is, if T(r, f) = No(r) + S(r), then f is a linear
1
transformation of g, which completes the proof (i). Now, if No(r) < §T(1"7 H+S(r)
then, from (i), we deduce that f is not any linear transformation of g and this

completes the proof (ii). This proves Lemma 9. d

Proof of Theorem 8. It is not difficult to check that if f is a fractional linear
transformation of g, then Theorem 3 immediately follows from Lemma 8. Therefore,
we prove Theorem 3 when f is not a fractional linear transformation of g. By
utilizing Theorem 1, it is obviously that if g = a = f = a or Eg)(a, g) C E(a, f)
then

(4.3) N —=2) < No(r) +5(0).
Suppose that g & {f%uf—l’ (1—a)f+a, af}. Then from Theorems 1 and 2, we
get
(1.40) T(r.9) = No(r. —=) + S(0).
Similarly to (2.2) and (2.3), we get
U9
(4.5 R
(46) T(r.g) = Ny(r. —) + S(0).

a
where A = —2—

Qo

77+ From (4.3), (4.6) and Lemma 9, we deduce A # a.
a H

Let zp be a common zero of g—a and f—a such that a(zg) # 0, 1, 0o, A(zg) # 0, 0o
!

H,
and FO(Zo) # 0, co. Hence, the right-hand side of (4.5) must be a zero at zg, which

0
yields that g — A has a zero at zp, so that zyp must be a zero of A — a. Con-
sequently, from the condition ¢ = a = f = a or Ey(a,g9) C E(a, f), we get

N(r,1/(g — a)) = S(r), and from (4.4) it follows T'(r,g) = S(r), which is a contra-

diction. Therefore, g € {f+a7 (1—a)f +a, af}. This proves Theorem 3. O
a—

1 b
Acknowledgement. The author thanks the anonymous for his/her helpful sug-
gestions.



122

Thamir C. Alzahary

References

[
2]

T. C. Alzahary, Small functions of meromorphic functions sharing three values with
finite weights, Indian J. Pure Appl. Math., 38(2007), 305-316.

G. Brosch, Eindeutigkeitssitze fiir Meromorphe Funktionen, Thesis Techincal of
Aachen, 1989.

G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math.
Soc., 277(1983), 545-567.

W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.

I. Lahiri, On a result of Ozawa concerning uniqueness of meromorphic functions II,
J. Math. Anal. Appl., 283(2003), 66-76.

P. Li and C. C. Yang, Some further results on the unique range sets of meromorphic
functions, Kodai Math. J., 18(1995), 437-450.

P. Liand C. C. Yang, On the characteristic of meromorphic functions that share three
values CM, J. Math. Anal. Appl., 220(1998), 132-145.

E. Mues, Meromorphic Functions sharing four values, Complex Variables, 12(1989),
169-179.

H. Ueda, Unicity theorems for meromorphic or entire functions, Kodai Math. J.,
3(1980), 457-471.

H. Ueda, Unicity thorems for meromorphic or entire functions 11, Kodai Mathematical
Journal, 6(1983), 26-36.

C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer
Academic Publishers Dordrecht-Bosten-London, 2003.

S. Z. Ye, Uniqueness of meromorphic functions that share three values, Kodai Math.
J., 15(1992), 236-243.

H. X. Yi, Unicity theorems for meromorphic functions that share three values, Kodai
Math. J., 18(1995), 300-314.

H. X. Yi, Meromorphic functions with weighted sharing of three values, Complex
Variables, 50(2005), 923-934.

W. J. Yuan and H. G. Tain, Unicity results for meromorphic functions sharing small
functions, Indian J. Pure Appl. Math., 32(2001), 1411-1419.

Q. C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl. Math.,
30(1999), 667-682.



