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Abstract. In this paper, we deal with the problem of uniqueness of meromorphic func-

tions that share three values, and obtain some theorems which improve some results of

Brosch, Yi and other authors.

1. Introduction and definitions

Let f and g be two nonconstant meromorphic functions on the open complex
plane C, and let a be a finite value in the complex plane. We say that f and g share
the value a CM ( IM ) provided that f − a and g− a have the same zeros counting
multiplicities ( ignoring multiplicities ), and f, g share∞ CM ( IM ) provided that
1/f, 1/g share 0 CM ( IM ). We do not explain the standard notations of value
distribution theory as those are available in Hayman [4] or Yang and Yi [11].

We denote by S(r, f) any function satisfying S(r, f) = o(T (r, f)) as r → +∞
possibly outside a set E of finite Lebesgue measure. A meromorphic function a(z)
is said to be a small function of f , if T (r, a) = S(r, f).

Let f and g be nonconstant meromorphic functions and a be a small meromor-
phic function of f and g. We denote by N(r, a, f, g)( and NE(r, a, f, g) ) the reduce
counting function of the common zeros of f −a and g−a (with the same multiplic-

ities). We write f = aV g = a to mean that N(r,
1

f − a
)−N(r, a, f, g) = S(r, f).

We say that f and g share a GIM (some authors use the symbol IM∗ or “IM” ), if
f = aV g = a and g = aV f = a. If

N(r,
1

f − a
)−NE(r, a, f, g) = S(r, f) and N(r,

1
g − a

)−NE(r, a, f, g) = S(r, g),

then we say that f and g share a GCM (some authors use the symbol CM∗ or “CM”
)(see ([8], [11], [15])). Evidently, if f and g share a IM (or CM) then f and g share
a GIM ( or GCM ).

Received 15 October 2007; revised 22 April 2008; accepted 21 April 2008.
2000 Mathematics Subject Classification: 30D35, 30D30.
Key words and phrases: meromorphic functions, weighted sharing, meromorphic func-

tions, small functions.
The research was partially supported by Shanghai Leading Academic Discipline Project,

China (J50101).

107



108 Thamir C. Alzahary

Definition 1. Let p be a positive integer. We denote byNp)(r, f) ( orNp)(r, f) ) the
counting function of all poles of f with multiplicities ≤ p ( ignoring multiplicities).
We recall that N(p+1(r, f) = N(r, f) − Np)(r, f) and N (p+1(r, f) = N(r, f) −
Np)(r, f).

Lahiri [5] introduced the notion of weighted sharing by the following definition:

Definition 2. Let k be a nonnegative integer or infinity. For any a ∈ C
⋃
{∞}, we

denote by Ek(a, f) the set of all a-points of f , where an a-point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a, f) = Ek(a, g), we
say that f, g share (a, k).

Yi [13] proved the following theorem which is extended the results of Ueda [10]
and Ye [12].

Theorem A. Let f and g be two distinct nonconstant meromorphic functions shar-

ing 0, 1, ∞ CM, and let a ( 6= 0, 1) be a finite complex number. If N(r,
1

g − a
) 6=

T (r, g) +S(r, g), then a is a Picard exceptional value of g, and f and g satisfy one
of the following three relations:

(i) (g − a)(f + a− 1) ≡ a(1− a); (ii) g + (a− 1)f ≡ a; (iii) g ≡ af.

Recently, the author [1] has proved the following two results.

Theorem B. Let f and g be two distinct nonconstant meromorphic functions shar-
ing (0, k1), (1, k2), (∞, k3), where kj (j = 1, 2, 3) are positive integers satisfying

(1.1) k1k2k3 > k1 + k2 + k3 + 2,

and let a(6≡ 0, 1, ∞) be a small meromorphic function of f and g. Then

(1.2) N (3(r,
1

g − a
) = S(r, g), N (3(r,

1
f − a

) = S(r, f).

Moreover, if g 6∈ { af

f + a− 1
, (1− a)f + a, af} or a is a constant then

(1.3) N(3(r,
1

g − a
) = S(r, g).

Theorem C. Under the assumptions of Theorem B, if N2)(r,
1

g − a
) 6= T (r, g) +

S(r, g), then N(r,
1

g − a
) = S(r, g), and f and g satisfy one of the three relations in

Theorem A.

Remark 1. Yi [14, Lemma 2.6] has proved that if f and g are two distinct non-
constant meromorphic functions sharing (0, k1), (1, k2), (∞, k3) where kj (j =
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1, 2, 3) are positive integers satisfying (1.1), then N (2(r,
1

g − a
) = S(r, g) and

N (2(r,
1

f − a
) = S(r, f), for all a = 0, 1, ∞. That means, f and g share 0, 1,∞

GCM.

Example 1. Let f = q
pez − 1
pe2z − q

and g = ez
pez − 1
pe2z − q

, where p and q are non-

constant rational functions with qp 6≡ 1. It is readily checked that f and g share
0, 1, ∞ GCM, but they do not share 0, 1 or ∞ IM (i.e., f and g do not satisfy
the condition of Weighted sharing ).

Question 1. If the condition “ sharing three values” in Theorems B and C is
replaced by the condition “ sharing three values GCM ”, are Theorems B and C
still true?

We answer this question by the following results which extend Theorem B and
Theorem C.

Theorem 1. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0, 1, ∞ GCM, and let a ( 6≡ 0, 1, ∞) be a small meromorphic function of f
and g. Then the conclusions of Theorem B still hold.

Theorem 2. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0, 1, ∞ GCM, and let a ( 6≡ 0, 1, ∞) be a small meromorphic function of f

and g. If N2)(r,
1

g − a
) 6= T (r, g) + S(r, g) then N(r,

1
g − a

) = S(r, g), and f and g

satisfy one of the three relations in Theorem A.

The following corollary applies readily to Theorems 1 and 2.

Corollary 1. Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, ∞ GCM. If a, b (6≡ 0, 1, ∞) are distinct small meromorphic functions

of f and g, then either N(3(r,
1

g − a
) = S(r, g) or N(3(r,

1
g − b

) = S(r, g).

Remark 1 tells us that Theorem 1 extends of Theorem B and Theorem 2 extends
of Theorem C.

Example 2. Let f = (ep − 1)2, g = ep − 1 and a = −1, where p is a nonconstant
polynomial. We see that f and g share 0 GIM. Furthermore, f and g share 1, ∞
GCM, and N(r, 1/(g − a)) = 0, but we see that the conclusions of Theorem A fail
to hold. This shows that the condition “sharing 0, 1, ∞ GCM” in Theorem 2 is
necessary.

2. Lemmas

Lemma 1([11]). Let f and g be two nonconstant meromorphic functions sharing
0, 1,∞ GIM. Then T (r, f) ≤ 3T (r, g) + S(r, f) and T (r, g) ≤ 3T (r, f) + S(r, g).
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The lemma 1 shows that S(r, f) = S(r, g) and we denote them by S(r), unless
otherwise stated.

Lemma 2. Let f and g be two distinct nonconstant meromorphic functions sharing

0, 1,∞ GIM, and let α =
f − 1
g − 1

and H =
f

g
. The following statements are equiva-

lent:
(i) f and g share 0, 1,∞ GCM ;

(ii) N (2(r,
1

f − a
) +N (2(r,

1
g − a

) = S(r), for a = 0, 1, ∞;

(iii) N(r,
1

α− a
) +N(r,

1
H − a

) = S(r), for a = 0, ∞.

Proof. Let

(2.1) φ1 =
f

′

f
− g

′

g
, φ2 =

f
′

f − 1
− g

′

g − 1
, φ3 =

f
′

f(f − 1)
− g

′

g(g − 1)
.

It is clear that if φ1 ≡ 0 then f = Ag, where A 6= 0, 1 is a constant. Hence, f

and g share 0, 1,∞ GCM, and N(r,
1

f − 1
) + N(r,

1
f −A

) = S(r). By the second

fundamental theorem of Nevanlinna, we get T (r, f) = N(r,
1
f

) + S(r) = N(r, f) +

S(r), which gives us N (2(r,
1
f

) + N (2(r, f) = S(r). In fact, one can prove that the

lemma is clear when φi ≡ 0 (i = 2, 3). Therefore, we consider that φi 6≡ 0 (i =
1, 2, 3).
(i)=⇒ (ii) We first prove that T (r, φ1) = S(r). We can easily verify that the poles
of φ1 occur at (1) the zeros and poles of f (2) the zeros and poles of g. Since
the poles of φ1 are simple and m(r, φ1) = S(r), then T (r, φ1) = S(r). Similarly,
T (r, φi) = S(r) (i = 2, 3).
We may view that if z is a common zero of f and g with the same multiplicity (≥ 2)
then z is also a zero of φ2. Consequently, since (i) occurs then

N (2(r,
1
f

) ≤ N(r,
1
φ2

) + S(r) ≤ T (r, φ2) + S(r) = S(r).

In the same way, we can prove that

N (2(r,
1

f − 1
) +N (2(r,

1
g

) +N (2(r,
1

g − 1
) +N (2(r, f) +N (2(r, g) = S(r).

(ii)=⇒ (iii) We see N(r,
1
H

) ≤ N (2(r,
1
f

) +N (2(r, g) + S(r) = S(r).

Similarly, N(r,
1
α

) +N(r,H) +N(r, α) = S(r).

(iii)=⇒ (i) Since φ1 =
H

′

H
and φ2 =

α
′

α
, it is obvious that T (r, φi) = S(r), (i =
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1, 2, 3).
Let z be a common zero of f and g with multiplicity n and m respectively. If n 6= m,
then z is a pole of φ1, but the counting function of those points is equal to S(r),
that is, f and g share 0 GCM. Similarly, f and g share 1,∞ GCM. This proves
Lemma 2. �

From the proof of Lemma 2, we deduce the following lemma:

Lemma 3. Let f and g be two distinct nonconstant meromorphic functions sharing

0, 1,∞ GCM. Suppose that φ1 =
H

′

H
, φ2 =

α
′

α
and φ3 =

H
′

0

H0
are not constant

functions, where H0 =
α

H
. Then T (r, φi) = S(r), i = 1, 2, 3.

Lemma 4. Let f and g be nonconstant meromorphic functions sharing 0, 1,∞
GCM such that f is not a linear transformation of g. Then each of the following
holds:
(i) T (r, f) + T (r, g) = N0(r) +N(r,

1
g

) +N(r, g) +N(r,
1

g − 1
) + S(r);

(ii) N(2(r,
1

f − g
) = S(r);

(iii) N0(r,
1
g′

) = N0(r,
1
g′

) + S(r, g), N0(r,
1
f ′

) = N0(r,
1
f ′

) + S(r, f), N0(r) =

N0(r) + S(r);

(iv) T (r, f) = N0(r) +N0(r,
1
g′

) + S(r), T (r, g) = N0(r) +N0(r,
1
f ′

) + S(r);

(v) N(r,
g(g − 1)
f − g

) = N(r, g) +N0(r) + S(r),

where N0(r) ( N0(r) ) denotes the counting function of the zeros of f−g which are

not the zeros of g(g− 1) , 1/g (ignoring multiplicities) and N0(r,
1
f ′

) ( N0(r,
1
f ′

) )

denotes the counting function corresponding to the zeros of f ′ that are not zeros of
f(f − 1) ( ignoring multiplicities ).

Proof. Since f is not a linear transformation of g then α, H and H0 are nonconstant

functions, where α, H and H0 are defined as in Lemmas 2 and 3. Let λ =
α′

α
α′

α −
H′

H

.

Then from Lemmas 2 and 3, we see that λ is a small function of f , and

(2.2) f =
1− α−1

H−1 − α−1
, g =

1− α
H − α

.

By (2.2), it is easily verified that

(2.3)
H ′0
H0

(f − λ) =
g′(g − f)
g(g − 1)

.

Let F = (f − λ)(H0 − 1) = α− λH0 + λ− 1. Then
F ′

F
− α′

α
=

α′

α (λ− 1)− λ′

f − λ
.
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If
α′

α
(λ− 1)−λ′ ≡ 0, then T (r, α) +T (r, F ) = S(r). That is, T (r,H0) = S(r), and

by (2.2) we get T (r, f) = S(r), which is impossible. Consequently, we have
1

f − λ
=

F ′

F −
α′

α
α′

α (λ− 1)− λ′
. This formula and Lemmas 2, 3 yield m(r,

1
f − λ

) +N(2(r,
1

f − λ
) =

S(r), which implies

(2.4) T (r, f) = N1)(r,
1

f − λ
) + S(r).

Let z be a zero of g
′

with multiplicity n(≥ 2) such that it is not the zero of g(g−1).
If z is not the pole of f , then from (2.3) and (2.4), we deduce that the counting
function of those points is equal to S(r).
Consider that z is a pole of f with multiplicity i(f)(≥ 2). Then z is a zero of φ3

with multiplicity i(φ3) ≥ min{n, i(f)− 1}. If n ≤ i(f)− 1 then, from Lemma 3, it
is obvious that the counting function of those points is equal to S(r).
Assume that n > i(f) − 1. If n = i(f) then 2i(φ3) ≥ n; and if n = i(f) + 1 then

3i(φ3) ≥ n; and if n > i(f) + 1 then z is a zero of
H ′0
H0

(f − λ) with multiplicity

≥ n − i(f) ≥ 2. Then from (2.3), (2.4) and Lemma 3, we get that the counting
function of those points is equal to S(r). Consequently, we conclude that

N0(r,
1
g′

) = N0(r,
1
g′

) + S(r, g).

The proof of the rest (iii) follows from (2.3) and (2.4). Again, the identities (2.3)

and (2.4) give us T (r, f) = N1)(r,
1

f − λ
) = N0(r,

1
g′

) + N0(r) + S(r, g), which is

(iv). By (iii) and (iv), it is not difficult to show that

(2.5) N(r, f − g) ≤ N(r, f) +N(2(r, g) + S(r).

By the second fundamental theorem of Nevanlinna, Lemma 2, (2.5) and by using
(iv), we note

T (r, f) + T (r, g)

≤ N0(r,
1
g′

) +N0(r) +N(r,
1
g

) +N(r, g) +N(r,
1

g − 1
)−N0(r,

1
g′

) + S(r)

≤ N0(r) +N(r,
1
g

) +N(r, g) +N(r,
1

g − 1
) + S(r)

≤ N(r,
1

f − g
) +N(r, g) + S(r) ≤ N(r,

1
f − g

) +N1)(r, g) + S(r)

≤ T (r, f − g) +N1)(r, g) + S(r)
≤ m(r, f) +m(r, g) +N(r, f) +N(2(r, g) +N1)(r, g) + S(r)
= T (r, f) + T (r, g) + S(r).
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From this we deduce (i) and (ii).

It remains only to prove (v). Let z0 be a zero of
f − g
g(g − 1)

with multiplicity m ≥ 1.

(1) If z0 is a zero of g(g − 1) then it is a zero of f − g with multiplicity > m.

(2) If z0 is not the zero of g(g− 1),
1
g

then it is a zero of f − g with multiplicity m.

(3) If z0 is a pole of g with multiplicity i(g) and it is not a pole of f , then i(g) = m.
Suppose that z0 is a pole of f and g with multiplicity i(f) and i(g) respectively.
(4) If i(g) < i(f), then m = 2i(g) − i(f). Thus, i(g) > 1 and z0 must be a zero of
φ3 with multiplicity ≥ i(g)− 1, where φ3 6≡ 0 is defined as in (2.1) .
(5) If i(g) = i(f) ≥ 2 and z0 is not the zero of f − g then m ≤ 2i(g) and z0 is a zero
of φ3 with multiplicity ≥ i(g)− 1.
(6) If i(g) = i(f) ≥ 2 and z0 is a zero of f − g with multiplicity i(f − g) then
m = i(f − g) + 2i(g) and z0 is a zero of φ3 with multiplicity ≥ i(g)− 1.

We denote by Nj(r) the counting function of those zeros of
f − g
g(g − 1)

which fall in

the case (j), j ∈ {1, 2, 3, 4, 5, 6}. Therefore, Lemma 2, Lemma 3, and (ii) and (iii) of
Lemma 4, we deduce that Nj(r) = S(r), j ∈ {1, 4, 5, 6} and N2(r) = N0(r) + S(r).

We denote by N7(r) the counting function of those zeros of
f − g
g(g − 1)

such that every

point in that function is a common pole of f and g with multiplicities i(f) and i(g)
respectively, and i(f) ≤ i(g), each point in that function is counted according to
the multiplicities of poles of g. Consequently,

N(r,
f − g
g(g − 1)

) = N3(r) +N7(r) +N0(r) + S(r) = N(r, g) +N0(r) + S(r),

which is (v). This proves Lemma 4. �

Lemma 5([7]). Let f1 and f2 be nonconstant meromorphic functions satisfying

N(r, fi) +N(r,
1
fi

) = S(r), T (r, fi) 6= S(r), T (r,
fi
fj

) 6= S(r), i 6= j, i, j = 1, 2.

Let ai and bi (i = 1, 2) be nonzero small meromorphic functions of f1 and f2. Then

T (r, a1f1+a2f2) = T (r, b1f1+b2f2)+S(r), m(r, a1f1+a2f2) = m(r, b1f1+b2f2)+S(r),

where S(r) = o(max{T (r, f1), T (r, f2)}).

Lemma 6([6]). Let f1, f2, f3 be nonconstant meromorphic functions such that
f1 + f2 + f3 ≡ 1. If f1, f2, f3 are linearly independent, then

T (r, f1) ≤ N2(r,
1
f1

) +N2(r,
1
f2

) +N2(r,
1
f3

) +N(r, f1) +N(r, f2) +N(r, f3) +S(r),

where N2(r, fi) = N(r, fi)+N (2(r, fi) and S(r) = o(max{T (r, f1), T (r, f2), T (r, f3)}).
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Lemma 7([16]). Let f1 and f2 be two distinct nonconstant meromorphic func-

tions satisfying N(r, fi) +N(r,
1
fi

) = S(r), i = 1, 2. Then either N0(r, 1, f1, f2) =

S(r, f1, f2) or there exist two integers s, t (|s| + |t| > 0) such that fs1f
t
2 ≡

1. Here N0(r, 1, f1, f2) is the counting function of the common 1-points of f1
and f2, each point in that function is counted only once, and S(r, f1, f2) =
max{S(r, f1), S(r, f2)}.

The proof of the following lemma is omitted, since it can be proved by the sim-
ilar lines of Lemma 7 in [16].

Lemma 8. Let f and g be nonconstant meromorphic functions sharing 0, 1,∞
GCM. If f is a linear transformation of g, then f and g assume one of the follow-
ing relations:
(i) g ≡ f ; (ii) g+f ≡ 1; (iii) (g−1)(f−1) ≡ 1; (iv) gf ≡ 1; (v) (g−A)(f+A−1) ≡
A(1−A); (vi) g + (A− 1)f ≡ A; (vii) g ≡ Af, where A 6∈ {0, 1} is a constant.

3. Proofs of theorems 1, 2 and corollary 1

3.1. Proofs of theorems 1, 2. We only prove (1.2) for g, because (1.2)
for f can be proved in a similar manner. If f is a linear transformation of g,
from Lemma 8 we see that there are a1, a2 ∈ C

⋃
{∞} such that a1 6= a2 and

N(r,
1

g − a1
) + N(r,

1
g − a2

) = S(r). Hence, if a 6∈ {a1, a2} then, by Nevanlinna’s

three small functions theorem, we have T (r, g) = N1)(r,
1

g − a
) + S(r), which im-

plies (1.3), otherwise, the possibilities (i)-(iv) of Lemma 8 do not occur, and hence,
the conclusions of Theorems 1 and 2 follow from the possibilities (v)-(vii) of Lemma
8. Therefore, we assume that f is not a linear transformation of g. It is evident
from Lemma 1 and (2.2) that

(3.1) S(r) = max{S(r, α), S(r,H)}.

Assume that T (r, α) = S(r). Then from (2.2), we have g − a = −ay
H − α− 1−α

a

H − α
.

If α +
1− α
a

6≡ 0 then from this, (iii) of Lemma 2, (2.2), (3.1) and by applying
Nevanlinna’s three small functions, we get

T (r, g) = T (r,H) + S(r) = N(r,
1

H − α− 1−a
a

) + S(r) = N(r,
1

g − a
) + S(r),

which implies (1.3). We note that the case α+
1− α
a
≡ 0 gives (ii) of Theorem A,

and the remaining conclusions of Theorem 1 and 2 follow from Lemma 2.
Similarly, if T (r,H) = S(r) or T (r,

α

H
) = S(r), then we deduce the conclusions
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of Theorems 1 and 2. We may assume that T (r,H), T (r, α) and T (r,
α

H
) are not

equal to S(r). Let us put f1 = −G, f2 = (1− a)α, f3 = aH, from (2.2) we have

(3.2) G = (g − a)(α−H) = (1− a)α+ aH − 1

and

(3.3) f1 + f2 + f3 = 1.

Suppose that T (r, f1) = S(r). Then from (3.2), we get H =
−f1 + 1− (1− a)α

a
.

If f1 6≡ 1 then from Lemma 2 and by using the second fundamental theorem of
Nevanlinna, we observe that

T (r, α) = N(r,
1

−f1 + 1− (1− a)α
) + S(r) ≤ N(r,

1
H

) + S(r) = S(r),

which is a contradiction. Thus f1 ≡ 1, which implies (i) of Theorem A, and the
remaining conclusions of Theorems 1 and 2 follow from Lemma 2. Therefore, it is
enough to prove Theorems 1 and 2, when T (r, fi) (i = 1, 2, 3) are not equal to S(r).
First, we claim

(3.4) T (r, f1) = N2)(r,
1
f1

) + S(r).

In order to prove (3.4), we suppose that f1, f2 and f3 are linearly independent.
Evidently, from (iii) of Lemma 2, (3.3) and by applying Lemma 6 we obtain that

T (r, f1) ≤ N2(r,
1
f1

) + S(r) ≤ N(r,
1
f1

) + S(r),

which is (3.4).
Suppose that f1, f2 and f3 are linearly dependent. Then there exist constants
c1, c2 and c3 (not all are zeros) such that

(3.5) c1f1 + c2f2 + c3f3 ≡ 0.

Let us prove that c1 = 0. Otherwise, eliminating f1 from (3.3) and (3.5), we get
(1 − c2

c1
)f2 + (1 − c3

c1
)f3 ≡ 1. From this, (iii) of Lemma 2 and by applying the

second fundamental theorem of Nevanlinna, we get T (r, f2) = S(r), which is a
contradiction.
Therefore, c1 = 0 and c2c3 6= 0. Identities (3.3) and (3.5) imply that c2f1 + (c2 −
c3)f3 = c2, and from this and (iii) of Lemma 2, we obtain that N(r,

1
f1 − 1

) = S(r).

Again, (iii) of Lemma 2 and (3.2) yield that N(r, f1) = S(r). Therefore, by using
Nevanlinna’s second fundamental theorem, we get (3.4) and this completes the proof
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of (3.4).
The formula (3.2) can be rewritten as

(3.6) g − a =
(1− a)α+ aH − 1

α−H
=

G

α−H
.

It follows from Lemma 5 and (3.2) that

(3.7) T (r,G) = T (r, (1− a)α+ aH) + S(r) = T (r, α−H) + S(r).

Again, by using Lemma 5 and (3.2), we obtain

(3.8) N(r,G) = N(r, (1− a)α+ aH) + S(r) = N(r, α−H) + S(r).

But we know α−H =
f − g
g(g − 1)

. Then this, (v) of Lemma 4, (3.6) and (3.8) yield

N(r,
1

g − a
) = N(r,

1
G

)−N(r,
1

α−H
) +N(r, g) + S(r)(3.9)

= N(r,
1
G

)−N0(r) + S(r).

Since g−a = − 1
α−H

+1−a+
1

α
H − 1

and m(r,
1

α
H − 1

) = S(r), then m(r,
1

α−H
) =

m(r, g) + S(r). From this, (3.4), (3.8) and (3.9), we get

N(r,
1

g − a
) = m(r,

1
α−H

) +N(r, g) + S(r)(3.10)

= m(r, g) +N(r, g) + S(r) = T (r, g) + S(r).

By (3.4) and (3.6), it is not difficult to check

(3.11) N(3(r,
1

g − a
) = N∗(3(r,

1
g − a

) + S(r),

where N∗(3(r,
1

g − a
) is the counting function of the zeros of g − a with multiplicity

≥ 3 which are the poles of α−H, the zeros of g − a are counted according to their
multiplicities.
It remains to prove (1.3). To prove this, we discuss the following two cases:
Case 1. Suppose N0(r) 6= S(r), where N0(r) is defined as in Lemma 4. It follows
from (3.1) and (iii) of Lemma 4 that

(3.12) N0(r) = N0(r, 1, α,H) + S(r).

From (3.12), one can apply Lemma 7 to α and H that there exist two integers
s, t (|s|+ |t| > 0) such that αtHs ≡ 1. Therefore,

(3.13) fs(f − 1)t = gs(g − 1)t.
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Let z0 be a zero of g−a with multiplicity i(g−a) ≥ 3 such that it is a pole of α−H
with multiplicity i(α−H).
Subcase 1.1. Assume that z0 is a pole of g with multiplicity i(g). Since s+ t 6= 0,
if z0 is a pole of f with multiplicity i(f) then, by using (3.13), we get i(f) = i(g),
and hence, z0 is not the pole of α −H. It is readily checked that if z0 is a zero of
f(f − 1), then z0 is not the pole of α−H, which is a contradiction. Consequently,
z0 is neither the pole of f nor the zero of f(f − 1), from (3.13) it follows that this
possibility does not occur.
Subcase 1.2. Assume that z0 is a zero of g (or g − 1 ) with multiplicity i(g) ( or
i(g − 1)). Then z0 must be a zero of a (or a− 1) with multiplicity i(a) (or i(a− 1)
). If i(g) 6= i(a) (or i(g− 1) 6= i(a− 1)), then i(g−a) ≤ i(a) (or i(g−a) ≤ i(a− 1)).
Suppose that i(g) = i(a) (or i(g−1) = i(a−1) ). If z0 is a zero of G with multiplicity
i(G) then, from (3.6), we get i(g − a) ≤ i(G) + i(α−H). If z0 is not the zero of G
then i(g − a) ≤ i(α−H).
If g(z0) 6= 0, 1,∞ then, from (3.13), we get f(z0) 6= 0, 1,∞, that is, z0 is not the
pole of α − H, which is a contradiction. Consequently, from (3.11), the subcases
1.1 and 1.2, and by using (3.4), we conclude

(3.14) N(3(r,
1

g − a
) ≤ N∗0 (r, α−H) +N∗1 (r, α−H) + S(r),

where N∗0 (r, α−H) (or N∗1 (r, α−H)) is the counting function of the poles of α−H
that are the common zeros of g and a (or g−1 and a−1) with the same multiplicities,
the poles of α−H are counted according to their multiplicities.
Let z0 be a pole of α − H with multiplicity i(α − H) such that z0 is a common
zero of g and a with multiplicity i(g) and i(a) respectively, and i(a) = i(g). From
(3.13), if z0 is a zero of f with multiplicity i(f) then i(f) = i(g), and hence, z0
is not the pole of α − H. Therefore, from (3.13) that either z0 is a zero of f − 1
or else z0 is a pole of f with multiplicity i(f). If the first possibility occurs then
i(α −H) = i(a). Otherwise, we suppose that the second possibility occurs. Then,
from (3.13), we deduce −(s + t)i(f) = si(g) = si(a) and i(α − H) ≤ i(f) + i(g)
which imply i(α − H) ≤ (t/(s + t))i(a). From this illustration, we deduce that
N∗0 (r, α−H) = S(r). Similarly, N∗1 (r, α−H) = S(r). Therefore, (3.14) gives (1.3).
Case 2. Suppose N0(r) = S(r). Let z0 be a zero of G with multiplicity i(G) ≤ 2

such that a(z0) 6= 0, 1, ∞. Assume that z0 is a zero of α−H =
f − g
g(g − 1)

.

If z0 is a simple zero of g(g − 1) then it is a zero of f − g with multiplicity ≥ 2.
Since z0 is a zero of G, therefore, if z0 is a simple pole of g and f then z0 must be
a zero of α −H with multiplicity ≥ 2. Since N (2(r, 1/(α −H)) = S(r), we deduce
that the counting function of these points is equal to S(r).
If z0 is not any zero of g(g − 1), 1/g then z0 must be a zero of f − g.
Suppose that z0 is a pole of α−H. Since z0 is a zero of G, then we get that if z0 is
a simple zero of g(g− 1), then (3.6) leads us that z0 must be a zero of g− a, which
is a contradiction, because a(z0) 6= 0, 1, ∞. Hence, we deduce that the counting
function of these points is equal to S(r).
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If z0 is not the zero of α−H or
1

α−H
, then z0 is a zero of g− a with multiplicity

i(G).
It follows from the above, Lemmas 2, 3, (ii) and (iii) of Lemma 4 and (3.4) that

N2)(r,
1

g − a
) = N2)(r,

1
G

)+S(r). By (3.4) and (3.9), we obtain that N(3(r,
1

g − a
) =

S(r), which is (1.3). By (3.10), we see that the condition N2)(r,
1

g − a
) 6= T (r, g) +

S(r) in Theorem 2 does not occur.

Suppose that g ∈ { af

f + a− 1
, (1 − a)f + a, af} and a is a constant. Firstly,

let g = af . If z is a zero of g − a with multiplicity ≥ 3 then z is a zero of g
′

with multiplicity ≥ 2. Consequently, we deduce (1.3) from (iii) of Lemma 4. If

g = (1− a)f + a (or g =
af

f + a− 1
), we put G = 1− g, F = 1− f, b = 1− a (or

G = 1 − (1/g), F = 1 − (1/f), b = 1 − (1/a) ) to obtain G = bF , and F and G
share 0, 1, ∞ GMC. From the first case, we get (1.3). The proofs of Theorems 1
and 2 have completed. �

3.2. Proof of corollary 1. If

g ∈ { af

f + a− 1
, (1− a)f + a, af} and g ∈ { bf

f + b− 1
, (1− b)f + b, bf},

then we obtain a contradiction. Otherwise, Corollary 1 follows from Theorem 1.
The proof of Corollary 1 has completed. �

4. Applications of the main results

Nevanlinna four values theorem (see [11], Theorem 4.1) says that if two distinct
nonconstant meromorphic functions f and g share four values CM, then f is a
fractional linear transformation of g. The condition “share four values CM” has
been weakened to “f and g share two values CM and two values IM” by Gundersen’s
theorem (see [3]).

Definition 3. Let a ∈ C
⋃
{∞}. If f(z) = a when g(z) = a, then we denote this

property by g(z) = b⇒ f(z) = a.

We note that the definition g(z) = b⇒ f(z) = a implies to g(z) = bV f(z) = a.

Definition 4. Let k be a positive integer, and let a be a small function of f . We
denote by E(a, f) the set of distinct zeros of f(z)− a ( ignoring multiplicities), and
by Ek)(a, f) the set of distinct zeros of f(z) − a with multiplicity ≤ k ( ignoring
multiplicities).

In 1989, Brosch [2] proved the following theorem which is an extension of a
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result of H. Ueda [9].

Theorem D. Let f and g be two nonconstant meromorphic functions sharing
0, 1, ∞ CM and let a 6∈ {0, 1} be a finite complex number. If f = a⇒ g = a, then
f is a fractional linear transformation of g.

As an application of Theorem 1 and Theorem 2, we extend Theorem D by
showing the following result:

Theorem 3. Let f and g be nonconstant meromorphic functions sharing 0, 1, ∞
GCM, and let a(6≡ 0, 1, ∞) be a small meromorphic function of f and g such that
g = aV f = a or E2)(a, g) ⊆ E(a, f). Then one assumes of the following relations:
(i) g ≡ f ; (ii) g+f ≡ 1 with a = 1/2; (iii) (g−1)(f−1) ≡ 1 with a = 2; (iv) gf ≡ 1
with a = −1; (v) (g−a)(f +a−1) ≡ a(1−a); (vi) g+(a−1)f ≡ a; (vii) g ≡ af.

From Theorem 3, one can be checked the following corollary:

Corollary 2. Let f and g be two nonconstant meromorphic functions sharing
0, 1, ∞ GCM, and let a(6≡ 0, 1, ∞, −1, 2, 1/2) be a small meromorphic function
of f and g. If f and g share a GIM or E2)(a, g) = E2)(a, f), then f ≡ g.

To prove Theorem 3, we need the following fact which extends Theorems 1 and
2 in [16].

Lemma 9. Let f and g be two distinct nonconstant meromorphic functions sharing
0, 1, ∞ GCM such that N0(r) 6= S(r).
(i) f is a linear transformation of g if and only if T (r, f) = N0(r) + S(r).

(ii) f is not any linear transformation of g if and only if N0(r) ≤ 1
2
T (r, f) + S(r).

Furthermore, if (ii) occurs then there is a nonconstant meromorphic h such that

(4.1) N(r,
1
h

)+N(r, h) = S(r), N0(r) = T (r, h)+S(r), N0(r) =
1
k
T (r, f)+S(r),

and f and g satisfy one of the following relations:

(a) g =
hr − 1
hk+1 − 1

, f =
h−r − 1

h−(k+1) − 1
;

(b) g =
hk+1 − 1
hk+1−r − 1

, f =
h−(k+1) − 1
h−(k+1−r) − 1

;

(c) g =
hr − 1

h−(k+1−r) − 1
, f =

h−r − 1
h(k+1−r) − 1

,

where r and k(≥ 2) are positive integers such that r and k + 1 are relatively prime
and 1 ≤ r ≤ k.
Proof. According to the assumptions of Lemma 9, then Lemma 8 leads us that if f
is a linear transformation of g then T (r, f) = N0(r) + S(r).
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Suppose that f is not any linear transformation of g. Since N0(r) 6= S(r). From
(3.12) and by applying Lemma 7 we deduce that there exist two integers s, t (|s|+
|t| > 0) such that αtHs ≡ 1. Hence, from (3.13), we get T (r, f) = T (r, g) + S(r).
Without loss of generality, we can assume that s and t are relatively prime and
s > 0, because N0(r) 6= S(r). Hence, there exist two integers u and v such that
us + vt = 1. If we let h = α−uHv then from (2.2) and lemma 2, we have the first
relation in (4.1) and

(4.2) g =
hs − 1
hs+t − 1

, f =
h−s − 1

h−(s+t) − 1
.

Since s and t are relatively prime, then
hs − 1
h− 1

,
hs+t − 1
h− 1

have no common zeros.

If z is a zero of f−g such that it is not the zero of f(f−1), 1/f then z is a common
zero of H − 1 and α− 1 that is, z is also a zero of h− 1. It follows that

N0(r) ≤ N(r,
1

h− 1
) + S(r) = T (r, h) + S(r).

Let z is a zero of h−1 such that it is not a zero of f(f−1), 1/f then z is a common

zero of H − 1 and α − 1 that is T (r, h) + S(r) = N(r,
1

h− 1
) ≤ N0(r) + S(r). The

last two inequalities imply the second relation in (4.1).
Then three cases are needed to be discussed.
Case 1. Suppose that t is a positive. If s + t = 2, then s = t = 1, and from
(3.13) we get that f is a linear transformation of g which is a contradiction. So that
s+ t > 2. From 4.2, we note that T (r, g) = (s+ t− 1)T (r, h) + S(r), which implies

N0(r) =
1

s+ t− 1
T (r, g) + S(r) ≤ 1

2
T (r, g) + S(r).

In this case, we take k = s + t − 1 and r = s. Then the case (a) in the lemma 9
follows from (4.2).
Case 2. Suppose that t < 0 and s+ t > 0. If s = 2, then t = −1, and from (3.13)
we get that f is a linear transformation of g which is a contradiction. We assume
that s > 2. It follows from 4.2 that T (r, g) = (s− 1)T (r, h) + S(r), that is,

N0(r) =
1

s− 1
T (r, g) + S(r) ≤ 1

2
T (r, g) + S(r).

Here, we take k = s− 1 and r = −t to obtain the case (b) in the lemma 9, by using
(4.2).
Case 3. Suppose that t < 0 and s + t < 0. Obviously, −t ≥ 2. If −t = 2, then
s = 1, and from (3.13) we get that f is a linear transformation of g. Suppose that
−t > 2. Then (4.2) gives us that T (r, g) = (−t− 1)T (r, h) + S(r), which implies

N0(r) = − 1
t+ 1

T (r, g) + S(r) ≤ 1
2
T (r, g) + S(r).
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If we put k = −(t+ 1) and r = s, then we have case (c) in the lemma 9. It is easy
to prove that r and k are done in the cases a, b, c. If T (r, f) = N0(r) + S(r) and f
is not any linear transformation of g, then

N0(r) ≤ 1
2
T (r, f) + S(r),

which is a contradiction. That is, if T (r, f) = N0(r) + S(r), then f is a linear

transformation of g, which completes the proof (i). Now, if N0(r) ≤ 1
2
T (r, f)+S(r)

then, from (i), we deduce that f is not any linear transformation of g and this
completes the proof (ii). This proves Lemma 9. �

Proof of Theorem 3. It is not difficult to check that if f is a fractional linear
transformation of g, then Theorem 3 immediately follows from Lemma 8. Therefore,
we prove Theorem 3 when f is not a fractional linear transformation of g. By
utilizing Theorem 1, it is obviously that if g = a V f = a or E2)(a, g) ⊆ E(a, f)
then

(4.3) N(r,
1

g − a
) ≤ N0(r) + S(r).

Suppose that g 6∈ { af

f + a− 1
, (1− a)f + a, af}. Then from Theorems 1 and 2, we

get

(4.4) T (r, g) = N2)(r,
1

g − a
) + S(r).

Similarly to (2.2) and (2.3), we get

(4.5) −H
′
0

H0
(g − λ) =

f ′(f − g)
f(f − 1)

,

(4.6) T (r, g) = N1)(r,
1

g − λ
) + S(r),

where λ =
α′

α
α′

α −
H′

H

. From (4.3), (4.6) and Lemma 9, we deduce λ 6≡ a.

Let z0 be a common zero of g−a and f−a such that a(z0) 6= 0, 1, ∞, λ(z0) 6= 0, ∞

and
H ′0
H0

(z0) 6= 0, ∞. Hence, the right-hand side of (4.5) must be a zero at z0, which

yields that g − λ has a zero at z0, so that z0 must be a zero of λ − a. Con-
sequently, from the condition g = a V f = a or E2)(a, g) ⊆ E(a, f), we get
N(r, 1/(g − a)) = S(r), and from (4.4) it follows T (r, g) = S(r), which is a contra-

diction. Therefore, g ∈ { af

f + a− 1
, (1− a)f + a, af}. This proves Theorem 3. �
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