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NONLOCAL BOUNDARY VALUE PROBLEMS FOR HILFER

FRACTIONAL DIFFERENTIAL EQUATIONS
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and Jessada Tariboon

Abstract. In this paper, we initiate the study of boundary value prob-
lems involving Hilfer fractional derivatives. Several new existence and

uniqueness results are obtained by using a variety of fixed point theo-

rems. Examples illustrating our results are also presented.

1. Introduction

The theory of fractional differential equations received in recent years con-
siderable interest both in pure mathematics and applications. In the literature,
there exist several different definitions of fractional integrals and derivatives,
for example, the most popular of them are fractional derivatives in the sense of
Riemann-Liouville and Caputo. Other less-known definitions are the Hadamard
fractional derivative, the Erdeyl-Kober fractional derivative and so on. We refer
the interested in fractional calculus reader to the classical reference texts such
as [2, 9, 11–14, 16]. A generalization of derivatives of both Riemann-Liouville
and Caputo was given by R. Hilfer in [6] when he studied fractional time evo-
lution in physical phenomena. He named it as generalized fractional derivative
of order α ∈ (0, 1) and a type β ∈ [0, 1] which can be reduced to the Riemann-
Liouville and Caputo fractional derivatives when β = 0 and β = 1, respectively
(See Definition 2.4). Many authors call it the Hilfer fractional derivative. Such
derivative interpolates between the Riemann-Liouville and Caputo derivative
in some sense (cf. Remark 2.5). Some properties and applications of the Hilfer
derivative are given in [7], [8] and references cited therein.

Initial value problems involving Hilfer fractional derivatives were studied by
several authors. In year 2012 Furati, Kassim and Tatar [3] considered the initial
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value problem involving Hilfer fractional derivative

(1.1)

{
HDα,βx(t) = f(t, x(t)), t ∈ (a,∞), 0 < α < 1, 0 ≤ β ≤ 1,
I1−γx(a+) = xa, γ = α+ β − αβ,

where HDα,β is the generalized Riemann-Liouville fractional derivative opera-
tor introduced by Hilfer and I1−γ is the Riemann-Liouville fractional integral
of order 1 − γ. They proved existence and uniqueness of global solutions in
the space of weighted continuous functions and also analyzed stability of the
solution for a weighted Cauchy-type problem. In year 2015, Gu and Trujillo
[5] investigated existence of mild solution for evolution equation with Hilfer
fractional derivative of the form

(1.2)

{
HDα,βx(t) = Ax(t) + f(t, x(t)), t ∈ (0, b],

I(1−α)(1−β)x(0) = x0,

where 0 < α < 1, 0 ≤ β ≤ 1, A is the infinitesimal generator of a strongly
continuous semigroup of bounded linear operators in Banach space. In the same
year Wang and Zhang [15] discussed the existence of solutions to nonlocal initial
value problem for differential equations with Hilfer fractional derivative

(1.3)


HDα,βx(t) = f(t, x(t)), t ∈ (a, b], 0 < α < 1, 0 ≤ β ≤ 1,

I1−γx(a+) =

m∑
i=1

λix(τi), γ = α+ β − αβ, τi ∈ (a, b].

Using Krasnoselskii and Schauder fixed point theorems, they proved the exis-
tence of problem (1.3). However, to the best of our knowledge, there is no work
on boundary value problems with Hilfer fractional derivatives in the literature.

The objective of the present work is to introduce a new class of boundary
value problems of Hilfer-type fractional differential equations with nonlocal
integral boundary conditions, and develop the existence and uniqueness criteria
for the solutions of such problems. In precise terms, we consider the nonlocal
boundary value problem

HDα,βx(t) = f(t, x(t)), t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1,(1.4)

x(a) = 0, x(b) =

m∑
i=1

δiI
ϕix(ξi), ϕi > 0, δi ∈ R, ξi ∈ [a, b],(1.5)

where HDα,β is the Hilfer fractional derivative of order α, 1 < α < 2 and
parameter β, 0 ≤ β ≤ 1, Iϕi is the Riemann-Liouville fractional integral of
order ϕi > 0, ξi ∈ [a, b], a ≥ 0 and δi ∈ R, i = 1, . . . ,m.

Several existence and uniqueness results are proved by using a variety of fixed
point theorems. We make use of Banach’s fixed point theorem, Hölder’s in-
equality and Boyd and Wong fixed point theorem for nonlinear contractions [1]
to obtain the uniqueness results, while nonlinear alternative of Leray-Schauder
type [4] and Krasnoselskii’s fixed point theorem [10] are applied to obtain the
existence results for the problem (1.4)-(1.5).
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The paper is organized as follows: We present our main work in Section
3, while Section 2 contains some preliminary concepts related to our problem.
Examples are constructed in every section to illustrate the main results.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional
calculus [9, 13].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
continuous function is defined by

Iαu(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, n− 1 < α < n,

where n = [α] + 1 denotes the integer part of real number α, provided the
right-hand side is point-wise defined on (a,∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of
a continuous function is defined by

RLDαu(t) := DnIn−αu(t)

=
1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1u(s)ds, n− 1 < α < n,

where n = [α] + 1 denotes the integer part of real number α, provided the
right-hand side is point-wise defined on (a,∞).

Definition 2.3. The Caputo fractional derivative of order α > 0 of a contin-
uous function is defined by

CDαu(t) := In−αDnu(t)

=
1

Γ(n− α)

∫ t

a

(t− s)n−α−1
(
d

ds

)n
u(s)ds, n− 1 < α < n,

where n = [α] + 1 denotes the integer part of real number α, provided the
right-hand side is point-wise defined on (a,∞).

In [6] (see also [8]) another new definition of the fractional derivative was
suggested. The generalized Riemann-Liouville fractional derivative defined as:

Definition 2.4. The generalized Riemann-Liouville fractional derivative or
Hilfer fractional derivative of order α and parameter β of a function is defined
by

HDα,βu(t) = Iβ(n−α)DnI(1−β)(n−α)u(t),

where n− 1 < α < n, 0 ≤ β ≤ 1, t > a, D = d
dt .
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Remark 2.5. Observe that if β = 0, (1.4) is reduced to the Riemann-Liouville
fractional differential equation of the form:

(2.1) RLDαx(t) = f(t, x(t)), t ∈ [a, b],

and if β = 1, (1.4) is also reduced to the Caputo fractional differential equation

(2.2) CDαx(t) = f(t, x(t)), t ∈ [a, b],

where RLDα and CDα are respectively the Riemann-Liouville and Caputo frac-
tional differential operators of order α.

Lemma 2.6 ([9, Lemma 2.5]). Let 1 < α ≤ 2. Then

Iα
(
RLDαf

)
(t) = f(t)− (I1−αf)(a)

Γ(α)
(t− a)α−1 − (I2−αf)(a)

Γ(α− 1)
(t− a)α−2.

3. Main results

The following lemma deals with a linear variant of the boundary value prob-
lem (1.4)-(1.5).

Lemma 3.1. Let

(3.1) Λ =

m∑
i=1

δi(ξi − a)γ+ϕi−1

Γ(γ + ϕi)
− (b− a)γ−1

Γ(γ)
6= 0,

ϕi > 0, ξi ∈ [a, b], a ≥ 0, δi ∈ R, i = 1, . . . ,m, 1 < α < 2, γ = α + 2β − αβ
and h ∈ C([a, b],R). Then the function x is a solution of the boundary value

HDα,βx(t) = h(t), t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1,(3.2)

x(a) = 0, x(b) =

m∑
i=1

δiI
ϕix(ξi), ϕi > 0, δi ∈ R, ξi ∈ [a, b],(3.3)

if and only if

(3.4) x(t) =
(t− a)γ−1

ΛΓ(γ)

(
Iαh(b)−

m∑
i=1

δiI
α+ϕih(ξi)

)
+ Iαh(t).

Proof. The equation (3.2) can be written as

(3.5) Iβ(2−α)D2I(1−β)(2−α)x(t) = h(t).

Applying the Riemann-Liouville fractional integral of order α to the both sides
of the equation (3.5), we obtain

IαIβ(2−α)D2I(1−β)(2−α)x(t) = Iαh(t).

Indeed

IαIβ(2−α)D2I(1−β)(2−α)x(t) = IγD2I2−γx(t) = Iγ
(
RLDγx

)
(t),

and therefore

Iγ
(
RLDγx

)
(t) = Iαh(t).
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By using Lemma 2.6 and setting
(
I2−αx

)
(a) = c1,

(
I1−αx

)
(a) = c2, we

obtain

x(t) =
c2

Γ(γ)
(t− a)γ−1 +

c1
Γ(γ − 1)

(t− a)γ−2 + Iαh(t).(3.6)

From the first boundary condition x(a) = 0, we obtain c1 = 0. Then we get

(3.7) x(t) =
c2

Γ(γ)
(t− a)γ−1 + Iαh(t),

and

(3.8)

m∑
i=1

δiI
ϕix(ξi) = c2

m∑
i=1

δi(ξi − a)γ+ϕi−1

Γ(γ + ϕi)
+

m∑
i=1

δiI
α+ϕih(ξi).

From x(b) =
∑m
i=1 δiI

ϕix(ξi), by using (3.8), we have

c2

(
m∑
i=1

δi(ξi − a)γ+ϕi−1

Γ(γ + ϕi)
− (b− a)γ−1

Γ(γ)

)
= Iαh(b)−

m∑
i=1

δiI
α+ϕih(ξi),

from which we get

c2 =
1

Λ

(
Iαh(b)−

m∑
i=1

δiI
α+ϕih(ξi)

)
.

Substituting the value of c1 and c2 in (3.6), we obtain the solution (3.4). The
converse follows by direct computation. This completes the proof. �

Let C = C([a, b],R) denotes the Banach space of all continuous functions
from [a, b] to R endowed with the norm defined by ‖x‖ = supt∈[a,b] |x(t)|. In
view of Lemma 3.1, we define an operator A : C → C by

(Ax)(t) =
(t− a)γ−1

ΛΓ(γ)

(
Iαf(s, x(s))(b)−

m∑
i=1

δiI
α+ϕif(s, x(s))(ξi)

)
+ Iαf(s, x(s))(t),(3.9)

where the notation Iφf(s, x(s))(y) means

Iφf(s, x(s))(y) =
1

Γ(φ)

∫ y

a

(y − s)φ−1f(s, x(s))ds,

with φ ∈ {α, α+ϕi}, y ∈ {b, ξi, t}. It should be noticed that problem (1.4)-(1.5)
has a solution if and only if the operator A has fixed points. In the following,
for the sake of convenience, we set a positive constant

(3.10) Ω =
(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
+

(b− a)α

Γ(α+ 1)
.

In the following subsections we prove existence, as well as existence and
uniqueness results, for the boundary value problem (1.4)-(1.5) by using a variety
of fixed point theorems.
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3.1. Existence and uniqueness results

Our first existence and uniqueness result is based on Banach’s fixed point
theorem.

Theorem 3.2. Assume that:

(H1) there exists a constant L > 0 such that |f(t, x)− f(t, y)| ≤ L|x− y| for
each t ∈ [a, b] and x, y ∈ R.

If

(3.11) LΩ < 1,

where Ω is defined by (3.10), then the boundary value problem (1.4)-(1.5) has
a unique solution on [a, b].

Proof. We transform the boundary value problem (1.4)-(1.5) into a fixed point
problem, x = Ax, where the operator A is defined as in (3.9). Observe that the
fixed points of the operator A are solutions of problem (1.4)-(1.5). Applying
the Banach contraction mapping principle, we shall show that A has a unique
fixed point.

To construct a neighborhood of radius r, we let supt∈[a,b] |f(t, 0)| = M <∞,
and choose

(3.12) r ≥ MΩ

1− LΩ
.

Now, we show that ABr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For any x ∈ Br,
we have

|(Ax)(t)|

≤ sup
t∈[a,b]

{
(t− a)γ−1

|Λ|Γ(γ)
Iα|f(s, x(s))|(b)

+
(t− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi |f(s, x(s))|(ξi) + Iα|f(s, x(s))|(t)

}

≤ (b− a)γ−1

|Λ|Γ(γ)
Iα (|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) (b)

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)(ξi)

+ Iα(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)(b)

≤ (L‖x‖+M)

{
(b− a)γ−1

|Λ|Γ(γ)
Iα (1) (b) +

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi(1)(ξi) + Iα(1)(b)

}

≤ (Lr +M)

(
(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
+

(b− a)α

Γ(α+ 1)

)
= (Lr +M)Ω ≤ r,
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which implies that ABr ⊂ Br.
Next, we let x, y ∈ C. Then for t ∈ [a, b], we have

|(Ax)(t)− (Ay)(t)|

≤ (b− a)γ−1

|Λ|Γ(γ)
Iα|f(s, x(s))− f(s, y(s))|(b)

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi |f(s, x(s))− f(s, y(s))|(ξi)

+ Iα|f(s, x(s))− f(s, y(s))|(b)

≤ L

(
(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
+

(b− a)α

Γ(α+ 1)

)
‖x− y‖

= LΩ‖x− y‖,

which implies that ‖Ax − Ay‖ ≤ LΩ‖x − y‖. As LΩ < 1, A is a contraction.
Therefore, we deduce by the Banach’s contraction mapping principle, that A
has a fixed point which is the unique solution of the boundary value problem
(1.4)-(1.5). The proof is completed. �

Remark 3.3. We would like point out that the condition LΩ < 1 can be deleted
if we use the well-known Bielecki’s renorming method.

Now, we give some special cases of the above theorem by setting constants
Ω0 and Ω1 with β = 0 and β = 1, respectively, as

Ω0 :=
(b−a)2α−1

|Λ0|Γ(α)Γ(α+ 1)
+

(b−a)α−1

|Λ0|Γ(α)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
+

(b−a)α

Γ(α+ 1)
,(3.13)

Ω1 :=
(b−a)α+1

|Λ1|Γ(α+ 1)
+

(b−a)

|Λ1|

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
+

(b−a)α

Γ(α+ 1)
,(3.14)

where

Λ0 =

m∑
i=1

δi(ξi − a)α+ϕi−1

Γ(α+ ϕi)
− (b− a)α−1

Γ(α)
,(3.15)

Λ1 =

m∑
i=1

δi(ξi − a)ϕi+1

Γ(ϕi + 2)
− (b− a).(3.16)

Thus, we have the following corollaries.

Corollary 3.4. Suppose that the condition (H1) holds. If LΩ0 < 1, where Ω0

is defined by (3.13), then the problem (2.1)-(1.5) has a unique solution on [a, b].

Corollary 3.5. Assume that the condition (H1) is satisfied. If LΩ1 < 1, where
Ω1 is defined by (3.14), then the problem (2.2)-(1.5) has a unique solution on
[a, b].
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Our second existence and uniqueness result is proved by using Banach’s fixed
point theorem together with Hölder inequality.

Theorem 3.6. Suppose that f : [a, b]×R→ R is a continuous function satis-
fying the following assumption:

(H2) |f(t, x)− f(t, y)| ≤ θ(t)|x− y| for t ∈ [a, b], x, y ∈ R and
θ ∈ L1/σ([a, b],R+), σ ∈ (0, 1).

Denote ‖θ‖ =
(∫ b

a
|θ(s)|1/σds

)σ
and

ω =
(b− a)γ+α−σ−1

|Λ|Γ(γ)Γ(α)

(
1− σ
α− σ

)1−σ

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi−σ

Γ(α+ ϕ)

(
1− σ

α+ ϕi − σ

)1−σ

+
(b− a)α−σ

Γ(α)

(
1− σ
α− σ

)1−σ

.

If

‖θ‖ω < 1,(3.17)

then the boundary value problem (1.4)-(1.5) has a unique solution on [a, b].

Proof. For x, y ∈ C and for each t ∈ [a, b], by Hölder’s inequality, we have

|(Ax)(t)− (Ay)(t)|

≤ (b− s)γ−1

|Λ|Γ(γ)
Iα|f(s, x(s))− f(s, y(s))|(b)

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi |f(s, x(s))− f(s, y(s))|(ξi)

+ Iα|f(s, x(s))− f(s, y(s))|(b)

=
(b− a)γ−1

|Λ|Γ(γ)Γ(α)

∫ b

a

(b− s)α−1θ(s)|x(s)− y(s)|ds

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|
Γ(α+ ϕi)

∫ ξi

a

(ξi − s)α+ϕi−1θ(s)|x(s)− y(s)|ds

+
1

Γ(α)

∫ b

a

(b− s)α−1θ(s)|x(s)− y(s)|ds

≤ (b− a)γ−1

|Λ|Γ(γ)Γ(α)

(∫ b

a

(
(b− s)α−1

) 1
1−σ ds

)1−σ (∫ b

a

(θ(s))
1
σ

)σ
‖x− y‖

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|
Γ(α+ ϕi)

(∫ ξi

a

(
(ξi − s)α+ϕi−1

) 1
1−σ ds

)1−σ
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×

(∫ ξi

a

(
θ(s)

1
σ ds

)σ)
‖x− y‖+

1

Γ(α)

(∫ b

a

(
(b− s)α−1

) 1
1−σ ds

)1−σ

×

(∫ b

a

(θ(s))
1
σ

)σ
‖x− y‖

≤ ‖θ‖

[
(b− a)γ+α−σ−1

|Λ|Γ(γ)Γ(α)

(
1− σ
α− σ

)1−σ

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi| (ξi − a)
α+ϕi−σ

Γ(α+ ϕi)

(
1− σ

α+ ϕi − σ

)1−σ

+
(b− a)α−σ

Γ(α)

(
1− σ
α− σ

)1−σ
]
‖x− y‖ = ‖θ‖ω‖x− y‖.

It follows, by (3.17), that A is a contraction mapping. Hence Banach’s fixed
point theorem implies that A has a unique fixed point, which is the unique
solution of the boundary value problem (1.4)-(1.5) on [a, b]. This completes
the proof. �

The next two special cases are established by setting constants as

ω0 :=
(b− a)2α−σ−1

|Λ0|Γ2(α)

(
1− σ
α− σ

)1−σ

+
(b− a)α−σ

Γ(α)

(
1− σ
α− σ

)1−σ

+
(b− a)α−1

|Λ0|Γ(α)

m∑
i=1

|δi|(ξi − a)α+ϕi−σ

Γ(α+ ϕ)

(
1− σ

α+ ϕi − σ

)1−σ

,(3.18)

ω1 :=
(b− a)α−σ+1

|Λ1|Γ(α)

(
1− σ
α− σ

)1−σ

+
(b− a)α−σ

Γ(α)

(
1− σ
α− σ

)1−σ

+
(b− a)

|Λ1|

m∑
i=1

|δi|(ξi − a)α+ϕi−σ

Γ(α+ ϕ)

(
1− σ

α+ ϕi − σ

)1−σ

.(3.19)

Corollary 3.7. Suppose that the condition (H2) holds. If ‖θ‖ω0 < 1, where ω0

is define by (3.18), then the problem (2.1)-(1.5) has a unique solution on [a, b].

Corollary 3.8. Assume that the condition (H2) is satisfied. If ‖θ‖ω1 < 1,
where ω1 is define by (3.19), then the problem (2.2)-(1.5) has a unique solution
on [a, b].

Now we give our third existence and uniqueness result via nonlinear con-
tractions. Some preliminary facts are necessary.

Definition 3.9. Let E be a Banach space and let A : E → E be a mapping. A
is said to be a nonlinear contraction if there exists a continuous nondecreasing
function Ψ : R+ → R+ such that Ψ(0) = 0 and Ψ(ε) < ε for all ε > 0 with the
property:

‖Ax−Ay‖ ≤ Ψ(‖x− y‖), ∀x, y ∈ E.
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Lemma 3.10 (Boyd and Wong [1]). Let E be a Banach space and let A : E →
E be a nonlinear contraction. Then A has a unique fixed point in E.

Theorem 3.11. Let f : [a, b]×R→ R be a continuous function satisfying the
assumption:

(H3) |f(t, x) − f(t, y)| ≤ h(t)
|x− y|

H∗ + |x− y|
for t ∈ [a, b], x, y ∈ R, where

h : [a, b] → R+ is a continuous function and the positive constant H∗

is defined by

H∗ :=
(b− a)γ−1

|Λ|Γ(γ)
Iαh(b) +

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕih(ξi) + Iαh(b).

Then the boundary value problem (1.4)-(1.5) has a unique solution on [a, b].

Proof. We define the operator A : C → C as in (3.9) and the continuous non-
decreasing function Ψ : R+ → R+ by

Ψ(ε) =
H∗ε

H∗ + ε
, ∀ε ≥ 0.

Note that the function Ψ satisfies Ψ(0) = 0 and Ψ(ε) < ε for all ε > 0.
For any x, y ∈ C and for each t ∈ [a, b], we have

|(Ax)(t)− (Ay)(t)| ≤ (b− a)γ−1

|Λ|Γ(γ)
Iα|f(s, x(s))− f(s, y(s))|(b)

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi |f(s, x(s))− f(s, y(s))|(ξi)

+ Iα|f(s, x(s))− f(s, y(s))|(t)

≤ (b− a)γ−1

|Λ|Γ(γ)
Iα
(
h(s)

|x− y|
H∗ + |x− y|

)
(b)

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi
(
h(s)

|x− y|
H∗ + |x− y|

)
(ξi)

+ Iα
(
h(s)

|x− y|
H∗ + |x− y|

)
(b)

≤ Ψ(‖x− y‖)
H∗

(
(b− a)γ−1

|Λ|Γ(γ)
Iαh(b)

+
(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕih(ξi) + Iαh(b)

)
= Ψ(‖x− y‖).

This implies that ‖Ax−Ay‖ ≤ Ψ(‖x−y‖). Therefore A is a nonlinear contrac-
tion. Hence, by Lemma 3.10 the operator A has a unique fixed point which is
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the unique solution of the boundary value problem (1.4)-(1.5). This completes
the proof. �

In the special cases we set constants as

H∗0 :=
(b− a)α−1

|Λ0|Γ(α)
Iαh(b) +

(b− a)α−1

|Λ0|Γ(α)

m∑
i=1

|δi|Iα+ϕih(ξi) + Iαh(b),(3.20)

H∗1 :=
(b− a)

|Λ1|
Iαh(b) +

(b− a)

|Λ1|

m∑
i=1

|δi|Iα+ϕih(ξi) + Iαh(b).(3.21)

Corollary 3.12. Suppose that the condition (H3) holds with H∗ replaced by
H∗0 . Then the problem (2.1)-(1.5) has a unique solution on [a, b].

Corollary 3.13. Assume that the condition (H3) is satisfied with H∗ replaced
by H∗1 . Then the problem (2.2)-(1.5) has a unique solution on [a, b].

Example 3.14. Consider the nonlocal boundary value problem with Hilfer
fractional differential equation

(3.22)


HD

3
2 ,

1
3x(t) =

1

2(3 + 2t)2

(
x2(t) + 2|x(t)|

1 + |x(t)|

)
+

3

2
, t ∈ [1/2, 5],

x

(
1

2

)
= 0, x(5) = I

3
4x(2) +

3

5
I

5
3x

(
7

2

)
+

7

3
I

4
5x

(
9

5

)
.

Here α = 3/2, β = 1/3, γ = 5/3, a = 1/2, b = 5, δ1 = 1, δ2 = 3/5, δ3 = 7/3,
ϕ1 = 3/4, ϕ2 = 5/3, ϕ3 = 4/5, ξ1 = 2, ξ2 = 7/2 and ξ3 = 9/5. Since
|f(t, x) − f(t, y)| ≤ (1/16)|x − y|, then (H1) is satisfied with L = 1/16. By
direct computation, we have Ω = 15.20692499.

Thus LΩ = 0.95043281 < 1. Hence, by Theorem 3.2, the boundary value
problem (3.22) has a unique solution on [1/2, 5].

Example 3.15. Consider the nonlocal boundary value problem with Hilfer
fractional differential equation
(3.23)

HD
4
3 ,

5
6x(t) =

(√
t3 + 1

)( |x(t)|
105 + |x(t)|

)
+

1

2
, t ∈ [1, 15/2],

x (1) = 0, x

(
15

2

)
= 3I

1
2x

(
3

2

)
+ I

2
3x

(
5

2

)
+

1

2
I

3
4x

(
7

2

)
+ 5I

4
5x

(
9

2

)
.

Here α = 4/3, β = 5/6, γ = 17/9, a = 1, b = 15/2, δ1 = 3, δ2 = 1, δ3 = 1/2,
δ4 = 5, ϕ1 = 1/2, ϕ2 = 2/3, ϕ3 = 3/4, ϕ4 = 4/5, ξ1 = 3/2, ξ2 = 5/2, ξ3 = 7/2

and ξ4 = 9/2. We choose h(t) =
√
t3 + 1 and find that

H∗ =
(b− a)γ−1

|Λ|Γ(γ)
Iαh(b)+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕih(ξi)+I
αh(b) = 103.5822234.
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Clearly,

|f(t, x)− f(t, y)| =
(√

t3 + 1
)( 105(|x| − |y|)

1052 + 105|x|+ 105|y|+ |x||y|

)
,

≤ |x− y|
103.5822234 + |x− y|

.

Hence, by Theorem 3.11, the boundary value problem (3.23) has a unique
solution on [1, 15/2].

3.2. Existence results

In this subsection we present some existence results. The first existence
result is based on the well-known Krasnoselskii’s fixed point theorem.

Lemma 3.16 (Krasnoselskii’s fixed point theorem). Let M be a closed, bound-
ed, convex and nonempty subset of a Banach space X. Let A,B be the oper-
ators such that (a) Ax + By ∈ M whenever x, y ∈ M ; (b) A is compact and
continuous; (c) B is a contraction mapping. Then there exists z ∈M such that
z = Az +Bz.

Theorem 3.17. Let f : [a, b] × R → R be a continuous function satisfying
(H1). In addition we assume that:

(H4) |f(t, x)| ≤ ϕ(t), ∀(t, x) ∈ [a, b]× R, and ϕ ∈ C([a, b],R+).

Then the boundary value problem (1.4)-(1.5) has at least one solution on [a, b]
provided

(3.24) Lµ < 1,

where

(3.25) µ =
(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
.

Proof. Setting supt∈[a,b] ϕ(t) = ‖ϕ‖ and choosing

(3.26) ρ ≥ ‖ϕ‖Ω,

(where Ω is defined by (3.10)), we consider Bρ = {x ∈ C : ‖x‖ ≤ ρ}. We define
the operators A1, A2 on Bρ by

A1x(t) = Iαf(s, x(s))(t), t ∈ [a, b],

and

A2x(t) =
(t− a)γ−1

ΛΓ(γ)
Iαf(s, x(s))(b)

− (t− a)γ−1

ΛΓ(γ)

m∑
i=1

δiI
α+ϕif(s, x(s))(ξi), t ∈ [a, b].
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For any x, y ∈ Bρ, we have

|(A1x)(t) + (A2y)(t)|

≤ sup
t∈[a,b]

{
Iα|f(s, x(s))|(t) +

(t− a)γ−1

|Λ|Γ(γ)
Iα|f(s, y(s))|(b)

+
(t− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi |f(s, y(s))|(ξi)

}

≤ ‖ϕ‖

(
(b− a)α

Γ(α+ 1)
+

(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)

)
≤ ‖ϕ‖Ω ≤ ρ.

This shows that A1x+A2y ∈ Bρ. Therefore, the condition (a) in Lemma 3.16
is satisfied. It is easy to see, using (3.24), that A2 is a contraction mapping.

Continuity of f implies that the operator A1 is continuous. Also, A1 is
uniformly bounded on Bρ as

‖A1x‖ ≤
(b− a)α

Γ(α+ 1)
‖ϕ‖.

Now we prove the compactness of the operator A1.
We define sup(t,x)∈[a,b]×Bρ |f(t, x)| = f̄ <∞, and consequently we have

|(A1x)(t2)− (A1x)(t1)| = 1

Γ(α)

∣∣∣∣∣
∫ t1

a

[(t2 − s)α−1 − (t1 − s)α−1]f(s, x(s))ds

+

∫ t2

t1

(t2 − s)α−1f(s, x(s))ds

∣∣∣∣∣
≤ f̄

Γ(α+ 1)
[2(t2 − t1)α + |(t2 − a)α − (t1 − a)α|],

which is independent of x and tend to zero as t2− t1 → 0. Thus, A1 is equicon-
tinuous. So A1 is relatively compact on Bρ. Hence, by the Arzelá-Ascoli
theorem, A1 is compact on Bρ. Thus all the assumptions of Lemma 3.16 are
satisfied. So the conclusion of Lemma 3.16 implies that the boundary value
problem (1.4)-(1.5) has at least one solution on [a, b]. �

Remark 3.18. In the above theorem we can interchange the roles of the op-
erators A1 and A2 to obtain a second result replacing (3.24) by the following
condition:

L
(b− a)α

Γ(α+ 1)
< 1.

Next, we give two special cases by setting constants as

µ0 =
(b− a)2α−1

|Λ0|Γ(α)Γ(α+ 1)
+

(b− a)α−1

|Λ0|Γ(α)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
,(3.27)
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µ1 =
(b− a)α+1

|Λ1|Γ(α+ 1)
+

(b− a)

|Λ1|

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
.(3.28)

Corollary 3.19. Suppose that the condition (H4) holds. Then the problem
(2.1)-(1.5) has at least one solution on [a, b], provided Lµ0 < 1.

Corollary 3.20. Assume that the condition (H4) is satisfied. Then the problem
(2.2)-(1.5) has at least one solution on [a, b], provided Lµ1 < 1.

The Leray-Schauder’s Nonlinear Alternative is used for our next existence
result.

Lemma 3.21 (Nonlinear alternative for single valued maps [4]). Let E be a
Banach space, C a closed, convex subset of E, U an open subset of C and
0 ∈ U . Suppose that A : Ū → C is a continuous, compact (that is, A(Ū) is a
relatively compact subset of C) map. Then either

(i) A has a fixed point in Ū , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with x =

λA(x).

Theorem 3.22. Assume that:

(H5) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞)
and a function p ∈ C([a, b],R+) such that

|f(t, u)| ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [a, b]× R;

(H6) there exists a constant M > 0 such that

M

ψ(M)‖p‖Ω
> 1,

where Ω is defined by (3.10).

Then the boundary value problem (1.4)-(1.5) has at least one solution on [a, b].

Proof. Let the operator A be defined by (3.9). Firstly, we shall show that A
maps bounded sets (balls) into bounded set in C. For a number r > 0, let
Br = {x ∈ C : ‖x‖ ≤ r} be a bounded ball in C. Then for t ∈ [a, b] we have

|(Ax)(t)|

≤ sup
t∈[a,b]

{
(t− a)γ−1

|Λ|Γ(γ)
Iα|f(s, x(s))|(b)

+
(t− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi |f(s, x(s))|(ξi) + Iα|f(s, x(s))|(t)

}

≤ ψ(‖x‖) (t− a)γ−1

|Λ|Γ(γ)
Iαp(s)(b)

+ ψ(‖x‖) (t− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕip(s)(ξi) + ψ(‖x‖)Iαp(s)(b)
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≤ ψ(‖x‖)‖p‖

(
(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
+

(b− a)α

Γ(α+ 1)

)
,

and consequently,

‖Ax‖ ≤ ψ(r)‖p‖Ω.
This means that A(Br) is uniformly bounded. Next we will show that A maps
bounded sets into equicontinuous sets of C. Let τ1, τ2 ∈ [a, b] with τ1 < τ2 and
x ∈ Br. Then we have

|(Ax)(τ2)− (Ax)(τ1)|

≤ (τ2 − a)γ−1 − (τ1 − a)γ−1

|Λ|Γ(γ)
Iα|f(s, x(s))|(b)

+
(τ2 − a)γ−1 − (τ1 − a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|Iα+ϕi |f(s, x(s))|(ξi)

+
1

Γ(α)

∣∣∣∣∣
∫ τ1

a

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, x(s))ds

+

∫ τ2

τ1

(τ2 − s)α−1f(s, x(s))ds

∣∣∣∣∣
≤ (τ2 − a)γ−1 − (τ1 − a)γ−1

|Λ|Γ(γ)
ψ(r)Iαp(s)(b)

+
(τ2 − a)γ−1 − (τ1 − a)γ−1

|Λ|Γ(γ)
ψ(r)

m∑
i=1

|δi|Iα+ϕip(s)(ξi)

+
ψ(r)

Γ(α)

∣∣∣∣∣
∫ τ1

a

[(τ2 − s)α−1 − (τ1 − s)α−1]p(s)ds

+

∫ τ2

τ1

(τ2 − s)α−1p(s)ds

∣∣∣∣∣
≤ (τ2 − a)γ−1 − (τ1 − a)γ−1

|Λ|Γ(γ)
‖p‖ψ(r)

{
(b− a)α

Γ(α+ 1)
+

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)

}

+
‖p‖ψ(r)

Γ(α+ 1)
[2(t2 − t1)α + |(t2 − a)α − (t1 − a)α|].

As τ2 − τ1 → 0, the right-hand side of the above inequality tends to zero
independently of x ∈ Br. It follows that the set A(Br) is an equicontinuous set.
Therefore, by the Arzelá-Ascoli theorem, the set A(Br) is relatively compact
which implies that the operator A : C → C is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma
3.21) once we have proved the boundedness of the set of all solutions to equa-
tions x = λAx for λ ∈ (0, 1).
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Let x be a solution of (1.4)-(1.5). Then, for t ∈ [a, b], and following the
similar computations as in the first step, we have

|x(t)| ≤ ψ(‖x‖)‖p‖Ω,

which leads to
‖x‖

ψ(‖x‖)‖p‖Ω
≤ 1.

In view of (H6), there exists M such that ‖x‖ 6= M. Let us set

U = {x ∈ C([a, b],R) : ‖x‖ < M}.

We see that the operator A : Ū → C is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = λAx for some λ ∈ (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma
3.21), we deduce that A has a fixed point x ∈ Ū which is a solution of the
boundary value problem (1.4)-(1.5). This completes the proof. �

Corollary 3.23. Suppose that the condition (H5) and (H6) holds. If

M

ψ(M)‖p‖Ω0
> 1,

where Ω0 is define by (3.13), then the problem (2.1)-(1.5) has at least one
solution on [a, b].

Corollary 3.24. Assume that the condition (H5) and (H6) are satisfied. If

M

ψ(M)‖p‖Ω1
> 1,

where Ω1 is define by (3.14), then the problem (2.2)-(1.5) has at least one
solution on [a, b].

Corollary 3.25. Suppose that the continuous function f satisfies |f(t, x)| ≤
κ|x|+M,κ ≥ 0 and M > 0. Then:

(i) If κ < Ω−1, the problem (1.4)-(1.5) has at least one solution on [a, b].
(ii) If κ < Ω−10 , the problem (2.1)-(1.5) has at least one solution on [a, b].
(iii) If κ < Ω−11 , the problem (2.2)-(1.5) has at least one solution on [a, b].

Example 3.26. Consider the nonlocal boundary value problem with Hilfer
fractional differential equation

(3.29)


HD

5
4 ,

3
7x(t) =

e−t sinx

5 + t2
+

7

3
, t ∈ [3/4, 8],

x

(
3

4

)
= 0, x (8) =

7

3
I

4
3x (1) +

10

3
I

7
3x

(
5

4

)
+

11

3
I

8
3x (5) .

Here α = 5/4, β = 3/7, γ = 11/7, a = 3/4, b = 8, δ1 = 7/3, δ2 = 10/3,
δ3 = 11/3, ϕ1 = 4/3, ϕ2 = 7/3, ϕ3 = 8/3, ξ1 = 1, ξ2 = 5/4 and ξ3 = 5. Since
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|f(t, x) − f(t, y)| ≤ (1/5)|x − y|, (H1) is satisfied with L = 1/5. By using the
given data we find that

µ =
(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
≈ 4.648284127.

Thus, Lµ < 1. Clearly,

|f(t, x)| =

∣∣∣∣∣e−t sinx

5 + t2
+

7

3

∣∣∣∣∣ ≤ 1

5 + t2
+

7

3
.

Hence, by Theorem 3.17, the boundary value problem (3.29) has at least one
solution on [3/4, 8].

Example 3.27. Consider the nonlocal boundary value problem with Hilfer
fractional differential equation
(3.30)

HD
6
5 ,

11
12x(t)=

(
1

5 + 3t+ t2

)(
1

3
· |x|

7

1 + |x|6
+ 4

)
, t ∈ [1/2, 11/2],

x

(
1

2

)
=0, x

(
11

2

)
=

3

2
I

2
3x

(
3

2

)
+

2

3
I

4
3x

(
5

2

)
+

4

7
I

7
3x

(
7

2

)
+6I

8
3x

(
9

2

)
.

Here α = 6/5, β = 11/12, γ = 29/15, a = 1/2, b = 11/2, δ1 = 3/2, δ2 = 2/3,
δ3 = 4/7, δ4 = 6, ϕ1 = 2/3, ϕ2 = 4/3, ϕ3 = 7/3, ϕ4 = 8/3, ξ1 = 3/2, ξ2 = 5/2,
ξ3 = 7/2 and ξ4 = 9/2. It is easy to verify that

Ω =
(b− a)α+γ−1

|Λ|Γ(γ)Γ(α+ 1)
+

(b− a)γ−1

|Λ|Γ(γ)

m∑
i=1

|δi|(ξi − a)α+ϕi

Γ(α+ ϕi + 1)
+

(b− a)α

Γ(α+ 1)

≈ 11.52794978.

Clearly,

|f(t, x)| ≤ 1

5 + 3t+ t2

(
1

3
|x|+ 4

)
.

Choosing p(t) = 1/(5 + 3t + t2) and ψ(|x|) = (1/3)|x| + 4, we can show that
there exists a constant M > 39.84256810 such that

M

ψ(M)‖p‖Ω
> 1.

Hence, by Theorem 3.22, the boundary value problem (3.30) has at least one
solution on [1/2, 11/2].
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