• Title/Summary/Keyword: trigonometric functions

Search Result 137, Processing Time 0.026 seconds

A study on one-chip DSP BLDC motor control using software RDC (Software RDC를 이용한 One-chip DSP BLDC Motor 제어에 관한 연구)

  • 김용재;조정목;권경엽;조중선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1406-1409
    • /
    • 2004
  • The Resolver usually used in industry is the absolute angle analog sensor that must be in order to driving BLDC (brushless DC) motor, and it needs RDC(Resolver-to-Digital converter) for changing the output signal to digital to be applied to the SVPWM(Space Vector Pulse Width Modulation) algorithm. Commonly used S/W RDC needs trigonometric function. What it takes a lot of calculation time of processor is gotten at weak point. In this paper, S/W RDC is realized except trigonometric functions as a result of feedback resolver outputs after filtering using FIR filter. thus, processing time is reduced. So, One-chip DSP Controller operating the Vector Control, RDC, and SVPWM can be designed.

  • PDF

ON HYPONORMALITY OF TOEPLITZ OPERATORS WITH POLYNOMIAL AND SYMMETRIC TYPE SYMBOLS

  • Hazarika, Munmun;Phukon, Ambeswar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.617-625
    • /
    • 2011
  • In [6], it was shown that hyponormality for Toeplitz operators with polynomial symbols can be reduced to classical Schur's algorithm in function theory. In [6], Zhu has also given the explicit values of the Schur's functions ${\Phi}_0$, ${\Phi}_1$ and ${\Phi}_2$. Here we explicitly evaluate the Schur's function ${\Phi}_3$. Using this value we find necessary and sufficient conditions under which the Toeplitz operator $T_{\varphi}$ is hyponormal, where ${\varphi}$ is a trigonometric polynomial given by ${\varphi}(z)$ = ${\sum}^N_{n=-N}a_nz_n(N{\geq}4)$ and satisfies the condition $\bar{a}_N\(\array{a_{-1}\\a_{-2}\\a_{-4}\\{\vdots}\\a_{-N}}\)=a_{-N}\;\(\array{\bar{a}_1\\\bar{a}_2\\\bar{a}_4\\{\vdots}\\\bar{a}_N}\)$. Finally we illustrate the easy applicability of the derived results with a few examples.

p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS

  • SIMSEK YILMAZ
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.111-131
    • /
    • 2006
  • The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on $\mathbb{Z}_p$, we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.

SOME RELATIONS ON PARAMETRIC LINEAR EULER SUMS

  • Weiguo Lu;Ce Xu;Jianing Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.985-1001
    • /
    • 2023
  • Recently, Alzer and Choi [2] introduced and studied a set of the four linear Euler sums with parameters. These sums are parametric extensions of Flajolet and Salvy's four kinds of linear Euler sums [9]. In this paper, by using the method of residue computations, we will establish two explicit combined formulas involving two parametric linear Euler sums S++p,q (a, b) and S+-p,q (a, b) defined by Alzer and Choi, which can be expressed in terms of a linear combinations of products of trigonometric functions, digamma functions and Hurwitz zeta functions.

SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

  • Hongyuan Rui;Ce Xu;Xiaobin Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.671-697
    • /
    • 2024
  • In this paper, we formally introduce the notion of a general parametric digamma function Ψ(−s; A, a) and we find the Laurent expansion of Ψ(−s; A, a) at the integers and poles. Considering the contour integrations involving Ψ(−s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.

Flexural-Torsional Coupled Vibration of Slewing Beams Using Various Types of Orthogonal Polynomials

  • Kapania Rakesh K.;Kim, Yong-Yook
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1790-1800
    • /
    • 2006
  • Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance of various orthogonal polynomials is compared to each other in terms of their efficiency and accuracy in determining the required natural frequencies. Orthogonal polynomials and functions studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions and rotation are studied for their natural frequencies. The obtained natural frequencies and mode shapes are compared to those available in various references and the results for coupled flexural-torsional vibrations are especially compared to both previously available references and with those obtained using NASTRAN finite element package. Among all the examined orthogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU time, mainly because of ease in performing the integration required for determining the stiffness and mass matrices.

A NOTE ON PROLATE SPHEROIDAL WAVE FUNCTIONS AND PROLATE FUNCTION BASED NUMERICAL INVERSION METHODS

  • Kim, Eun-Joo;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.41-53
    • /
    • 2008
  • Polynomials are one of most important and widely used numerical tools in dealing with a smooth function on a bounded domain and trigonometric functions work for smooth periodic functions. However, they are not the best choice if a function has a bounded support in space and in frequency domain. The Prolate Spheroidal wave function (PSWF) of order zero has been known as a best candidate as a basis for band-limited functions. In this paper, we review some basic properties of PSWFs defined as eigenfunctions of bounded Fourier transformation. We also propose numerical inversion schemes based on PSWF and present some numerical examples to show their feasibilities as signal processing tools.

  • PDF

APPROXIMATED SEPARATION FORMULA FOR THE HELMHOLTZ EQUATION

  • Lee, Ju-Hyun;Jeong, Nayoung;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.403-420
    • /
    • 2019
  • The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.

Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동)

  • 정희영;정의영;김주우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

NEW EXACT TRAVELLING WAVE SOLUTIONS OF SOME NONLIN EAR EVOLUTION EQUATIONS BY THE(G'/G)-EXPANSION METHOD

  • Lee, You-Ho;Lee, Mi-Hye;An, Jae-Young
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.247-259
    • /
    • 2011
  • In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.