DOI QR코드

DOI QR Code

SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

  • Hongyuan Rui (School of Mathematics and Statistics Anhui Normal University) ;
  • Ce Xu (School of Mathematics and Statistics Anhui Normal University) ;
  • Xiaobin Yin (School of Mathematics and Statistics Anhui Normal University)
  • Received : 2023.05.18
  • Accepted : 2023.08.14
  • Published : 2024.05.31

Abstract

In this paper, we formally introduce the notion of a general parametric digamma function Ψ(−s; A, a) and we find the Laurent expansion of Ψ(−s; A, a) at the integers and poles. Considering the contour integrations involving Ψ(−s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.

Keywords

Acknowledgement

Ce Xu is supported by the National Natural Science Foundation of China (Grant No. 12101008), the Natural Science Foundation of Anhui Province (Grant No. 2108085QA01) and the University Natural Science Research Project of Anhui Province (Grant No. KJ2020A0057).

References

  1. H. Alzer and J. Choi, Four parametric linear Euler sums, J. Math. Anal. Appl. 484 (2020), no. 1, 123661, 22 pp. https://doi.org/10.1016/j.jmaa.2019.123661 
  2. D. H. Bailey, J. M. Borwein, and R. Girgensohn, Experimental evaluation of Euler sums, Experiment. Math. 3 (1994), no. 1, 17-30. http://projecteuclid.org/euclid.em/1062621000  1062621000
  3. B. C. Berndt, Ramanujan's Notebooks. Part II, Springer, New York, 1989. https://doi.org/10.1007/978-1-4612-4530-8 
  4. D. Borwein, J. M. Borwein, and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 277-294. https://doi.org/10.1017/ S0013091500019088 
  5. J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), no. 3, 734-740. https://doi.org/10.1016/j.amc.2011.01.062 
  6. J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Modelling 54 (2011), no. 9-10, 2220-2234. https://doi.org/10.1016/j.mcm.2011.05.032 
  7. A. Dil and K. N. Boyadzhiev, Euler sums of hyperharmonic numbers, J. Number Theory 147 (2015), 490-498. https://doi.org/10.1016/j.jnt.2014.07.018 
  8. A. Dil, I. Mezo, and M. Cenkci, Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41 (2017), no. 6, 1640-1655. https://doi.org/10.3906/mat-1603-4 
  9. P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experiment. Math. 7 (1998), no. 1, 15-35. http://projecteuclid.org/euclid.em/1047674270  1047674270
  10. I. Mezo, Nonlinear Euler sums, Pacific J. Math. 272 (2014), no. 1, 201-226. https://doi.org/10.2140/pjm.2014.272.201 
  11. I. Mezo and A. Dil, Hyperharmonic series involving Hurwitz zeta function, J. Number Theory 130 (2010), no. 2, 360-369. https://doi.org/10.1016/j.jnt.2009.08.005 
  12. X. Si, Euler-type sums involving multiple harmonic sums and binomial coefficients, Open Math. 19 (2021), no. 1, 1612-1619. https://doi.org/10.1515/math-2021-0124 
  13. X. Si, C. Xu, and M. Zhang, Quadratic and cubic harmonic number sums, J. Math. Anal. Appl. 447 (2017), no. 1, 419-434. https://doi.org/10.1016/j.jmaa.2016.10.026 
  14. A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory 154 (2015), 144-159. https://doi.org/10.1016/j.jnt.2015.02.013 
  15. A. Sofo and J. Choi, Extension of the four Euler sums being linear with parameters and series involving the zeta functions, J. Math. Anal. Appl. 515 (2022), no. 1, Paper No. 126370, 23 pp. https://doi.org/10.1016/j.jmaa.2022.126370 
  16. A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), no. 1, 93-113. https://doi.org/10.1007/s11139-010-9228-3 
  17. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Inc., Amsterdam, 2012. https://doi.org/10.1016/B978-0-12-385218-2.00001-3 
  18. W. Wang and Y. Lyu, Euler sums and Stirling sums, J. Number Theory 185 (2018), 160-193. https://doi.org/10.1016/j.jnt.2017.08.037 
  19. C. Xu, Some evaluation of parametric Euler sums, J. Math. Anal. Appl. 451 (2017), no. 2, 954-975. https://doi.org/10.1016/j.jmaa.2017.02.047 
  20. C. Xu, Multiple zeta values and Euler sums, J. Number Theory 177 (2017), 443-478. https://doi.org/10.1016/j.jnt.2017.01.018 
  21. C. Xu, Some evaluations of infinite series involving parametric harmonic numbers, Int. J. Number Theory 15 (2019), no. 7, 1531-1546. https://doi.org/10.1142/S179304211950088X 
  22. C. Xu, Extensions of Euler-type sums and Ramanujan-type sums, Kyushu J. Math. 75 (2021), no. 2, 295-322. https://doi.org/10.2206/kyushujm.75.295 
  23. C. Xu and W. Wang, Explicit formulas of Euler sums via multiple zeta values, J. Symbolic Comput. 101 (2020), 109-127. https://doi.org/10.1016/j.jsc.2019.06.009 
  24. J. Zhao, Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and its Applications, 12, World Sci. Publ., Hackensack, NJ, 2016. https://doi.org/10.1142/9634