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p-ADIC ¢-HIGHER-ORDER HARDY-TYPE SUMS

YILMAZ SIMSEK

ABSTRACT. The goal of this paper is to define p-adic Hardy sums
and p-adic g-higher-order Hardy-type sums. By using these sums
and p-adic g-higher-order Dedekind sums, we construct p-adic con-
tinuous functions for an odd prime. These functions contain p-
adic g-analogue of higher-order Hardy-type sums. By using an in-
variant p-adic g-integral on Z,, we give fundamental properties of
these sums. We also establish relations between p-adic Hardy sums,
Bernoulli functions, trigonometric functions and Lambert series.

1. Introduction, definitions, and notations

Recall that the Dedekind eta-function, which was introduced by
Dedekind in 1877, is defined by

o0

% | I 27rmz

n=1

for z € H, upper-half plane. In many applications of elliptic modular
functions to Number Theory Dedekind eta-function plays a central role.
The classical Dedekind sum appears in the transformation formulae of
this function. If h and k are coprime integers with k£ > 0, the classical
Dedekind sum is defined by

sk = Y () (),

pmod k
where the function ((x)) is defined by

_J z—[zle — 3, = isnot an integer
((z)) = { 0, otherwise,
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where [z]¢ is the largest integer < z ([1], [17]).
Generalized Dedekind sums s(h, k : p) are defined by [1]

(1.1) sthkip= Y TB, (%)
amodk

where h and k are coprime positive integers and Bp(z) is the p-th
Bernoulli function, which is defined by

(1.2) By(z) = By(z — [z]g) = —p! (2mi)™* Z m ~P2mMmE

me=—oo
m#0

where Bp(z) is the usual p-th Bernoulli polynomial.

Observe that when p = 1, the sum s(h, k : 1) is known as the classical
Dedekind sums, s(h, k). Also the sums s(h,k : p) are related to the
Lambert series, Gp(x), which are defined as follows:

0 ~ "
Gyla) =Y n P,
n=1

where p > 1.

Using a Mellin transform technique developed by Rademacher, Apos-
tol (1] obtained transformation formulae relating G,(e*™*%) to Gp(e?™4%)
for odd p, where Az = zjig is a modular substitution. The sum
s(h, k : p) appears in these transformation formulae. The sum s(h, k& : p)
is expressible as infinite series related to certain Lambert series. A rep-
resentation of s(h,k : p) as infinite series was given by Apostol [1]:

THEOREM 1. ([1]) Let (h,k) = 1. For odd p > 1, we have

p' [o’) e 27rlicnh e 27Tinh
13 S h,k:p - '. n‘ﬁ( Tinhk Tin >'
(3 sthken) =y L\ om
n # 0(k)

Throughout this paper Z;, Q, and N will respectively denote the ring
of p-adic rational integers, the field of p-adic rational numbers and the
set of natural numbers. Let v, be the normalized exponential valuation
of Q, with |p|, = p~v»®) = p~1. When one talks of g-extension, q is
variously considered as an indeterminate. Let C, be denoted by the
completion of algebraic closure of Q,. If ¢ € Cp,, we assume that |[g—1|, <

p—P%l, so that ¢* = exp(z logq) for z € Z, (for detail see [6], [8]-[12]).
Rosen and Snyder [16] defined p-adic Dedekind sums. They com-
menced this sums by interpolating certain m-th Bernoulli functions. Let
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p be an odd prime. Let a and N be positive integers such that (p,a) =1
and p|N. We wish to extend N 1B,,(£&). The function F (s;a, N) is
defined by

(1.4) F(s;a,N) = v (a) <—N>— 5 () (j—j—)ij,

i=0 M
where s € Zj,, (a) denotes the principal unit associated with q, i.e.,
(a) is the unique unit given via the decomposition ¢ = {(a)w (a) where
(j) , <1, |%‘p < 1 and |Bjl, < p for all
j > 0 (see [16]), we know that 322, (;) (X)J B} converges to a continuous

p-adic function of s on Z,. Let s = m, where m is a positive integer.
We set

w(a) = limy—eo aP . Since

F(m;a,N) =w™ ™ IN™ 1B, = ).
(m;a, N) = w B (N

In particular, if m +1=0(modp — 1), then

(1.5) F(m;a,N) = N™"'B,, (%)

Therefore F (s;a, N) is a continuous p-adic extension of N™~1B,, (1>

N
([16]).
This function interpolates k™s(h,k : m) where plk and (hu,p) =1
for each p=1,2,...,k—1 ([16]):

(1.6) k™s(h, k : m) ZuF  (hu)y,, k)

for all m+ 1 = 0(modp — 1), Where (at),, denotes the integer = such
that 0 <z < n and z = o (modn), (for detail see [16]).

p-adic Dedekind sums in the Rosen and Snyder [16] sense are given
as follows:

DEFINITION 1. ([16]) Let p be an odd prime. Let h and k relatively
prime positive integers such that p { k. Let u € Z,,. The p-adic Dedekind
sum is defined to be

(1.7) (u; b, k : p) ZMF w; by, k)

If p=1(modk) (p odd, as always), then we obtain immediately that
(1.8) s(m;h,k:p) = (1 —pm'l) k™s(h,k:m),
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for all m such that m+ 1= 0 (modp —1).

In [14], Kudo studied on p-adic Dedekind sums different from Rosen
and Snyder [16]. By using p-adic measure and p-adic continuous function
which interpolates of Euler numbers, Kudo [14] defined p-adic Dedekind
sums.

In this paper, we use the notation

1 _ T
W)=l =T
Hence,
lim[z] =z
g—1

for any x with |z| < 1 in the present p-adic case.

In [9]-[12], Kim defined the ¢-Volkenborn integration. By using g-
Volkenborn integration, he evaluated g-Bernoulli polynomials and num-
bers. By using non-Archimedean ¢-integration, he introduced multiple
Changhee g-Bernoulli polynomials which form a g-extension of Barnes’
multiple Bernoulli polynomials. He also construct the Changhee g-zeta
functions which give g-analogs of Barnes’ multiple zeta function. He
gave the relationships between the Changhee g-zeta function and Dae-
hee g-zeta function. He constructed a new measure. In [6], Kim gave
definition of a ¢-analogue of p-adic Haar distribution as follows: For any
positive integer N,

a

A-qq¢" _ ¢
1—g?”  [pV]

for 0 < a < p¥ — 1 and this can be extended to a distribution on
Zp. This distribution yields an invariant p-adic g-integral for each non-

negative integer m and the m-th Carlitz’s ¢-Bernoulli number 3}, can
be represented by this p-adic g-integral as follows:

Hqla + pNZp) =

' ¢%[d]

m — 3 R et
Zp N—oo =0 ™
where the limit is convergent (see [6]-[8]).

In [13], T. Kim and H. S. Kim defined g¢-Bernoulli number 8,,(=
Bm(q) € Cp, by making use of this integral, as follows

/ ¢l dtg(a) = fim.

Zp

m
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Note that limy—,1 8 (¢) = B, where By, is the m-th Bernoulli number.
They also defined ¢g-Bernoulli polynomials by

(1.9) Bm(z:q) = / ¢z 4 ™ dpg(t)

Zyp

for x € Z,, m € N.

These numbers G,,(2 : ¢) can be represented as

[ m _
ﬂm(w:q)=kz_0< v ) Bualelm ™ (seo D3]

In (8], by using an invariant p—adic g¢-integrals on Z,, Kim con-
structed a p-adic continuous function for an odd prime to contain a
p-adic g-analogue of higher-order Dedekind sums k™s(h,k : m + 1).

THEOREM 2. ([8]) Assume that h, k are fixed integers with (h,k) =
(p,k) = 1. Let
k-1

sq(h, k :m;qt) = A;O[[%l /z,, g [er {%} :ql]mduqz(w),

where {z} denotes the fractional part of z. Then, there exists a contin-
uous function sy(s;h,k : p; ¢®) on Z,, which satisfies

(1.10) sq(m+ 1;h,k : p;¢°) = [k]™sy(h, k : m; ¢¥)

- [k]m[p : qk]m_lsq((p_lh)ka k: m;qpk),
for allm+1 = 0(modp — 1), where (p“la)N denotes the integer x such
that 0 < x < N and pr = a(mod N).

Here we express Hardy sums explicitly in terms of s(k, k). In stating
Hardy sums we will use the notation of Berndt [3] and Sitaramachan-
drarao [21].

Let h and k are integers with & > 0, the Hardy sums are defined as
follows:

k-1 . k ) .
S(h, k) = S (=17 s 51 (k) = Z(_l)[%lc((%)),
j=1 i=1
S () () ¢
sa(h ) = S DD (D), sk = (1
Jj= j=1

k—1

. k kg .
sa(hk) =3 (~D)lFe s5(h, k) = 3 (-1 7o ((%)).

i=1 =1
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The relations between Hardy sums and Dedekind sums are given as
follows:

THEOREM 3. ([21]) Let (h,k) = 1. Then if h 4+ k is odd,
S(h, k) = 8s(h,2k) + 8s(2h, k) — 20s(h, k);

if h is even,

s1(h, k) = 2s(h, k) — 4s(h, 2k);
if k is even,
(1.11) sa(h, k) = —s(h, k) + 2s(2h, k);
if k is odd,

ss(h,k) = 2s(h, k) — 4s(2h, k);
if h is odd,

sa(h, k) = —4s(h, k) + 8s(h, 2k);
if h 4+ k is even,
s5(h, k) = —10s(h, k) + 4s(2h, k) + 4s(h, 2k)

and each one of S(h, k) (h+ k even), s1(h, k), (h odd), sa2(h,k) (k odd),
s3(h, k) (k even), sq(h,k) (h even) and ss(h,k) (h+ k odd) is zero.

The proof of this theorem was given by Sitaramachandrarao [21].
Sitaramachandrarao [21], Berndt [3] and Dieter [5] and the author ([17}-
[20]) gave fundamental properties of the Hardy Sums.

A brief summary of the paper follows:

In Section 2, we define p-adic Hardy sums. We give relations be-
tween these sums, Bernoulli polynomials and trigonometric functions.
In Section 3, we shall establish new relations connection between the
sums s(h,k : p) and the Lambert series G,(e?*™*/*). In Section 4, we
define p-adic g-higher-order Hardy-type sums. By using these sums and
the sum s,(h, k : m;q'), we construct a p-adic continuous function for
an odd prime. This functions contain p-adic g-analogue of higher-order
Hardy-type sums. By using an invariant p-adic g-integral on Zj,, we
give fundamental properties of g-analogue of p-adic Hardy type sums.
We give relations between p-adic g-analogue of higher-order Hardy-type
sums and p-adic g-analogue of higher-order Dedekind sums as well.
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2. p-adic Hardy sums

Our aim in this section is to define p-adic Hardy sums. By using
(1.7) and Theorem 3, we define p-adic Hardy sums. By applying (1.5)
we prove the following theorems. p-adic Hardy sums are defined as
follows [20]:

DEFINITION 2. Let p be an odd prime. Let h and k be relatively
prime positive integers such that p { k. Let s € Z,,. Let h + k be odd,

S(s,hk:p)=4 > p(2F (s;hu,2k)+2F (s;2hp, k)—5F (s; hy, k),
u{mod k)

let h be even,

s1(s,h,k:p)=2 Z u(F (s; by, k) — 2F (s; hy, 2k)),

pu(mod k)
let k be even,
(2.1) s2(s,h,k:p)=— Z w(F (s;hu, k) — 2F (s;2hu, k)),
p(mod k)
let k£ be odd,
s3(s,h,k:p)=2 Z p(F (s;hp, k) — 2F (s;2hu, k)),
p(mod k)
let h be odd,
sa(s,hkip)=4 D u(=F (s;hu,k)+2F (s;hu,2K)),
p(mod k)
let A + k be even,
s5(s,h, k : p)
=2 Z p(—5F (s; hp, k) + 2F (s; 2hp, k) + 2F (s; hys, 2k)).
p#{mod k)

THEOREM 4. Let p be an odd prime. Let h and k be relatively prime
positive integers such that p{ k. Let s € Z. If k is even,

(2.2)
s2 (s, h,k : p)

s s—c et
ey () m(h) (e N
- ¢ ; (C) be <k> ( s—c+2 (BS—C+2 (k) Bs—c+2) )
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if k is odd,

(2.3)
s3(s,h, k : p)

- o Z() (5) (D) G- Buocea)

Proof. We need the f llowmg well-known relation:

—- B
24 p+1 p+1

By using (1.5) and (2.4) in (2.1) and after straightforward calculations,
we arrive at the desired result. For detail proof see [20]. Thus we choose
to omit the details involved. O

THEOREM 5. Let h and k are integers with (h,k) = 1 and let p be
an odd prime with p > 1. If k is even,

42}7' k-1 00
so(hk:p k(zm)PZ“Zmp
(2.5)
. [ Tmhp 3mmhu amhp
X sm( k )(QCOS( p ) + cos( p )),
If k is odd,
(2.6)
82p' k-1 0o
= -p
SB(hak p) k‘(2ﬂ'2)p Z/J'Zm

k—1
1 _ [h _ (2h
sa(hkip) == M(Bp(—k‘i) - 2Bp<f%ﬁ)>.

pu=1
Substituting (1.2) into the above and using well-known identity 2isina =
€' — e ** and after some elementary calculations, we obtain the desired

result (for detail proof, see [20]). Thus we choose to omit the details
involved. O
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REMARK 1. By (1.11), we set
(2.7) so(h,k : p) = —s(h,k : p) + 2s(2h, k : p),
if k is even. Observe that when p =1,
so(h,k:1) = —s(h,k: 1)+ 2s(2h,k : 1),

where the sum sa(h,k : 1) is known as the sum s2(h, k) and the sum
s(h, k : 1) is known Dedekind sum which is given by (1.1).

LEMMA 1. Let p = 1(modk) (p odd, as always) and h and k be
relatively prime positive integers such that pt k. If h + k is odd, then

S(m,h,k:p)= (1 —p™ 1) k™2™ 35 (h, 2k : m)
+4(1- pm_l) k™ (2s (2h,k : m) — 5s (h, k : m));
if h is even, then
s1(m,hk:p) =2(1—p™ 1) k™ (s(h,k: m) — 2™ s (h, 2k : m));
if k is even, then
s2(m bk p) = — (L= p™ ) k™ (s (h,k s m) — 25 (2h, k 2 m));
if k is odd, then
s3(m,hk:p) =2(1—p™ ) k™ (s(h,k : m) — 25 (2h, k,m));
if h is odd, then
se(m,hk:p)=—4(1—p™ ) k™ (s (h, k : m) — 2™ s (h, 2k : m)) ;
if h + k is even, then
ss (m,h,k:p)= —10(1 —pm_l) k™s(h,k:m)
+4(1=p™ 1) K™(s (2h, k : m) + 2™s (h, 2k : m)),

for all m such that m+1 = 0 (modp — 1). Each one of S (m, h,k : p) (h+
k even), s1 (m,h,k :p), (h odd), s2 (m,h,k : p) (k odd), s3(m,h,k : p)
(k even), s4 (m, h,k : p) (h even) and s5 (m,h,k : p) (h+k odd) is zero.

Proof. By using (1.8), after straightforward calculations, we arrive at
the desired result. For detail proof see [20]. Thus we choose to omit the
details involved. O
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3. Relations between Hardy sums and Lambert series

The sums s(h,k : p) are related to the Lambert series, Gp(x). The
special case p = 1 gives G1(z) = —log[[,-_;(1 — ™). Thus, logn(z) is
the same as 5 — G1(e2™?) ([1]-[2], [18]). Generalized Dedekind sums
are expressible as infinite series related to certain Lambert series ([18]).
In this section we shall establish new relations connection between the
sums s(h, k : p) and the Lambert series G, (e2™//%).

Relation between s(h, k : p) and G,(e*™**) are given as follows.

LEMMA 2. Let p = 1(modk) (p odd, as always) and h and k be
relatively prime positive integers. Then we have

[e.¢] o0
p' _ 2wimnh _ 2mimnh
s(h,k:p)= G E E nPlex —e k& )

n=1 m=1
n # 0(k)
= LG~ Gyle ).

(2mi)P
Proof. By using (1.3) and definition of Lambert series and after strai-

ghtforward calculations, we arrive at the desired result. O

THEOREM 6. Let p = 1(mod k) (p odd, as always) and h and k be
relatively prime positive integers such that pt k. If h + k is odd, then

S(m,h,k: p)

m!(1 — pm 1™ mih mih
= I I i Gyl ¥ - Gyl )

4mih _ 4mih 2rih _2mih

+2(Gp(e ® ) = Gple™ * ) = 5(Gple & ) — Gp(e

if h is even,

2m!(1 — p™1)km
(2mg)™

2xih _ 2mih

+ (Gple ® ) = Gple™ *));

s1(m, bk 2 p) = (=2 (Gy(e™F) — Gyle™F))

if k is even, then

ml(1 — pm— N m 2mih 2mih
sa(mh ki p) = = B G) — Gy(e
— 2(Gp(e™F") = Gple™ F)));
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if k is odd, then

2ml(1 — p™ k™ 2mih _2mih
83 (m7 h,k: p) = ( (27T2)m ) (Gp(e k ) - P(e k )
dnih _4mih
—2(Gp(e ® ) — Gp(e™ 7 )));
if h is odd, then
4mli(1 — pm k™ mih _ wih
salm b kip) = = BT Comti (6 - Gfe )
2mih _ 2mih

+ Gple r ) —Gple
if h 4+ k is even, then
_ 2mi(1 - pmhHE™

F));

55 (m, b,k : p) = (=2 (Gy(eF) — Gple ™))

(Zﬁi)m |
+5(Gp(eF) = Gyle™ )

—2AGp(e™F) = Gyle” ),
for all m such that m+1 = 0 (mod p — 1). Each one of S (m, h,k : p) (h+
k even), s1 (m,h,k : p), (h odd), sa(m,h,k:p) (k odd), s3 (m,h,k : p)
(k even), sq4 (m,h,k : p) (h even) and s5 (m, h,k : p) (h+k odd) is zero.

Proof. By using Lemma 1 and Lemma 2, after straightforward calcu-
lations, we arrive at the desired result. O

4. Generalized p-adic ¢-Hardy sums

By using some simple properties of ((z)), s(h,k), some well-known
results due to [4], [15], and [21], and the following basic observation, we
define generalized Hardy sums.

x

(~1)Fle = 2((2)) - 4((5))

if x is not an integer. To give this, observe that if x is not an integer,
then

2(2)) - 4(5) =2z ~ el — 3) — 4(5 ~ (5la — 3)

El—ﬂﬂc+ﬂ§c=l—%ﬂc+qhb

2 e
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1-2[z]g+ 4%, if (2] is even
1 - 2[z]q +4(8=L), if [z]¢ is odd

= (_1)[95]0‘

By using the above equation, Cenkci, Can and Kurt [4] gave the following
definition:

Let h and k be integers with k > 0, the Hardy sums are defined as
follows

e =2 (1)) (%) -+((F57))

By using (1.1), due to Cenkci, Can and Kurt [4], we arrive at the
following definition:

DEFINITION 3. Let A and k be integers with £ > 0, the Hardy sums
are defined as follows:

S(h,k : m) z:: (h+k>

su(h,k:m) =S B (i

b

R
N
/'\
bdl
/_\

J
so(h,k:m) =Y (=1YB; (%)Eﬂ(%ﬂ)
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s3(h,k:m) = —4121(—1)J‘§m <%)

sa(h,k: m) :-4ilﬁm (%)

ko) =5 (4) (5 (3) - 3 (4522))
=2s(h,k :m) — 4:2;31 (%)Em((h ;kk)j>,

where s(h, k : m) is generalized Dedekind sums.

__ REMARK 2. Observe that when 0 < z < 1, the Bernoulli function
Bm(z) reduces to the m-th Bernoulli polynomial(our notation is the
same as that in Apostol [1], [2]).

By using Theorem 2, Definition 2, and Definition 3, we construct a p-
adic continuous function for an odd prime to contain a p-adic g-analogue
of higher-order Hardy sums in this chapter. It is the aim of this chapter
to give a g-analogue of p-adic Hardy type sums by using an invariant
p-adic g-integral on Z, approach the p-adic analogue of higher-order
Dedekind sums at ¢ = 1 as follows:

THEOREM 7. Assume that h, k are fixed integers with (h,k) =
(p,k) =1. Let

k—1 . m
il h+k
sk mid) =4y [ ot for {28 0 g,
]:1 P

s1,q(h, k :m;q) = 2s4(h, k : m; q)
S (B8 L ()] et

k=1 _
s2q(hk:imig) =3 (-1) (T[% B %)

i=

—
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s3q(h,k:m;¢h) = 1) ~le hi -lmd
37q ? m’q)— ( ) z q x—i_ k q /Iqu(l‘),
D
saq(h,k:m;qh) = —42/ x4+ hy gt mdu;(m)
sq\'Y . ’ Zp 2]6 : q )
k-1 .
N N b1
35,q(h,k.m,q)—— 42 <[k] 2)

/ZP g [x + {A%%:—k—)} : ql] mduqz ()

+ 2s4(h, k 1 m; ql),

where {z} denotes the fractional part of x. Then, there exist continuous
functions Sy(s,h,k : p;¥), and syq4(s,hk : p;q*), 1 <y < 4, on Z,
which satisfy :

if h + k be odd, then

S, (m+1,h,k:p;qk)
(4.1) = 83q(m +1;h, 2k : p; qk) + 85q(m +1;2h,k : p; qk)
— 20s4(m + 1,k : p; ¢¥);

if h be even, then
(4.2)

514 (m + 1 hk:p; qk> = 2s,(m+1;h, k : p; qk)—43q(m+l;h, 2k : p; qk);
if k be even, then

82,9 (m +1,h,k: p; qk>
= —sg(m+1;h,k : p; qk) + 2s4(m + 1,2k, k : p; qk);

if k be odd, then
(4.4)

$3,4 (m +1,h,k:p; qk> = 2sq4(m+1;h, k : p; qk)—4sq(m+1; 2h,k : p; qk);

(4.3)

if h be odd, then

S4,q (m+ 1,hk:p; qk)

(4.5)
= —d4sg(m+1;h,k: p; qk) +8sq(m +1;h, 2k : p; qk);
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if h+ k be even, then

(4.6)

5.0 (m>h’ kop; qk) = dsg(m+ 1;2h,k i p;¢¥) + dsg(m + 1; b, 2k : p; ¢)
—10s4(m + 1; b, k : p; ¢¥),

for all m + 1= 0(modp — 1), where sy(m + 1;h, k : p; ¢*) is g-analogue
of p-adic Dedekind-type sums.

Proof. Proof of this Theorem is similar to that of Theorem 5, which
is given by Kim [8]. g-analogue of (1.4) is given by [8]: Let w denote
Teichmuller character (mod p). For v € Zj = Zy\pZy, we set (z) = (z
q) = w™! (z) [z]. Let p be an odd prime, a and N positive integers such
that (p,a) =1 and p|N. Set

w1 (a) (a)® —
Fq(s,a,N;qN)=—&—>-Z<j) aJ[N] Bilq Ny

N & @)

for s € Zp, and let

1 m
—1 gy _ W (a) -l a
Ym(a,N7w 1q)— [N]m_l /qu z[l‘-l-?CIjI d;u'ql(x)7
where m, [, N € N. It is easy to see in [6] that
5 ()2
S \i)" e

converges to continuous p-adic function of s on Z,. Set s = m in the
above, we get

Fy(s,a,N;¢") = Yru(a, N,w™'¢77).
If m +1=0(modp — 1), then by using (1.9), we obtain

Fy(m,a,N;q") = [N]in 1/ q” {%LN qN]mdqu(x)

_ /Bm(ﬁa qN)
NIt

Consequently, Fy(m, a, N;¢") is a continuous p-adic extension of [N]'~™

ﬂm(%qu)-
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By (1.6) and (1.7), higher-order Hardy-type sums Sy (h, k : m; ql)
and sy 4 (h, k:m; ql) , 1 <y <4, are given by

k—1 . m
lz h+k
Sq(hy k= m; ql) =4 § /Z q : [CL“*‘ {Zﬁ“é‘k—)} ZQZ] dﬂql(l');
]:1 4

i=1
k-1
(b1
saaltbmid) = (-1 (- 3
_ hj m
lx .
/qu [x+{?}-ql] dpg (),
k—1 . hj m
s3,q(h, k = m; ql) = (—1)3/ g [m + {?} : ql} dpig (z),
,7::1 ZP
k—1 h] m
saq(h, k:m;q) = _42/2 q"l‘”[x+{§E} :ql] dpg (),
i=17Zp

hiomtr= (1) [

: [a: + {%ﬁ} : q’rduql () + 254(h, k : m; ),

where s4 (h, k : m;¢*) is higher-order Dedekind sums.
If m+1=0(modp— 1), we have

k-1
[k]™sq (h, k:m; qk) =Y [u)F, (m; (hys)y, » k; qk) :
n=1
If h+ k is odd, then

k™S (ke miq*)
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S

-1

=81l (Fy (ms () 2656°) + Fy (s (2has)y K a*))

1

—202 ( kq)

if h is even, then

[k]™ 51,4 (h, k:m; qk)

=
I}

= kf[ﬂ] (28, (ms (i) i ") - 4R, (m; (hm)y 2k 0") )5
=1

if k£ is even, then

(k)™ s2.4 (h, k:m; qk>

= kil[u] (—Fq (m; (hu)y , k; qk) + 2F, (m; (2hp)y, . k; qk>) ;
p=1

if k£ is odd, then
(K™saq (& :mig*)

= kz_:l[u] (2Fq (m; (htt)y, k;qk> — 4F, (m; (2hu),, , k; qk)> ;
p=1

if h is odd, then
K51 (.0 k : pi ")

—Z ] (—4F, (mi (ha)g ks q") +8F, (ms (), 2k ¢*) )

if h + k is even, then
[(K]™ 5.4 (s hk:pig )

B Z[“ <4F< (2hps)ye . k; k)+4Fq (m;(hu)k,%;qk))

—10 Z[ﬂ]Fq (m; (hu)y, ,k;qk) ;

n=1

127
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where (y) denotes the integer z such that 0 < z < n and z = a(mod k).
It is easy to check in [8] that for s € Zj, p-adic g¢-Hardy-type sums defined
as follows: if A+ k is odd,

Sq (s, h,k:p; qk)

= kil[u] (8F, (3; hu, 2k; qk) + 8F, (S; 2hp, k?‘lk)
=1

~ 20F, (8; hit, k‘;qk) ),

514 (s, h,k:p; qk)

= g[ul (2Fq (s;hu,k;q’“) — 4F, <s;hu, %: qk)) if h is even,
82,4 (s, h,k:p; qk)

= g[ﬂ] (_Fq (s; hu, k; qk) + 2F, (s; 2h, k;qk)) , if k is even,

834 (s, h,k: p; qk)
. iéw (2, (s hs. b ¢*) — 4F, (s:2hps, ks ")) , i K is odd,

S4,q (s, h,k : p; qk)
= g[u] (=P, (s b, ks ") +8F, (5hus,2k¢°) ), i his odd,

and if A + & is even

55,4 (s, h,k:p; q'“) = ki:l[u] (4Fq (8; hy, 2k; q’“)

=1
+4F, (s; 2hp, k;qk) — 10F, (s; hy, k:;qk> >
Thus, there exist continuous functions S, (s, h,k: p; qk) , and sy q(s, h,

k :p;q®), 1 <y < 4, on Z, which satisfy (1.10) and (4.1)-(4.6) for
m+1=0(modp — 1). So we arrive at the desired result. O
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REMARK 3. In [8], Kim defined the sum s4(h, k : m; ¢!) as follows
Sq(ha k:m; ql) = —ﬁm(?>ql)‘

Observe that when ¢ — 1, the sum si(s,h,k : p;1) reduces to p-adic
analogue of higher-order Dedekind sums k™sp,+1(h, k). Here we note
that

h+k
SQ(h’k maql):4j§1ﬂm(]( 2_;; )’ l)v
k-1 . . k-1 . .
e o) [i]_ h_J AR m_l lﬁ_ l
stk mid) = 23 GG 4j:1([k] 3 ) o)
k-1 . 1 i
= 2s4(h, k : m;ql) - 4; (% - 5) 5m(;—]'€',ql),
= Gl 1\, ki
. RV A N j 1
saltk i) = S (17 (B-3)snLan,
k-1 ' hi
s39(hyk 1 msql) = (—1)Jﬂm(%,ql),
=0
’ k—1 i
84’q(h,k : m;ql) = - 4j:1 ﬂm(%7ql)7
k-1 .. hi
ss,q(h Kk miqt) = 2j:O %ﬁm (%,ql)
k-1 R .
] 1 jh+k)
-03 (g5~ 7)o (M)
= 2s,4(h, k : m;q")

S50

1

LS

It is easy to see that if ¢ — 1, then Si(s, h,k : p;1) and sy1(s, h, k : p; 1),
1 < y < 4 are the p-adic analogue of higher-order Hardy-type sums
k™ Sm41(h, k) and E™sy m41(h, k), 1 <y < 4, respectively.
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Finally we conclude this paper by raising the following question:
Find the reciprocity law for p-adic g-higher-order Hardy-type sums?
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