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APPROXIMATED SEPARATION FORMULA FOR THE

HELMHOLTZ EQUATION

Ju-Hyun Leea, Nayoung Jeonga, and Sungkwon Kangb

Abstract. The Helmholtz equation represents acoustic or electro-
magnetic scattering phenomena. The Method of Lines are known
to have many advantages in simulation of forward and inverse scat-
tering problems due to the usage of angle rays and Bessel functions.
However, the method does not account for the jump phenomena on
obstacle boundary and the approximation includes many high or-
der Bessel functions. The high order Bessel functions have extreme
blow-up or die-out features in resonance region obstacle bound-
ary. Therefore, in particular, when we consider shape reconstruc-
tion problems, the method is suffered from severe instabilities due
to the logical confliction and the severe singularities of high or-
der Bessel functions. In this paper, two approximation formulas
for the Helmholtz equation are introduced. The formulas are new
and powerful. The derivation is based on Method of Lines, Huy-
gen’s principle, boundary jump relations, Addition Formula, and
the orthogonality of the trigonometric functions. The formulas re-
duce the approximation dimension significantly so that only lower
order Bessel functions are required. They overcome the severe in-
stability near the obstacle boundary and reduce the computational
time significantly. The convergence is exponential. The formulas
adopt the scattering jump phenomena on the boundary, and sepa-
rate the boundary information from the measured scattered fields.
Thus, the sensitivities of the scattered fields caused by the bound-
ary changes can be analyzed easily. Several numerical experiments
are performed. The results show the superiority of the proposed
formulas in accuracy, efficiency, and stability.
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1. Introduction

The Helmholtz equation represents the scattering phenomena for
acoustic or electromagnetic waves, and it has been investigated for many
years. For examples, see [1, 2, 3, 4, 5, 7, 8, 10, 14, 16], and the ref-
erences therein. Among many applications, the shape reconstructions
have been known as highly nonlinear and severely ill-posed. In 2014,
Lee and Kang[12, 13] introduced a unified complex nonlinear parameter
estimation (CNPE) framework and a robust optimization algorithm for
handling highly nonlinear and severe ill-posed problems. The CNPE
framework and the corresponding robust algorithm solved successfully
typical obstacle reconstruction problems. Those problems had been
known as open problems in Inverse Scattering community for many
decades[3]. The approximation for the obstacle shape was based on the
global/spectral basis functions in [12] and the local/finite element basis
functions in [13]. If we could estimate the obstacle boundary directly on
the observation angles, it would be a powerful estimation scheme. This
is a motivation of this paper.

The Method of Lines (MoL) were introduced in scattering problems
by Ma et al.[15] and Hooshyar[6]. There are many advantages of MoL.
We may list some of them as following[6, 15].

(i) It represents the solution on each observation angle, i.e., the scatter-
ing waves on each observation angle can be expressed separately.
(ii) On each observation angle, the solution can be expressed by a com-
bination of the Bessel functions.
(iii) The computation of scattered fields is efficient.

However, the critical weak points of MoL are following.

(iv) It does not account for the jump phenomena on the boundary.
(v) It is consisted of all Hankel basis functions, i.e., all high order Bessel
functions are required. The estimation of scattered fields near obstacle
boundary is extremely unstable. For example, for the space dimension
N = 128, MoL needs the Bessel functions or order approximately up to
40 (see Section 2). Since for the Bessel functions J and Y [11], J40(1) ≈
10−60 and Y40(1) ≈ −1057 so that the forward and the inverse estimation
processes by adjusting the coefficients of J40 and Y40 become extremely
unstable.
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The advantages (i)-(iii) of MoL mentioned above are strong points in
conjunction with shape reconstruction aspects. On the other hand, the
weak points (iv)-(v) above are critical issues. We need to overcome the
weak points in order for considering the forward and inverse scattering
problems. Specifically, the weak point (iv) is a logical confliction, i.e., the
Helmholtz equation is valid only outside region of the obstacle. Thus,
the differential equation can not be extended to the obstacle boundary.
Therefore, we need to employ the boundary jump relation, and to reduce
the number of approximation basis functions significantly.

The purpose of this paper is to derive a discrete scattering wave sys-
tem having the strong points (i)-(iii) overcoming the weak points (iv)-
(v). The basic ideas are following. By adopting Huygen’s principle for
the Helmholtz equation together with the jump relation on the boundary,
the weak point (iv) can be solved. We apply the Addition Formula[3]
to the fundamental kernel function to obtain approximated scattered
fields on each observation angle. Since this approximation converges ex-
ponentially, the approximation dimension can be reduced significantly.
For example, M = 9 or 13 is enough to achieve the accuracy 10−10 for
the scattering fields for the space approximation dimension N = 128 or
256. That is, the Bessel functions of order up to 13 can be used for the
approximation instead of including all Bessel functions up to order 40
or 81 (see Section 4). By applying the orthogonality properties of the
trigonometric functions, the boundary information can be factored out
completely from the measured scattered fields. The approximation pro-
cedures introduced in this paper is the continuously extended limiting
case for the finite dimensional approximation by MoL (see Lemma 2.6
in Section 2). The formulas derived in this paper are not by MoL. But,
they preserve the strong points of MoL without the weak points of MoL.
Moreover, by separating the boundary information from the scattered
fields, the sensitivity of scattered fields affected by boundary changes
may be easily analyzed. The approximation formulas are new and pow-
erful. The numerical experiments based on the proposed formulas show
superiority in accuracy, efficiency, and stability.

The governing equation, Helmholtz equation, and the Method of
Lines (MoL) are explained in Section 2. Some of strong points, weak
points, and new findings for MoL are described in this section. In Section
3, two new powerful approximated separation formulas for the Helmholtz
equation are derived. Based on the formulas derived in Section 3, the nu-
merical simulations are performed in Section 4. The simulation results
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show the superiority of the proposed formulas in accuracy, efficiency,
and stability. The conclusion is in Section 5.

2. Helmholtz Equation and Method of Lines (MoL)

We consider the two-dimensional Helmholtz equation representing the
scattering phenomena for a perfect electric conductor(PEC) or a sound-
soft obstacle such as a metal. For such obstacles, incoming waves do not
penetrate inside the obstacle. The governing equations are described as
follows[3].

Let Ω be a PEC surrounded by a simple closed star-like C2-boundary
Γ in R2 and let ∆ be the Laplace operator. Let k > 0 be the wave number
such that k2 is not a Dirichlet eigenvalue for −∆ in the interior of Ω.
Let the incident plane wave with incident angle d be

uinc(x) = eikx·d, x ∈ R2, (2.1)

d = (cos θ, sin θ). (2.2)

The total field uo is defined by

uo(x) = uinc(x) + us(x), x ∈ R2\Ω, (2.3)

where us is the scattered field induced by the incident wave uinc with
direction vector d. Then the Helmholtz equation becomes

∆uo + k2uo = 0 in R2\Ω, (2.4)

uo|Γ = 0 on Γ = ∂Ω, (2.5)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0 (2.6)

uniformly in all directions, where r = |x|, Ω is the closure of Ω, Γ = ∂Ω
is the boundary. The condition (2.5) shows perfect electric conduct-
ing or sound-soft property of the obstacle. The condition (2.6) for the
scattering fields is called the Sommerfeld radiation condition and it en-
sures the uniqueness of the solution to (2.1)-(2.6) and guarantees that
the scattering wave is outgoing. It is known that there exists a unique
solution uo ∈ C2(R2\Ω)

⋂
C(R2\Ω).
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Remark 2.1. (i) The incoming incident plane wave (2.1) propagates
perpendicularly to the obstacle axis. (ii) The boundary condition (2.5)
for the total field shows that us(x) = −uinc(x) on the boundary Γ due to
(2.3). Recall that the incident wave cannot penetrate the inside of the
sound-soft obstacle. This means that equation (2.4) is valid only outside
of the obstacle. (iii) Both the incident wave uinc and the scattering wave
us satisfy the Helmholtz equation (2.4).

Remark 2.2. (i) It has been well-known that, based on the measure-
ments of the scattered fields, the problem of finding the obstacle shape
is highly nonlinear and severely ill-posed. (ii) Many integral representa-
tions for equation (2.4) are available. Among them, the typical double-
and single-layer potential representation contains the jump phenomena
on the boundary. Therefore, a special numerical scheme for solving the
jump equation is required. The Nyström method with Gauss quadrature
rule has proven to be stable and accurate[3].

We now describe the Method of Lines (MoL)[6, 9, 15] for the
Helmholtz equation. The methodology, the strong points and the weak
points of MoL are explained briefly. Since the ideas, concepts, strong
points as well as weak points of MoL are important for the derivation of a
new approximation formula for computing scattering fields, we describe
briefly some of known results, corrected results, and new findings.

Recall that the scattering wave us satisfies equation (2.4). i.e.,

∆us(x) + k2us(x) = 0 in R2\Ω. (2.7)

By polar coordinate system, equation (2.7) can be represented by(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+ k2

)
F (r, θ) = 0, (2.8)

where F (r, θ) is the transformed scattered fields us(x) in (2.7), r = |x|,
θ is angle.

Let N be an approximation dimension. Let

∆θ =
2π

N
, θj = j∆θ, 0 ≤ j ≤ N − 1. (2.9)

Let

F = [F0, F1, · · · , FN−1]T , (2.10)
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Fj = F (r, θj), 0 ≤ j ≤ N − 1, (2.11)

D =



2 −1 0 · · · 0 0 −1
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
−1 0 0 · · · 0 −1 2


N×N

, (2.12)

where we denote AT the transpose of a vector or a matrix A.
Then we have the following discretized system

d2

dr2
F +

1

r

dF

dr
+ k2F − D

(r∆θ)2
F = 0. (2.13)

It is known[9, 15] that the matrix D can be factorized by the or-
thonormal transformation Q such that

Λ = QTDQ, (2.14)

QT = Q−1, (2.15)

where the N × N diagonal matrix Λ with diagonal entries λj , is the
j-th eigenvalue of D, and the j-th column Qj of Q is consisted of the
corresponding eigenvector with respect to the eigenvalue λj , 0 ≤ j ≤
N − 1.

Remark 2.3. The eigen pairs (λj , Qj), 0 ≤ j ≤ N−1, for the matrix
D can be obtained explicitly[9, 15]. More specifically,

λj = 4 sin2 jπ

N
, j = 0, 1, · · · , N − 1, (2.16)

when N is even, for each j, 0 ≤ j ≤ N − 1,

Qjm =



1√
N
, m = 0,√

2
N cos 2jm

N π, m = 1, 2, · · · , N2 − 1,
1√
N

cos jπ, m = N
2 ,

−
√

2
N sin 2jm

N π, m = N
2 + 1, · · · , N − 1,

(2.17)
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when N is odd,

Qjm =


1√
N
, m = 0,√

2
N cos 2jm

N π, m = 1, 2, · · · , N−1
2 ,

−
√

2
N sin 2jm

N π, m = N+1
2 , · · · , N − 1,

(2.18)

where Qjm is an (j,m) element of [Q]. For more detailed derivation of
the above eigen pairs, see [6, 9, 15].

Let

u = QTF. (2.19)

The equation (2.13) becomes

d2

dr2
uj(r) +

1

r

d

dr
uj(r) + k2uj(r)−

λj
(r∆θ)2

uj(r) = 0, 0 ≤ j ≤ N − 1.

(2.20)

Remark 2.4. [3, 6, 9, 15] The equation (2.20) is the Bessel equation
with order

νj =

√
λj

∆θ
, (2.21)

and the solution can be expressed as

uj(r) = AjH
(1)
νj (kr), (2.22)

where Aj is the coefficient, and H
(1)
νj is the Hankel function of the first

kind order νj ,

H(1)
νj (kr) = Jνj (kr) + iYνj (kr), (2.23)

Jνj (kr) :=
∞∑
p=0

(−1)p

p!(νj + p)!

(
kr

2

)νj+2p

, kr ∈ R, (2.24)

Yνj (kr) :=
2

π
{ln kr

2
+ C}Jνj (kr)−

1

π

νj−1∑
p=0

(νj − 1− p)!
p!

(
2

kr

)νj−2p

− 1

π

∞∑
p=0

(−1)p

p!(νj+p)!

(
kr

2

)νj+2p

{ψ(p+νj)+ψ(p)}, νj = 0, 1, 2, . . . ,

(2.25)
where we denote ψ(0) := 0, ψ(p) :=

∑p
m=1

1
m , p = 1, 2, · · · and C :=

limp→∞{
∑p

m=1
1
m − ln p} is the Euler constant.
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Remark 2.5. [9] For the space approximation dimension N = 128 or
256, the order ν defined by (2.21) has range approximately 0 ≤ ν ≤ 40.7
for N = 128 and 0 ≤ ν ≤ 81.5 for N = 256. Some of the Bessel function
values are following.
J40(1) ≈ 1.1079 × 10−60 and Y40(1) ≈ −7.1849 × 1057, i.e., for a high
order ν, Jν(t) has almost negligible values and Yν(t) has extremely large
values for small t > 0. Thus, for example, the estimation processes of an
obstacle boundary become extremely unstable. It is necessary to reduce
the number of Jνj and Yνj as much as possible to consider forward as
well as inverse scattering problems.

Lemma 2.6. Let νj , 0 ≤ j ≤ N − 1, be the Bessel function order
defined by (2.21). Then, for a fixed j, νj → j as N →∞.

Proof. From the following relation

νj =

√
λj

∆θ
=

√
4 sin2 jπ

N

2π
N

=

∣∣∣∣sin jπN
∣∣∣∣ Nπ ,

we have

lim
N→∞

νj = lim
N→∞

∣∣∣∣sin jπN
∣∣∣∣ Nπ = lim

N→∞

∣∣∣sin jπ
N

∣∣∣∣∣∣ jπN ∣∣∣
∣∣∣∣jπN

∣∣∣∣ Nπ = j.

Remark 2.7. (i) In MoL, the coefficients Aj , 0 ≤ j ≤ N−1, in equa-
tion (2.22) are obtained by considering the boundary condition (2.5),
i.e.,

Fj(r) =

N−1∑
l=0

Qj,l+1AlH
(1)
νl

(kr), 0 ≤ j ≤ N − 1. (2.26)

This means that the differential equation (2.20) could be extended con-
tinuously to the obstacle boundary. However, for a PEC or a sound-soft
obstacle, the differential equation is valid only outside of the obstacle.
Therefore, it is necessary to consider the boundary jump relation as
mentioned before.
(ii) The expression (2.26) has strong advantages in computation of scat-
tered fields due to the use of semi analytic functions. Also, the scattering
waves are computed separately on each individual observation angles.
These two aspects are strong points of MoL.
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3. Approximated separation formula

In this section, we derive two approximated separation formulas for
the scattering waves governed by the Helmholtz equation (2.4). The
derivation is based on the Huygen principle, the boundary jump rela-
tions, the Addition Formula, and the orthogonality of the trigonometric
functions. In the formulas, the boundary information are separated
completely from the measured scattered fields. Moreover, the scattering
waves are expressed along the observation angles. Also, the formulas
lead significant reduction of approximation dimension so that only low
order Bessel functions can be used for computation of scattered fields.
The formulas are new and powerful in terms of accuracy, efficiency, and
stability. We can see the superiority of the proposed formulas in the
next numerical section.

It is well-known that the scattered field us(x) can be represented by
the following integral formula using the Huygen principle[3].

us(x) = −
∫

Γ
Φ(x, y)

∂uo

∂ν
(y)ds(y), x ∈ R2\Ω, (3.1)

where

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), (3.2)

H
(1)
0 is the Hankel function of the first kind order 0 defined by

H
(1)
0 = J0 + iY0. (3.3)

J0 and Y0 are the Bessel functions of order 0 defined by (2.23)-(2.25)
with νj = 0.

We now consider the following addition formula for the Hankel func-

tion H
(1)
0 of the first kind order 0.

Lemma 3.1. (Addition Formula [3]) Let x, y ∈ R2 be two vectors
with |x| > |y| and let θ be the angle between x and y. Then

H
(1)
0 (k|x− y|) = H

(1)
0 (k|x|)J0(k|y|) + 2

∞∑
m=1

H(1)
m (k|x|)Jm(k|y|) cosmθ.

(3.4)
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Remark 3.2. (i) From (3.4), we may approximate H
(1)
0 (k|x − y|)

with |x| > |y| by

H
(1)
0 (k|x− y|) ≈ H(1)

0 (k|x|)J0(k|y|) + 2

M−1∑
m=1

H(1)
m (k|x|)Jm(k|y|) cosmθ,

(3.5)
where M is the approximation dimension for (3.4).

(ii) In the Huygen principle (3.1), the kernel function Φ(x, y) can be
approximated by the formula (3.5). In this case, we take the vector
y the boundary position vector and x the scattering field measuring
position vector.

(iii) In formula (3.5), the approximation dimension M should be small
compared with the space discretization dimension N . From our numeri-
cal experiments, M turns out to be significantly small compared with N
for most cases. For example, M = 13 is enough for N = 128 or N = 256
to achieve the accuracy 10−10 (see Section 4).

We now derive the approximated separation formulas for the scat-
tered fields us(x) in (3.1). They look complicated. However, the formu-
las are surprisingly powerful in terms of accuracy as well as computing
efficiency.

Theorem 3.3. (Separation Formula 1) Let (xi, θi), 0 ≤ i ≤ N−1,
be the measuring position pair with position xi at angle θi with |xi| = r
for the scattered field us in (3.1). Let

us(xi, θi) =
M−1∑
m=0

cimH
(1)
m (k|xi|), 0 ≤ i ≤ N − 1, (3.6)

i.e., 
us(r, θ0)
us(r, θ1)
us(r, θ2)

...
us(r, θN−1)


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=


c00 c01 c02 · · · c0,M−1

c10 c11 c12 · · · c1,M−1

c20 c21 c22 · · · c2,M−1
...

...
... · · ·

...
cN−1,0 cN−1,1 cN−2,2 · · · cN−1,M−1




H

(1)
0 (kr)

H
(1)
1 (kr)

H
(1)
2 (kr)

...

H
(1)
M−1(kr)

 .
Then, for 0 ≤ j ≤ N − 1, we obtain the coefficients cim in terms of the
boundary information.

ci0 = (−∆θ)

(√
−1

4

)
(1)

N−1∑
j=0

αjJ0(kRj), (3.7)

cim = (−∆θ)

(√
−1

4

)
(2)

N−1∑
j=0

cos(|i− j|(m∆θ))αjJm(kRj), (3.8)

where 1 ≤ m ≤M − 1,

αj =

(
∂uo

∂νj

)√
(Rj
′)2 + (Rj)2, (3.9)

uo is the total field,

∂uo

∂νj
=
∂uo(y)

∂νj(y)
=
∂uo(yj , θj)

∂νj(yj , θj)
(3.10)

is the normal derivative of the total field uo at y ∈ Γ with angle θj .

Rj = |yj |, yj = y(θj) ∈ Γ, 0 ≤ j ≤ N − 1, (3.11)

where Rj
′ =

∂Rj

∂θ (θj) is the angle derivative of Rj and ∆θ = 2π
N .

Proof. Let N be the space approximation dimension for [0, 2π], and
let ∆θ, θj = (j)∆θ, 0 ≤ j ≤ N − 1, be the angle increments defined by
(2.9). Since the obstacle is star-like shape, we may express the boundary
Γ as

y(θ) = R(θ)

(
cos θ

sin θ

)
, 0 ≤ θ ≤ 2π. (3.12)

Let the angle division θj and the corresponding boundary position vector
yj with radius Rj = |yj |, 0 ≤ j ≤ N−1. Then the outward normal vector
νj at yj ∈ Γ becomes

νj = ν(yj) =
(yj2

′,−yj1′)
|yj ′|

(3.13)
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where yj = (yj1, yj2) ∈ Γ, ′ denotes the angle derivative. Since

yj
′ =

(
yj1
′

yj2′

)
=

(
Rj
′ cos θj −Rj sin θj

Rj
′ sin θj +Rj cos θj

)
,

νj =
1√

(Rj
′)2 + (Rj)2

(
Rj
′ cos θj −Rj sin θj

Rj
′ sin θj +Rj cos θj

)
. (3.14)

On the other hand,

ds(y) =

√(
dy1(θ)

dθ

)2

+

(
dy2(θ)

dθ

)2

dθ

= |y′|dθ =
√

(Rj
′)2 + (Rj)2dθ.

(3.15)

We now plug the approximation addition formula (3.5) into the kernel
Φ(x, y) in (3.2). After some manipulation, we have the separation for-
mula described in the theorem. Here, the normal derivative ∂uo

∂ν (y) of
the total field uo is obtained from the boundary jump relation[3]

∂uo

∂ν
(x) + 2

∫
Γ
{∂Φ(x, y)

∂ν(x)
− iηΦ(x, y)}∂u

o

∂ν
(y)ds(y)

= 2
∂uinc

∂ν
(x)− 2iηuinc(x), x ∈ ∂D,

(3.16)

where η is a coupling parameter. This completes the proof.

Remark 3.4. (i) The coefficient matrix [cim] contains only the ob-
stacle boundary information. (ii) It is well-known that the jump bound-
ary equation (3.16) for ∂uo

∂ν (y) can be efficiently solved by the Nyström
method with the Gauss Quadrature[3].

After careful observation on the orthogonality of the discrete trigono-
metric functions appeared in the matrix [cim] in Theorem 3.3, we have
the following second separation formula.

Theorem 3.5. (Separation Formula 2) Let

[P (:, 1)]T =

[ √
1

N
,

√
1

N
,

√
1

N
, · · · ,

√
1

N

]
, (3.17)

[P (:,m+ 1)]T = [
√

2
N ,
√

2
N cos(1 ·m∆θ),

√
2
N cos(2 ·m∆θ),

· · · ,
√

2
N cos((N − 1) ·m∆θ) ], 1 ≤ m ≤M − 1.

(3.18)
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Then we have

α0J0(kR0) + α1J0(kR1) + α2J0(kR2) + · · ·+ αN−1J0(kRN−1)

=

(
2
√
N

π

√
−1[P (:, 1)]T [us(xi)]0≤i≤N−1

)
/H

(1)
0 (kr),

(3.19)

1·α0Jm(kR0) + cos(1 ·m∆θ)(α1Jm(kR1)) + cos(2 ·m∆θ)(α2Jm(kR2))

+ · · ·+ cos((N − 1) ·m∆θ)(αN−1Jm(kRN−1))

=

(
2
√
N

π

√
−1[P (:,m+ 1)]T [us(xi)]0≤i≤N−1

)
/H(1)

m (kr),

(3.20)
where 1 ≤ m ≤M − 1, r = |xi|, 0 ≤ i ≤ N − 1,

αj =

(
∂uo

∂νj

)√
(Rj
′)2 + (Rj)2,

uo is the total field, Rj = |y(θj)|, y(θj) ∈ Γ, Rj
′ =

(
d
dθR(θ)

)
|θ=θj ,

νj = ν(y(θj)) = the outward normal unit vector at y(θj) ∈ Γ.

Proof. The formula in this theorem is obtained from the discretized
orthogonality property of the trigonometric function. From the first
separation formula in Theorem 3.3, by some manipulation, we have the
following relation.

(√
1

N

)(
N−1∑
i=0

ci0

)
H

(1)
0 (kr) = [P (:, 1)]T [us(xi)]0≤i≤N−1, (3.21)

(√
1

N

)
N−1∑
i=0

cim = 0, 1 ≤ m ≤M − 1 (3.22)

For each m, 1 ≤ m ≤M − 1, 0 ≤ l ≤M − 1,

[P (:,m+ 1)]T [cil]H
(1)
m (kr) =

{
[P (:,m+ 1)]T [us(xi)]0≤i≤N−1, l = m,

0, l 6= m,
(3.23)

The above relations (3.22) and (3.23) come from the orthogonality of
the cosine functions. This completes the proof.

Remark 3.6. (i) The Hankel functions H
(1)
m (kr) in Theorem 3.5 are

not zero for all m, 0 ≤ m ≤ M − 1. (ii) In (3.19) and (3.20), the
boundary information such as Jm(kRj), αj and the information on the
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measuring positions xi, i.e., the distance r, are completely separated by
left- and right-hand sides.

4. Implementation and numerical results

In this section, the numerical experiments are performed to show the
accuracy as well as the efficiency of the proposed separation formulas
derived in Section 3. Many examples including a kite, a moved circle,
a peanut, a round rectangle, and a non-symmetric obstacle commonly
adopted in the scattering literature were used for our simulations. The
numerical results were almost similar. Among the examples, the com-
putation results for a kite, a peanut, and a non-symmetric obstacle are
shown. These examples have both convex and concave shapes so that it
is well-known that the approximation or recovery estimation processes
are slow or difficult.

The numerical experiments were performed under MATLAB envi-
ronment using a conventional personal computer. The algorithms were
not optimized. However, based on the formulas derived in Section 3,
the computational results show superiority in accuracy, efficiency, and
stability with small approximation dimension M . For most examples,
M = 9 ∼ 13 were enough to achieve the discrete L2 accuracy 10−10 for
the space dimension N = 128 or N = 256. For the simulations, the wave
number k = 1 is used.

Example 4.1. (Kite) The kite can be parameterized as

Γ : x(t) =

(
x1(t)

x2(t)

)
,
x1(t) = cos t+ 0.65(cos 2t − 1)
x2(t) = 1.5 sin t, 0 ≤ t ≤ 2π.

(4.1)

The expression of this example is not of a star-shaped form. By an
appropriate variable changes, the expression can be transformed into a
star-shaped form.

Example 4.2. (Peanut)

x1(t) = R(t) cos t, x2(t) = R(t) sin t, R(t) = 0.5
√

3 cos2 t+ 1. (4.2)

Example 4.3. (Non-symmetric obstacle)

x1(t) = R(t) cos t, x2(t) = R(t) sin t, R(t) =
1 + 0.9 cos t+ 0.1 sin 2t

1 + 0.75 cos t
.

(4.3)
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Figures 1(a)-(c) show the obstacle shapes. It is easy to see that the
obstacles have both convex and concave profiles.
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Table 1 shows the approximation L2-errors for the examples. The inci-
dent angle θ = 0, observation distance r = 20 were chosen. It was ob-
served that the approximation dimensions M = 9 ∼ 13 were enough to
achieve the accuracy 10−10 for the space dimension N = 128 or N = 256
as mentioned in the beginning of this section. In Table 1, the errors were
estimated compared with the solution for N = 128. Surprisingly, the
convergence were exponential with decay rates 2.3 ∼ 3.3.

Table 1. L2-Errors (θ = 0, ρ = 20, N = 128)

M Kite Peanut Non-symmetric

8 5.8117× 10−5 6.5625× 10−9 1.2572× 10−8

9 4.9646× 10−6 6.6982× 10−11 3.4692× 10−10

10 1.3488× 10−7 4.8148× 10−12 1.4307× 10−11

12 4.6584× 10−9 3.7840× 10−15 1.2218× 10−14

13 2.8728× 10−10 2.6077× 10−15 3.0377× 10−15

14 5.7970× 10−12 2.6076× 10−15 3.0227× 10−15

Figures 2-4 show the comparison of the scattered fields for N = 128
and the approximated ones by M = 13. In the figures, (a) shows the
magnitude and (b) shows the phase angle. The solid lines are the true
scattered fields for N = 128 and the dotted lines are the approximated us

by M = 13. It is easy to notice that the two lines are not distinguishable
due to the small errors as shown in Table 1.
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5. Conclusion

Two approximation formulas for the two dimensional Helmholtz equa-
tion representing a sound-soft obstacle or a perfect electric conductor
are derived. The formulas are new and powerful. They are derived
based on the Huygen principle, the boundary jump relation, the Addi-
tion Formula, and the orthogonality of the trigonometric functions. The
proposed formulas have the advantages of the Method of Lines (MoL),
and overcome the disadvantages of MoL. Moreover, in the formulas, the
boundary information from the measured scattered fields are completely
separated so that the relations between obstacle shapes and correspond-
ing scattered fields can be analysed easily. The two proposed formulas
are applied to the typical examples commonly used in the scattering
literature. The simulation results show the superiority in accuracy, effi-
ciency, and stability.
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