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ABSTRACT. Polynomials are one of most important and widely used numerical tools in dealing
with a smooth function on a bounded domain and trigonometric functions work for smooth
periodic functions. However, they are not the best choice if a function has a bounded support
in space and in frequency domain. The Prolate Spheroidal wave function (PSWF) of order zero
has been known as a best candidate as a basis for band-limited functions.

In this paper, we review some basic properties of PSWFs defined as eigenfunctions of
bounded Fourier transformation. We also propose numerical inversion schemes based on PSWF
and present some numerical examples to show their feasibilities as signal processing tools.

1. INTRODUCTION

Polynomial is a good choice as a basis for smooth functions on bounded domain and trigono-
metric functions are more often used in signal processing purpose where signal is assume to be
either periodic or measurable in infinite time. It is a classical question how to find a best basis
function for (or simply to represent) a signal in infinite time domain from finite measurements
under assumption that energy of the signal is bounded in frequency space.

The prolate spheroidal wave functions of order zero defined as eigenfunctions of bounded
Fourier transformation, which will be referred as prolate functions in this paper, form a basis
for band-limited functions. The prolate function has been thoroughly studied by D. Slepian and
many other researchers [6, 7, 8, 9, 10, 11] in 1950-1970s to understand mathematical proper-
ties of band-limited functions. It has been widely referred in engineering community [2, 3] for
more than 30 years, however, it was not commonly used as a numerical tool until recently due
to its numerical instabilities. V. Rokhlin and his colleagues have developed numerically stable
algorithms for PSWF evaluation, quadrature, and interpolation [12, 13]. In section 2. Mathe-
matical Preliminaries, we basically follow the paper by H. Xiao, V. Rokhlin, and N. Yarvin in
2001 [12] and add mathematical details for better understanding of the basic properties of the
prolate functions.

2000 Mathematics Subject Classification. 65R10, 33E10, 65R99.
Key words and phrases. Fourier Transformation, Sinc Operator, Band-limited Function, Signal Processing.
This work was supported by the Korea Research Foundation under grant no. KRF-2007-C00030.
† Corresponding author.

41



42 E. KIM AND J.-Y. LEE

In section 3, we present two numerical inversion schemes to get the best matching function
from given Fourier coefficients at a finite set of points in frequency domain. The first method
is based on prolate interpolation of given signal and the second method is derived from a
Lagrangian multiplier method. Some numerical examples are given in section 4 along with
concluding remarks.

2. MATHEMATICAL PRELIMINARIES

2.1. Bounded Fourier operator and Prolate Functions. For positive real c, let Fc be the
operator L2[−1, 1] → L2[−1, 1] defined by

Fc(φ)(x) :=
∫ 1

−1
eicxtφ(t) dt. (1)

It is clear that Fc is a compact linear operator since Fc is a bounded integral operator with
L2-integrable kernel.

Proposition 2.1. For positive real c, the eigenvalues λm of Fc and the corresponding eigen-
functions ψm,

Fc(ψm)(x) =
∫ 1

−1
eicxtψm(t) dt = λmψm(x) (2)

can be chose as the following:
• The eigenfunctions are real, orthonormal and complete in L2[−1, 1].
• All eigenvalues are non-zero and either real or pure imaginary.
• The eigenfunctions corresponding to real eigenvalues are even and those to imaginary

eigenvalues are odd.

Proof. From the symmetry of eicst on [−1, 1], it follows that if φ(x) is a solution of λφ(x) =∫ 1
−1 eicxtφ(t)dt, so are φ(−x) and φ(x) ± φ(−x). The eigenfunctions can be chosen to be

either even or odd functions of x. The complex conjugate of equation is

λ̄φ̄(x) =
∫ 1

−1
e−icxtφ̄(t)dt.

Multiplying above by φ(x) or φ̄(x) and integrating, we get

(λ± λ̄)
∫ 1

−1
φ(x)φ̄(x)dx =

∫ 1

−1
dx

∫ 1

−1
dteicxtφ̄(x)(φ(t)± φ(−t)).

If φ is even, by choosing the negative sign in this equation, one obtains λ − λ̄ = 0. If φ is
odd, by choosing the plus sign, one finds λ + λ̄ = 0. The eigenvalues associated with even
eigenfunctions are real. Those associated with odd eigenfunctions are pure imaginary.

It follows that eigenvalue-eigenfunction problem is equivalent to the pair of equations

βeφe(x) =
∫ 1

−1
cos(cxt) φe(t)dt (3)
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and

βoφo(x) =
∫ 1

−1
sin(cxt) φo(t)dt (4)

in which βe and βo are real and non-negative. We observe that the eigenfunctions of (3) must be
even and that βe = 0 cannot be an eigenvalue of this equation. It follows that the eigenfunctions
of (3) are complete in the class of even functions in L2([−1, 1]). Also we can derive similar
arguments about (4). ¤
Definition 2.2. A sequence of functions {φ1, · · · , φn} will be referred to as a Chebyshev se-
quence on the interval [a,b] if each of them is continuous and the determinant

∆
(

φ1 · · · φn

x1 · · · xn

)
:=

∣∣∣∣∣∣∣

φ1(x1) · · · φ1(xn)
...

. . .
...

φn(x1) · · · φn(xn)

∣∣∣∣∣∣∣
(5)

is nonzero for any sequence of points x1, · · · , xn such that a ≤ x1 < x2 · · · < xn ≤ b.
An alternative definition of a Chebyshev sequence is that any of linear combination of the

functions with nonzero coefficients must have less than n-zeros.

Lemma 2.3. Let {φ0, φ1, · · · , φm} be a Chebyshev sequence. Then m-th function φm(x) in
the sequence has exactly m-zeros if {φ0, φ1, · · · , φm} is an orthogonal system.

Proof. Let p be the number of zeros of φm(x) and {ξ1, · · · , ξp} be the corresponding zeros.
Consider an auxiliary function χ(x) defined as

χ(x) := ∆
(

φ0 · · · φp−1 φp

ξ1 · · · ξp x

)
. (6)

χ(x) has p-zeros at the exactly same locations as φm(x) since {φ0, φ1, · · · , φp} is a Chebyshev
sequence and the determinant is zero if and only if x coincides with one of {ξ1, · · · , ξp}. The
inner product (χ, φm) on [a, b] is not zero since two functions have the same zeros.

On the other hand, the orthogonality of {φ0, · · · , φp} implies that

(χ, φm) =
∫ b

a

∣∣∣∣∣∣∣

φ0(ξ1) · · · φ0(x)
...

. . .
...

φp(ξ1) · · · φp(x)

∣∣∣∣∣∣∣
φm(x) dx =

∣∣∣∣∣∣∣

φ0(ξ1) · · · (φ0, φm)
...

. . .
...

φp(ξ1) · · · (φp, φm)

∣∣∣∣∣∣∣
can be non-zero only when p ≥ m. Therefore the number of zeros p must be exactly m since
φm(x) can have at most m-zeros by the definition of Chebyshev sequence. ¤

Figure 1 shows the Prolate functions ψm(x) for various c = 1, 20, 50 and the corresponding
eigenvalues in decreasing order |λm| ≥ |λm+1|. The m-th eigenfunction ψm(x) has exactly m
zeros on [−1, 1] as shown in the figure (indeed, they form a Chebyshev sequence [1, 12]) and
the (effective) support of ψm(x) becomes narrower as c increases. It is also worth to remark
that all eigenvalues are simple and even(odd) numbered eigenvalues are real(pure imaginary),
more precisely λm = im|λm| (See [12]). The solid lines in the right figure shows magnitude of
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FIGURE 1. The 9 plots in the left show the prolate functions, ψ0, ψ5, ψ10 for
c = 1, 20, 50. Solid lines in the right figure draw the eigenvalues of Fc and
dotted lines show the number of eigenvalues greater than ε, N(c, ε).

eigenvalues as a function of m for various c and number of eigenvalues whose absolute values
are greater than ε is roughly N(c, ε) = 2c

π + 2
π2 log(c) log(ε−1) for 1 ¿ c ¿ ε−1, which

plotted using dotted lines. (See [5] and Theorem 2.5 in [12]).

2.2. Bounded Sinc-Operator. We define a self-adjoint operator Qc : L2[−1, 1]→ L2[−1, 1]
by the formula

Qc(φ)(x) :=
1
π

∫ 1

−1

sin(c · (x− t))
x− t

φ(t) dt. (7)

then simple calculation shows

Qc =
c

2π
F ∗

c · Fc (8)

and Qc has the same eigenfunctions ψm(x) as Fc with the corresponding eigenvalue µm,

Qc(ψm)(x) = µmψm(x) where µm =
c

2π
· |λm|2 . (9)

Lemma 2.4. For x, t ∈ [−1, 1], we have

eicxt =
∞∑

j=0

λjψj(x)ψj(t), (10)

sin c(x− u)
x− u

=
c

2

∞∑

j=0

|λj |2ψj(x)ψj(u), (11)
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and

∞∑

j=0

|λj |2 = 4,
∞∑

j=0

µj =
2c

π
. (12)

Proof. Since {ψi} constitute a complete orthonormal basis in L2[−1, 1], we have

eicxt =
∞∑

j=0

(∫ 1

−1
eicxτψj(τ)dτ

)
ψj(t), for all x, t ∈ [−1, 1]

and (10) is derived. Multiplying (10) by e−icut and integrating with respect to t converts it into

sin c(x− u)
x− u

=
c

2

∞∑

j=0

|λj |2ψj(x)ψj(u).

Taking the square norm of (10) and integrating with respect to x and t yields the formula
(12). ¤

2.3. Extension of ψm(x) into L2(−∞,∞). We extend the eigenfunction ψm(x) of Fc defined
in (2) for x ∈ (−∞,∞) as the following. For x ∈ [−1, 1],

ψm(x + n) :=
1

λm

∫ 1

−1
eic(x+n)tψm(t)dt. (13)

Figure 2 shows the extended prolate function for x > 0 and ψm(x) has even or odd symme-
try depending on parity of m. ψm(x) has always m-zeros and almost compactly supported on
[−1, 1] if m < 2c

π . ψm(x) has m-zeros on [−1, 1] and small wiggling tails on x > 1 if m ≈ 2c
π ,

for examples, m = 5 and c = 10 or m = 10 and c = 20. ψm(x) on [−1, 1] is exponentially
small compared to the value on x > 1 when m À 2c

π .
We also extend the bounded sinc operator Qc(φ)(x) = 1

π

∫ 1
−1

sin(c·(x−t))
x−t φ(t) dt defined in

(7) for x ∈ (−∞,∞) by replacing x ∈ [−1, 1] with x + n.

Lemma 2.5. The extended prolate functions ψm(x) defined in (13) also satisfy the following
equation for the extended sinc-operator Qc : L2[−1, 1] → L2(−∞,∞),

Qc(ψm)(x + n) = µm ψm(x + n). (14)
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FIGURE 2. The extended prolate functions, ψ0, ψ5, ψ10 for c = 1, 10, 20, 50.

Proof. A simple computation of Qc(ψm)(x + n) using the definition of Qc, ψm in L2[−1, 1],
and ψm in L2(−∞,∞) provides the lemma.

Qc(ψm)(x + n) =
1
π

∫ 1

−1

(
c

2

∫ 1

−1
eic(x+n−t)sds

)
ψm(t)dt by (7)

=
c

2π

∫ 1

−1
eic(x+n)s

(∫ 1

−1
e−icstψm(t)dt

)
ds

=
c

2π
λm

∫ 1

−1
eic(x+n)sψm(s)ds by (2)

=
c

2π
|λm|2 ψm(x + n) by (13).

2.4. Band-limited functions. The Sinc-transformation operator Pc : L2(R) → L2(R) de-
fined by

Pc(φ) =
1
π

∫ ∞

−∞

sin c(x− t)
x− t

φ(t)dt (15)
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is a projection operator from L2(−∞,∞) onto a subspace of “band-limited” functions which
will be defined later in this subsection. The following lemma gives an important starting point
toward the projection property of Pc.

Lemma 2.6. The Sinc-transformation operator Pc becomes the identity operator for the func-
tion space spanned by ψm(x) in L2(−∞,∞),

Pc(ψm)(x) =
1
π

∫ ∞

−∞

sin c(x− t)
x− t

ψm(t)dt = ψm(x). (16)

Proof.

Pc(ψm)(x) =
∫ ∞

−∞

(
c

2π

∫ 1

−1
eic(x−t)sds

)(
1

λm

∫ 1

−1
eictyψm(y)dy

)
dt by (13)

=
1

λm

∫ 1

−1
ψm(y)

(∫ 1

−1
eixs

(
1
2π

∫ ∞

−∞
eic(y−s)td(ct)

)
ds

)
dy

=
1

λm

∫ 1

−1
eicxyψm(y)dy = ψm(x) by (13).

A function f in L2(−∞,∞) is a band-limited function with band-limit c if f(x) is in the
following form,

f(x) =
∫ 1

−1
eicxtσ(t)dt (17)

for any σ ∈ L2[−1, 1]. The following lemma extends Lemma 2.6 to any band-limited function.

Lemma 2.7. For a band-limited function f(x) =
∫ 1
−1 eicxyσ(y)dy, Pc is a projection operator

onto itself,

Pc(f)(x) =
1
π

∫ ∞

−∞

sin c(x− t)
(x− t)

f(t)dt = f(x). (18)

Proof.

Pc(f)(x) =
∫ ∞

−∞

(
c

2π

∫ 1

−1
eic(x−t)sds

)(∫ 1

−1
eictyσ(y)dy

)
dt

=
∫ 1

−1

(∫ 1

−1
eicxsds

(
1
2π

∫ ∞

−∞
eict(y−s)d(ct)

)
ds

)
σ(y)dy

=
∫ 1

−1
eicxyσ(y) dy = f(x)

Pc is the orthogonal projection operator onto the space of functions of band-limit c on
(−∞,∞). It is clear that {ψm(x) = 1

λm

∫ 1
−1 eicxtψm(t)dt} are band-limited functions and

complete in the set of band-limited functions since {ψm} are complete in L2[−1, 1]. Note that∫∞
−∞

sin c(x−u)
π(x−u)

sin c(u−s)
π(u−s) du = sin c(x−s)

π(x−s) since sin c(x−s)
x−s is also a band-limited function. ¤
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Theorem 2.8. For any band-limited function f(x) with band-limit c, an inner product of f(x)
and ψm(x) in L2(−∞,∞) can be inferred from that in L2[−1, 1],

∫ ∞

−∞
ψm(x)f(x)dx =

1
µm

∫ 1

−1
ψm(x)f(x)dx (19)

Proof.
∫ ∞

−∞
ψm(x)f(x)dx =

∫ ∞

−∞

(
1

µm

∫ 1

−1
ψm(t)

sin c(x− t)
π(x− t)

dt

)
f(x) dx by (14)

=
1

µm

∫ 1

−1
ψm(t)

(∫ ∞

−∞

sin c(x− t)
π(x− t)

f(x)dx

)
dt

=
1

µm

∫ 1

−1
ψm(t)f(t)dt by (18).

As a corollary, the orthogonality of the prolate functions ψm(x) in L2(−∞,∞),
∫ ∞

−∞
ψm(x)ψn(x) dx =

1
µm

δmn (20)

can be proven from the orthonormality of {ψm(x)} in L2[−1, 1],
∫ 1
−1 ψm(x)ψn(x)dx = δmn.

2.5. Fourier Integral. We define the Fourier transform on the set of compactly-supported
complex-valued functions of R and extend to L2(R). Then F : L2(−∞,∞) → L2(−∞,∞)
and F ∗ : L2(−∞,∞) → L2(−∞,∞) defined as

H(k) := F (h)(k) =
1√
2π

∫ ∞

−∞
e−ikxh(x) dx (21)

h(x) := F ∗(H)(x) =
1√
2π

∫ ∞

−∞
eikxH(k) dk (22)

are unitary operators. That is, F ∗ = F−1.
The function spaces in L2(−∞,∞) spanned by the truncated prolate functions

Ψm(cx) :=

{
1√
2π

λm
µm

ψm(x) if |x| < 1,

0 if |x| > 1,
(23)

and by prolate functions {ψm(k)} are dual under the Fourier transformation in L2(−∞,∞).

Theorem 2.9. Suppose that c is real and positive. For x, k ∈ (−∞,∞),

F (Ψm)(k) = ψm(k) and F ∗(ψm)(cx) = Ψm(cx) (24)
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Proof.

F (Ψm)(k) =
1√
2π

∫ ∞

−∞
e−ik(cx)Ψm(cx) d(cx)

=
c

2π

λm

µm

∫ 1

−1
e−ickxψm(x) dx = ψm(k)

(
∵ c

2π

λmλm

µm
= 1

)

F ∗(ψm)(cx) =
1√
2π

∫ ∞

−∞
eik(cx) 1

λm

(∫ 1

−1
e−icksψm(s)ds

)
dk by (13)

=
1√
2π

1
λm

∫ 1

−1

2π

c
δ(x− s)ψm(s) ds

(
∵ c

2π

∫ ∞

−∞
eicksdk = δ(s)

)

=

{
1√
2π

λm
µm

ψm(x) , if |x| < 1

0 , if |x| > 1
.

3. PROLATE FUNCTION BASED INVERSION METHODS

Suppose we have Fourier coefficients {sn}N
n=1 of an object of finite size f(x) at finite num-

ber of measurement points {kn : |kn| < K}N
n=1 in frequency space,

sn =
∫ ∞

−∞
e−iknxf(x)dx (25)

where
f ∈ L2(X) := {f ∈ L2(R) : f(x) = 0, |x| > X}. (26)

We can represent any function f(x) in L2(X) using prolate coefficients {fm}∞m=0,

f(x) =
∞∑

m=0

fmψc
m

( x

X

)
(27)

since the function space spanned by the prolate functions with c = XK is complete in L2(X).
It is sometimes convenient to define a Fourier transformation matrix F which maps the prolate
coefficient vector f = {fm}∞m=0 to the corresponding Fourier signal vector {Ff (kn)}N

n=1,

F f = F




f0

f1
...


 =




Ff (k1)
...

Ff (kN )


 . (28)

Our goal in this section is to find a minimum norm solution g(x) in L2(X) or the prolate
coefficient vector g whose Fourier signal Fg(kn) matches with the measurement data s =
{sn}N

n=1 with maximum error bound ε,

min
g∈L2(X)

||g(x)||L2(X) subject to ||Fg (kn)− sn||2l2 ≤ ε2. (29)
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In some cases, it is preferable to obtain a minimum norm solution using a norm other than
L2(X) norm. So we can slightly generalize the previous task (29) to the following constraint
optimization problem whose object is minimizing ||Qg(x)||L2(X) instead of ||g(x)||L2(X),

min
g∈L2(X)

||Qg(x)||L2(X) subject to ||Fg (kn)− sn||2l2 ≤ ε2 (30)

where Q is a unitary operator from L2(X) onto itself whose null space is a subset of the null
space of F , Null(Q) ⊂ Null(F ). Let Q denote the discrete version of Q with prolate basis
functions.

3.1. Interpolation based inversion Method. Suppose we want to find an optimal solution
g ∈ L2(X) of (30) with a given signal s in terms of prolate coefficients,

min ||Q g|| subject to ||F g − s|| = ε (31)

where g(x) =
∑

m gmψm(x), s(kn) =
∑

m dmψm(kn), (Fg)n =
∑

m χmgmψm(kn), and
an image quality measurement operator Q is a diagonal operator, Q ψm(x) = qmψm(x) for
|x| < X . We define a Lagrangian minimizer function Φ(g) with a Lagrange multiplier λ−2,

Φ(g) := ||Qg(x)||2L2(X) + λ−2
(||Fg (kn)− sn||2 − ε2

)
. (32)

We take the partial derivatives with respect to gi in order to solve the constrained minimization
(30), which implies the following identity

gm =
χm

χmχm + λ2qmqm
dm. (33)

Once λ is given, g(λ) can be explicitly computable from the given prolate coefficients d of
the signal, and a proper Lagrangian multiplier λ can be found from the constraint equation
||F g(λ)− s|| = ε.

3.2. Lagrangian Multiplier Method. We define a Lagrangian minimizer function Φ(g) with
a Lagrange multiplier λ and a slack variable µ,

Φ(g) := ||Qg(x)||2L2(X) + λ
(||Fg (kn)− sn||2 + µ2 − ε2

)
(34)

and take the partial derivatives with respect to λ, µ, and gi in order to solve the constrained
minimization (30),

∂Φ
∂λ

= ||Fg − s||2 + µ2 − ε2 , (35)

∂Φ
∂µ

= 2λµ , (36)

∂Φ
∂gi

= 2λ(Fg − s,Fei) + 2(Qg,Qei) (37)

where ei is the i-th unit vector and (·, ·) denotes the vector inner product.
There are two cases to make all derivatives to zero. The first trivial case comes with λ = 0,

(Qg,Qei) = 0 which implies ||Qg(x)||L2(X) = 0 or g(x) ∈ Null(Q) ⊂ Null(F ). We ignore



A NOTE ON PROLATE FUNCTIONS AND NUMERICAL INVERSION METHODS 51

this case since it is meaningless to distinguish the solution from the zero solution if the norm
of the measured data s is smaller than the measurement error bound ε, ||sn||2 + µ2 = ε2. The
second case comes with µ = 0 and g(x) satisfies

||F g − s||2 = ε2 , (38)(
F∗F +

1
λ
Q∗Q

)
g = F∗s. (39)

For any given λ > 0,
(
F∗F + 1

λQ∗Q
)

: Null(Q)⊥ → Range(Q∗) is a strictly positive
operator and the second equation (39) with a right-hand-side F∗s in the range of the operator
can be solved uniquely in a solution space Null(Q)⊥ = Range(Q∗), which guarantees the
uniqueness of Fgλ. The solution gλ is then used to solve the one variable equation (38) a with
respect to λ, which is usually solved iteratively.

3.3. Minimum norm solution in L(X). We restrict ourself to the L(X) minimization prob-
lem (29) or (30) with Q = I ,

min
g∈L2(X)

||g(x)||L2(X) subject to ||Fg (kn)− sn||2l2 ≤ ε2. (40)

Then a nontrivial solution g(x) satisfies
(
F∗F + 1

λI
)
g = F∗s and ||Fg − s||2 = ε2 for

some λ > 0. For a given λ, the first equation has a unique solution gλ in Range(F∗), thus
it can be written as following form, gλ = F∗ zλ. The equation multiplied by F becomes(
FF∗FF∗ + 1

λFF∗
)
zλ = FF∗ s, whose solutions are unique up to the difference in the null

space of F∗. The following system of equations for λ and gλ(
M +

1
λ
I
)

zλ = s (41)

||M zλ − s||2 = ε2 (42)

provides a unique solution even for a rank-deficient operator M = FF∗ and gλ = F∗ zλ is the
solution of the minimization problem (40).

4. NUMERICAL EXAMPLES AND CONCLUSION

We have implemented two numerical schemes presented in section 3.1 and 3.2–3.3 using
MATLAB. The solid line in Figure 3 and 4 shows our numerical test function in L2([−1

2 , 1
2 ])

which includes one exponential and two box functions. The corresponding Fourier coefficient
function has been computed analytically and signal data sn have been sampled at 128 points
in frequency space |k| ≤ 32. We use the prolate spheroidal wave functions of order zero with
c = 32π whose eigenvalues are |λm| ≈ 0.25,m ≤ 64, |λ76| ≈ 10−5, and |λ87| ≈ 10−10.

Example 1 (Interpolation Based Inversion) In this example, we compute up to 80 prolate co-
efficients dm from the given Fourier signal Fg(kn), kp+64 = sign(p) 32 p2

642 , p = −63, · · · , 64.
Once a smoothing parameter λ2qm is given, evaluation of g(x) ∈ L2([−1

2 , 1
2 ]) from the inter-

polation coefficients dm with aid of the formula (33) is a trivial job.



52 E. KIM AND J.-Y. LEE

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Interpolation based Inversion without smoothing

x

R
ec

on
st

ru
ct

ed
 s

ol
ut

io
n,

 g
(x

)

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Interpolation based Inversion with smoothing

x

R
ec

on
st

ru
ct

ed
 s

ol
ut

io
n,

 g
(x

)

FIGURE 3. Results of Interpolation based inversion.

Figure 3 shows two results with different smoothing parameters. The left plot shows a result
with almost no smoothing effect where we set λ2qm ≈ 10−8 while the right plot is done with
λ2qm ≈ 10−4m2. The result in the right plot is a somewhat extreme case in the sense that
we put too much smoothing effect and the heights of box function are significantly reduced
from the original heights. It is also worth to notice that the exponential function has been less
damaged even with such an extreme smoothing parameters. We did not make an effort to find
a best smoothing parameters, which is, of course, an essential task in real applications.

Example 2 (Lagrangian Multiplier Based Inversion) In this example, we compute an opti-
mal solution g(x) ∈ L2(X) using the Lagrangian optimization technique presented in section
3.2–3.3.
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FIGURE 4. Results of Lagrangian Multiplier based inversion.
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Figure 4 shows two results with different smoothing parameters. The left result comes with
1
λ = 10−10 and the right with a diagonal operator Qnn = n2 and 1

λ = 10−4. Again, these two
extreme cases are just for demonstration and we may find much better tuning parameters λ and
Q depending on the real situation.

The computation cost of the Sinc-operator based inversion is little bit more expensive than
the interpolation based one because the linear system (41) must be solved for each choice of
Lagrangian multiplier. However, it is numerically much stabler than the interpolation based
algorithm when data sampling points kn is badly placed. Our implementations and numerical
simulations given in this section are rather primitive to use real applications, however, it clearly
shows feasibility of the algorithms for signal processing applications.
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