• 제목/요약/키워드: transcendental entire solutions

검색결과 18건 처리시간 0.022초

Non-homogeneous Linear Differential Equations with Solutions of Finite Order

  • Belaidi, Benharrat
    • Kyungpook Mathematical Journal
    • /
    • 제45권1호
    • /
    • pp.105-114
    • /
    • 2005
  • In this paper we investigate the growth of finite order solutions of the differential equation $f^{(k)}\;+\;A_{k-1}(Z)f^{(k-l)}\;+\;{\cdots}\;+\;A_1(z)f^{\prime}\;+\;A_0(z)f\;=\;F(z)$, where $A_0(z),\;{\cdots}\;,\;A_{k-1}(Z)\;and\;F(z)\;{\neq}\;0$ are entire functions. We find conditions on the coefficients which will guarantees the existence of an asymptotic value for a transcendental entire solution of finite order and its derivatives. We also estimate the lower bounds of order of solutions if one of the coefficient is dominant in the sense that has larger order than any other coefficients.

  • PDF

THREE RESULTS ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.795-814
    • /
    • 2021
  • In this paper, we study the transcendental meromorphic solutions for the nonlinear differential equations: fn + P(f) = R(z)eα(z) and fn + P*(f) = p1(z)eα1(z) + p2(z)eα2(z) in the complex plane, where P(f) and P*(f) are differential polynomials in f of degree n - 1 with coefficients being small functions and rational functions respectively, R is a non-vanishing small function of f, α is a nonconstant entire function, p1, p2 are non-vanishing rational functions, and α1, α2 are nonconstant polynomials. Particularly, we consider the solutions of the second equation when p1, p2 are nonzero constants, and deg α1 = deg α2 = 1. Our results are improvements and complements of Liao ([9]), and Rong-Xu ([11]), etc., which partially answer a question proposed by Li ([7]).

On the Growth of Transcendental Meromorphic Solutions of Certain algebraic Difference Equations

  • Xinjun Yao;Yong Liu;Chaofeng Gao
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.185-196
    • /
    • 2024
  • In this article, we investigate the growth of meromorphic solutions of $${\alpha}(z)(\frac{{\Delta}_c{\eta}}{{\eta}})^2\,+\,(b_2(z){\eta}^2(z)\;+\;b_1(z){\eta}(z)\;+\;b_0(z))\frac{{\Delta}_c{\eta}}{{\eta}} \atop =d_4(z){\eta}^4(z)\;+\;d_3(z){\eta}^3(z)\;+\;d_2(z){\eta}^2(z)\;+\;d_1(z){\eta}(z)\;+\;d_0(z),$$ where a(z), bi(z) for i = 0, 1, 2 and dj (z) for j = 0, ..., 4 are given functions, △cη = η(z + c) - η(z) with c ∈ ℂ\{0}. In particular, when the a(z), the bi(z) and the dj(z) are polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of finite order, and either deg a(z) ≠ deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and ρ(η) ≠ ½, then ρ(η) ≥ 1.

RADIAL OSCILLATION OF LINEAR DIFFERENTIAL EQUATION

  • Wu, Zhaojun
    • 대한수학회보
    • /
    • 제49권5호
    • /
    • pp.911-921
    • /
    • 2012
  • In this paper, the radial oscillation of the solutions of higher order homogeneous linear differential equation $$f^{(k)}+A_{n-2}(z)f^{(k-2)}+{\cdots}+A_1(z)f^{\prime}+A_0(z)f=0$$ with transcendental entire function coefficients is studied. Results are obtained to extend some results in [Z. Wu and D. Sun, Angular distribution of solutions of higher order linear differential equations, J. Korean Math. Soc. 44 (2007), no. 6, 1329-1338].

Growth order of Meromorphic Solutions of Higher-order Linear Differential Equations

  • Xu, Junfeng;Zhang, Zhanliang
    • Kyungpook Mathematical Journal
    • /
    • 제48권1호
    • /
    • pp.123-132
    • /
    • 2008
  • In this paper, we investigate higher-order linear differential equations with entire coefficients of iterated order. We improve and extend the result of L. Z. Yang by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen and the extended Wiman-Valiron theory by Wang and Yi. We also consider the nonhomogeneous linear differential equations.

SOME RESULTS ON MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1095-1113
    • /
    • 2020
  • In this paper, we investigate the transcendental meromorphic solutions for the nonlinear differential equations $f^nf^{(k)}+Q_{d_*}(z,f)=R(z)e^{{\alpha}(z)}$ and fnf(k) + Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z), where $Q_{d_*}(z,f)$ and Qd(z, f) are differential polynomials in f with small functions as coefficients, of degree d* (≤ n - 1) and d (≤ n - 2) respectively, R, p1, p2 are non-vanishing small functions of f, and α, α1, α2 are nonconstant entire functions. In particular, we give out the conditions for ensuring the existence of these kinds of meromorphic solutions and their possible forms of the above equations.

BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS

  • Aktas, Ibrahim;Orhan, Halit
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.355-369
    • /
    • 2020
  • In the present investigation, by applying two different normalizations of the Jackson's second and third q-Bessel functions tight lower and upper bounds for the radii of convexity of the same functions are obtained. In addition, it was shown that these radii obtained are solutions of some transcendental equations. The known Euler-Rayleigh inequalities are intensively used in the proof of main results. Also, the Laguerre-Pólya class of real entire functions plays an important role in this work.

SOLUTIONS FOR QUADRATIC TRINOMIAL PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS IN ℂn

  • Molla Basir Ahamed;Sanju Mandal
    • 대한수학회지
    • /
    • 제61권5호
    • /
    • pp.975-995
    • /
    • 2024
  • In this paper, we utilize Nevanlinna theory to study the existence and forms of solutions for quadratic trinomial complex partial differential-difference equations of the form aF2 + 2ωFG + bG2 = exp(g), where ab ≠ 0, ω ∈ ℂ with ω2 ≠ 0, ab and g is a polynomial in ℂn. In order to achieve a comprehensive and thorough analysis, we study the characteristics of solutions in two specific cases: one when ω2 ≠ 0, ab and the other when ω = 0. Because polynomials in several complex variables may exhibit periodic behavior, a property that differs from polynomials in single complex variables, our study of finding solutions of equations in ℂn is significant. The main results of the paper improved several known results in ℂn for n ≥ 2. Additionally, the corollaries generalize results of Xu et al. [Rocky Mountain J. Math. 52(6) (2022), 2169-2187] for trinomial equations with arbitrary coefficients in ℂn. Finally, we provide examples that endorse the validity of the conclusions drawn from the main results and their related remarks.