DOI QR코드

DOI QR Code

SOLUTIONS FOR QUADRATIC TRINOMIAL PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS IN ℂn

  • Molla Basir Ahamed (Department of Mathematics Jadavpur University) ;
  • Sanju Mandal (Department of Mathematics Jadavpur University)
  • Received : 2023.07.23
  • Accepted : 2024.06.07
  • Published : 2024.09.01

Abstract

In this paper, we utilize Nevanlinna theory to study the existence and forms of solutions for quadratic trinomial complex partial differential-difference equations of the form aF2 + 2ωFG + bG2 = exp(g), where ab ≠ 0, ω ∈ ℂ with ω2 ≠ 0, ab and g is a polynomial in ℂn. In order to achieve a comprehensive and thorough analysis, we study the characteristics of solutions in two specific cases: one when ω2 ≠ 0, ab and the other when ω = 0. Because polynomials in several complex variables may exhibit periodic behavior, a property that differs from polynomials in single complex variables, our study of finding solutions of equations in ℂn is significant. The main results of the paper improved several known results in ℂn for n ≥ 2. Additionally, the corollaries generalize results of Xu et al. [Rocky Mountain J. Math. 52(6) (2022), 2169-2187] for trinomial equations with arbitrary coefficients in ℂn. Finally, we provide examples that endorse the validity of the conclusions drawn from the main results and their related remarks.

Keywords

Acknowledgement

The authors express their gratitude to the referee for the helpful suggestions and insightful comments aimed at improving the exposition of the paper. The first author is supported by the DST FIST (SR/FST/MS-II/2021/101(C)), Department of Mathematics, Jadavpur University. The Second author is supported by CSIR-SRF (File No: 09/0096(12546)/2021-EMR-I, dated: 18/12/2023), Govt. of India, New Delhi.

References

  1. M. B. Ahamed and V. Allu, Transcendental solutions of Fermat-type functional equations in ℂ2, Anal. Math. Phys. 13(2023), article number 69.
  2. I. N. Baker, On a class of meromorphic functions, Proc. Amer. Math. Soc. 17 (1966), 819-822. https://doi.org/10.2307/2036259
  3. A. Banerjee and G. Haldar, On entire solutions of different variants of Fermat-type partial delay differential equations in several complex variables, Rocky Mountain J. Math. (2023). https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-ofmathematics/DownloadAcceptedPapers/230223-Haldar.pdf
  4. T.-B. Cao, Difference analogues of the second main theorem for meromorphic functions in several complex variables, Math. Nachr. 287 (2014), no. 5-6, 530-545. https://doi.org/10.1002/mana.201200234
  5. T.-B. Cao and L. Xu, Logarithmic difference lemma in several complex variables and partial difference equations, Ann. Mat. Pura Appl. (4) 199 (2020), no. 2, 767-794. https://doi.org/10.1007/s10231-019-00899-w
  6. W. Chen and Q. Han, On entire solutions to eikonal-type equations, J. Math. Anal. Appl. 506 (2022), no. 1, Paper No. 124704, 10 pp. https://doi.org/10.1016/j.jmaa.2020.124704
  7. W. Chen, P.-C. Hu, and Y. Zhang, On solutions to some nonlinear difference and differential equations, J. Korean Math. Soc. 53 (2016), no. 4, 835-846. https://doi.org/10.4134/JKMS.j150296
  8. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
  9. P. R. Garabedian, Partial Differential Equations, John Wiley & Sons, Inc., New York, 1964.
  10. M. L. Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43-75. https://doi.org/10.2307/2373660
  11. F. Gross, On the equation fn + gn = 1, Bull. Amer. Math. Soc. 72 (1966), 86-88. https://doi.org/10.1090/S0002-9904-1966-11429-5
  12. G. G. Gundersen, Research questions on meromorphic functions and complex differential equations, Comput. Methods Funct. Theory 17 (2017), no. 2, 195-209. https://doi.org/10.1007/s40315-016-0178-7
  13. G. G. Gundersen and W. K. Hayman, The strength of Cartan's version of Nevanlinna theory, Bull. London Math. Soc. 36 (2004), no. 4, 433-454. https://doi.org/10.1112/S0024609304003418
  14. G. G. Gundersen, K. Ishizaki, and N. Kimura, Restrictions on meromorphic solutions of Fermat type equations, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 3, 654-665. https://doi.org/10.1017/s001309152000005x
  15. Q. Han and F. Lu, On the equation fn(z) + gn(z) = eαz+β, J. Contemp. Math. Anal. 54:2 (2019), 98-102.
  16. W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  17. P.-C. Hu, P. Li, and C.-C. Yang, Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, 1, Kluwer Acad. Publ., Dordrecht, 2003. https://doi.org/10.1007/978-1-4757-3775-2
  18. D. Khavinson, A note on entire solutions of the eiconal equation, Amer. Math. Monthly 102 (1995), no. 2, 159-161. https://doi.org/10.2307/2975351
  19. P. Kiernan, Hyperbolic submanifolds of complex projective space, Proc. Amer. Math. Soc. 22 (1969), 603-606. https://doi.org/10.2307/2037441
  20. B. Q. Li, On entire solutions of Fermat type partial differential equations, Internat. J. Math. 15 (2004), no. 5, 473-485. https://doi.org/10.1142/S0129167X04002399
  21. B. Q. Li, Entire solutions of certain partial differential equations and factorization of partial derivatives, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3169-3177. https://doi.org/10.1090/S0002-9947-04-03745-6
  22. B. Q. Li, Entire solutions of (uz1)m + (uz2)n = eg, Nagoya Math. J. 178 (2005), 151-162. https://doi.org/10.1017/S0027763000009156
  23. B. Q. Li, On certain functional and partial differential equations, Forum Math. 17 (2005), no. 1, 77-86. https://doi.org/10.1515/form.2005.17.1.77
  24. B. Q. Li, Entire solutions of eiconal type equations, Arch. Math. (Basel) 89 (2007), no. 4, 350-357. https://doi.org/10.1007/s00013-007-2118-2
  25. B. Q. Li, On meromorphic solutions of generalized Fermat equations, Internat. J. Math. 25 (2014), no. 1, 1450002, 8 pp. https://doi.org/10.1142/S0129167X14500025
  26. K. Liu, T.-B. Cao, and H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math. (Basel) 99 (2012), no. 2, 147-155. https://doi.org/10.1007/s00013-012-0408-9
  27. S. Mandal and M. B. Ahamed, Characterizations of finite order solutions of circular type partial differential-difference equations in ℂn, Complex Anal. Oper. Theory 18 (2024), no. 4, Paper No. 85, 24 pp. https://doi.org/10.1007/s11785-024-01530-4
  28. P. Montel, Le,cons sur les Familles Nomales de Fonctions Analytiques et Leurs Applications, Gauthier-Viuars Paris, (1927), 135-136.
  29. G. Polya, On an integral function of an integral function, J. London Math. Soc. 1 (1926), no. 1, 12-15. https://doi.org/10.1112/jlms/s1-1.1.12
  30. L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables (Russian), Izdat. "Nauka", Moscow, 1971, Amer. Math. Soc., Providence, 1974.
  31. E. G. Saleeby, Entire and meromorphic solutions of Fermat type partial differential equations, Analysis (Munich) 19 (1999), no. 4, 369-376. https://doi.org/10.1524/anly.1999.19.4.369 
  32. E. G. Saleeby, On complex analytic solutions of certain trinomial functional and partial differential equations, Aequationes Math. 85 (2013), no. 3, 553-562. https://doi.org/10.1007/s00010-012-0154-x
  33. W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 21, Amer. Math. Soc., Providence, RI, 1974.
  34. J.-F. Tang and L.-W. Liao, The transcendental meromorphic solutions of a certain type of nonlinear differential equations, J. Math. Anal. Appl. 334 (2007), no. 1, 517-527. https://doi.org/10.1016/j.jmaa.2006.12.075
  35. H.-Y. Xu, The existence and forms of solutions for several systems of the Fermat-type difference-differential equations, Rocky Mountain J. Math. 51 (2021), no. 3, 1107-1132. https://doi.org/10.1216/rmj.2021.51.1107
  36. L. Xu and T. Cao, Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math. 15 (2018), no. 6, Paper No. 227, 14 pp. https://doi.org/10.1007/s00009-018-1274-x
  37. L. Xu and T. Cao, Correction to: Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math. 17 (2020), no. 1, Paper No. 8, 4 pp. https://doi.org/10.1007/s00009-019-1438-3
  38. H. Y. Xu, S. Y. Liu, and Q. P. Li, Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl. 483 (2020), no. 2, 123641, 22 pp. https://doi.org/10.1016/j.jmaa.2019.123641
  39. H. Y. Xu and L. Xu, Transcendental entire solutions for several quadratic binomial and trinomial PDEs with constant coefficients, Anal. Math. Phys. 12 (2022), no. 2, Paper No. 64, 21 pp. https://doi.org/10.1007/s13324-022-00679-5
  40. H. Y. Xu, K. Zhang, and X. Zheng, Entire and meromorphic solutions for several Fermat type partial differential difference equations in ℂ2, Rocky Mountain J. Math. 52 (2022), no. 6, 2169-2187. https://doi.org/10.1216/rmj.2022.52.2169
  41. C.-C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc. 26 (1970), 332-334. https://doi.org/10.2307/2036399
  42. C.-C. Yang and P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math. (Basel) 82 (2004), no. 5, 442-448. https://doi.org/10.1007/s00013-003-4796-8
  43. Z. Ye, A sharp form of Nevanlinna's second main theorem of several complex variables, Math. Z. 222 (1996), no. 1, 81-95. https://doi.org/10.1007/PL00004261