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SOME RESULTS ON MEROMORPHIC SOLUTIONS OF

CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

Nan Li and Lianzhong Yang

Abstract. In this paper, we investigate the transcendental meromorphic

solutions for the nonlinear differential equations fnf (k) + Qd∗ (z, f) =

R(z)eα(z) and fnf (k) + Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z), where

Qd∗ (z, f) and Qd(z, f) are differential polynomials in f with small func-
tions as coefficients, of degree d∗ (≤ n − 1) and d (≤ n − 2) respectively,

R, p1, p2 are non-vanishing small functions of f , and α, α1, α2 are non-

constant entire functions. In particular, we give out the conditions for
ensuring the existence of these kinds of meromorphic solutions and their

possible forms of the above equations.

1. Introduction

Let f(z) be a transcendental meromorphic function in the complex plane C.
We assume that the reader is familiar with the standard notations and main
results in Nevanlinna theory (see [1, 2, 6]). Throughout this paper, the term
S(r, f) always has the property that S(r, f) = o(T (r, f)) as r → ∞, possibly
outside a set E (which is not necessarily the same at each occurrence) of finite
linear measure. A meromorphic function a(z) is said to be a small function
with respect to f(z) if and only if T (r, a) = S(r, f). A differential polynomial
Qd(z, f) in f of degree d is a polynomial in f and its derivatives of a total
degree at most d with small functions of f as the coefficients.

Recently, many scholars focus on the meromorphic solutions of the nonlinear
differential equations of the form

(1) fnf ′ +Qd(z, f) = h,
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where Qd(z, f) denotes a polynomial in f and its derivatives with a total de-
gree d ≤ n − 1 with small functions of f as the coefficients, and h is a given
meromorphic function.

In 2014, Liao and Ye [3] investigated the forms of meromorphic solutions of
equation (1) for specific Qd(z, f) and h, and obtained the following result.

Theorem 1 ([3]). Let Qd(z, f) be a differential polynomial in f of degree d with
rational function coefficients. Suppose that u is a nonzero rational function and
v is a nonconstant polynomial. If n ≥ d+ 1 and the differential equation

fnf ′ +Qd(z, f) = u(z)ev(z)(2)

admits a meromorphic solution f with finitely many poles, then f has the fol-
lowing form:

f(z) = s(z)ev(z)/(n+1) and Qd(z, f) ≡ 0,

where s(z) is a rational function with sn((n + 1)s′ + v′s) = (n + 1)u. In
particular, if u is a polynomial, then s is a polynomial, too.

Later Lü etc., [5] changed the condition on the coefficients of the differential
polynomial from rational functions to small functions, and extended Theorem 1
to the following result.

Theorem 2 ([5]). Let Pn−1(f) be a differential polynomial in f with coeffi-
cients being small functions, and let degPn−1(f) ≤ n−1. Then for any positive
integer n, any entire function α and any small function R, the equation

(3) fnf ′ + Pn−1(f) = Reα

does not posses any transcendental meromorphic solution f(z) with N(r, f) =
S(r, f) unless Pn−1(f) ≡ 0. Moreover, if the equation (3) possesses a mero-
morphic solution f with N(r, f) = S(r, f), then (3) will become fnf ′ = Reα

and f(z) has the form f(z) = u exp(α/(n+ 1)) as the only possible admissible
solution of (3), where u is a small function of f .

Then it is natural to ask what will happen if the dominant term is replaced
by fnf (k) when k ≥ 2? Unfortunately, the method used in the proof of [5,
Theorem 1.1] is not valid when k ≥ 2 by a carefully observation, so in this
paper we consider the above problem from a new angle by using deficiency,
and obtain the following Theorem 1.1.

We need the following notations in order to state our results. Let p be a

positive integer and a ∈ C ∪ {∞}. We use Np)

(
r, 1
f−a

)
(N(p+1

(
r, 1
f−a

)
) to

denotes the counting function of the zeros of f −a, whose multiplicities are not
greater than p (less than p+ 1). Define

δ(a, f) = 1− lim sup
r→∞

N
(
r, 1
f−a

)
T (r, f)

, and δp)(a, f) = 1− lim sup
r→∞

Np)

(
r, 1
f−a

)
T (r, f)

.
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Theorem 1.1. Let n ≥ 2, k ≥ 2 be integers, Qd∗(z, f) be a differential poly-
nomial in f with coefficients being small functions, and d∗ ≤ n − 1. Then for
any entire function α and any small function R, the equation

(4) fnf (k) +Qd∗(z, f) = Reα

has a transcendental meromorphic solution f with δ(∞, f) = 1 and δ1)(0, f) > 0
if and only if Qd∗(z, f) ≡ 0. Moreover, if the equation (4) possesses a tran-
scendental meromorphic solution f with δ(∞, f) = 1 and δ1)(0, f) > 0, then

(4) will become fnf (k) = Reα and f(z) has the form f(z) = u exp(α/(n + 1))
as the only possible admissible solution of (4), where u is a small function of
f .

Remark 1. Actually, in Theorem 1.1 “if” part, i.e., if Qd∗(z, f) ≡ 0, then
we have not only δ1)(0, f) > 0 but also δ1)(0, f) = δ(0, f) = 1 by using the
following Lemma 2.3 directly.

Being enlightened by Theorem 2, we pose the following question.

Question 1. Can the condition δ1)(0, f) > 0 in Theorem 1.1 “only if” part
be omitted or not? That means, if the equation (4) possesses a transcendental
meromorphic solution f with δ(∞, f) = 1, can we get Qd∗(z, f) ≡ 0 and the
related results?

It is also interesting and difficult to consider what is the form of meromorphic
solutions of the following differential equations:

fnf ′ +Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z),(5)

where Qd(z, f) is a differential polynomial in f with small functions of f as the
coefficients, p1, p2 are small functions of f , α1(z), α2(z) are nonconstant entire
functions.

Recently, Zhang [7] gave the forms of transcendental meromorphic solutions
of equation (5) for a particular case, when Qd(z, f) is a rational function of z
(i.e., d = 0), p1, p2 are nonzero rational functions and α1, α2 are nonconstant
polynomials. And they showed that the conditions concerning α′1/α

′
2 could en-

sure the existence of the possible meromorphic solutions of the above equation.
Later, in [9] Zhang etc., further their results to the case when Qd(z, f) is a
differential polynomial in f of degree d ≤ n − 2 with rational functions as its
coefficients.

In 2017, Lu [4] replaced the dominant term fnf ′ in equation (5) by fnf (k),
the rational coefficients of the differential polynomial by small functions,
changed nonconstant polynomials α1 and α2 to entire functions satisfying one of
the following three conditions (a) T (r, eα1) = S(r, eα2) (b) T (r, eα2) = S(r, eα1)
(c) T (r, eα1) = O(T (r, eα2)) & T (r, eα2) = O(T (r, eα1)), and obtained the fol-
lowing result.

Theorem 3 ([4]). Let n ≥ 3, k ≥ 2 be integers, and Pn−3(z, f) be a differential
polynomial in f of degree at most n− 3 with small functions as its coefficients,
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α1, α2 be nonconstant entire functions, p1, p2 be nonzero small functions of
both eα1(z) and eα2(z). If f(z) is a transcendental meromorphic solution of the
following nonlinear differential equation

(6) fnf (k) + Pn−3(z, f) = p1(z)eα1(z) + p2(z)eα2(z)

satisfying N(r, f) = S(r, f), then there exist two cases:

(I) T (r, eα1) = S(r, eα2), and fnf (k) = p2e
α2 , Pn−3(f) = p1e

α1 ; Or
T (r, eα2) = S(r, eα1), and fnf (k) = p1e

α1 , Pn−3(f) = p2e
α2 ;

(II) T (r, eα1) = O(T (r, eα2)). In this case, we have that

T (r, f) = O(T (r, eα1)) = O(T (r, eα2))

and therefore S(r, f) = S(r, eα1) = S(r, eα2). We use T (r), resp. S(r)
to denote these two quantities. Then one of the following holds:
(1) T (r, eα2−α1) = S(r). In this case, Pn−3(f) ≡ 0 and fnf (k) =
(p1 + ϕp2)eα1 , where ϕ = eα2−α1 ;
(2) T (r, ekα1−(n+1)α2) = S(r), where k is an integer satisfying 1 ≤
k ≤ n − 3. In this case, fnf (k) = p1e

α1 and Pn−3(f) = p2e
α2 , which

actually means f = s1(z)e
α1
n+1 with T (r, s1) = S(r);

(3) T (r, ekα2−(n+1)α1) = S(r), where k is an integer satisfying 1 ≤
k ≤ n − 3. In this case, fnf (k) = p2e

α2 and Pn−3(f) = p1e
α1 , which

actually means f = s2(z)e
α2
n+1 with T (r, s2) = S(r).

In Theorem 3, the degree of the differential polynomial Pn−3(z, f) is under
the condition “at most n − 3”, then it is natural to ask what will happen if
the degree of the differential polynomial is bigger than n − 3? In this paper,
we study the above problem, consider the form of solutions of the following
equation (7) when d ≤ n − 2 and entire functions α1 and α2 satisfying one
of the above three conditions (a), (b), (c) by using deficiency, and obtain the
following Theorem 1.2.

Theorem 1.2. Let f be a transcendental meromorphic function in the plane
with δ(∞, f) = 1 and δ1)(0, f) > 0, n ≥ 2, k ≥ 1 be integers, and Qd(z, f)
be a differential polynomial in f of degree d ≤ n − 2 with small functions
as its coefficients, α1, α2 be nonconstant entire functions satisfying one of the
above three conditions (a), (b), (c), and p1, p2 be nonzero small functions of f .
Suppose the following nonlinear differential equation

(7) fn(z)f (k)(z) +Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z),

holds, then

(I) if T (r, eα1) = S(r, eα2), then fnf (k) = p2e
α2 , Qd(z, f) = p1e

α1 , and

f(z) = u1(z)e
α2
n+1 , where u1(z) is a small function of f ;

(II) if T (r, eα2) = S(r, eα1), then fnf (k) = p1e
α1 , Qd(z, f) = p2e

α2 , and

f(z) = u2(z)e
α1
n+1 , where u2(z) is a small function of f ;
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(III) if T (r, eα1) = O(T (r, eα2)) and T (r, eα2) = O(T (r, eα1)), then one of
the following holds:
(1) T (r, eα2−α1) = S(r, f). In this case, Qd(z, f) ≡ 0 and fnf (k) =
(p1 + ϕp2)eα1 = (p2 + 1/ϕ · p1)eα2 , where ϕ = eα2−α1 , and f(z) =

u3(z)e
α1
n+1 = u4(z)e

α2
n+1 , where u3(z), u4(z) are small functions of f ;

(2) T (r, elα1−(n+1)α2) = S(r, f), where l is an integer satisfying 1 ≤
l ≤ n− 2. In this case, fnf (k) = p1e

α1 , Qd(z, f) = p2e
α2 , and f(z) =

u5(z)e
α1
n+1 , where u5(z) is a small function of f ;

(3) T (r, elα2−(n+1)α1) = S(r, f), where l is an integer satisfying 1 ≤
l ≤ n− 2. In this case, fnf (k) = p2e

α2 , Qd(z, f) = p1e
α1 , and f(z) =

u6(z)e
α2
n+1 , where u6(z) is a small function of f .

Specifically, when α1 and α2 be polynomials, we get the following corollary.

Corollary 1.3. Let n ≥ 2, k ≥ 1 be integers, and Qd(z, f) be a differential
polynomial in f of degree d ≤ n − 2 with small functions as its coefficients,
α1, α2 be nonconstant polynomials, and p1, p2 be nonzero small functions of f .
Suppose the nonlinear differential equation (7) has a transcendental meromor-
phic solution f with δ(∞, f) = 1 and δ1)(0, f) > 0, then

(I) if degα1 < degα2, then Theorem 1.2(I) holds;
(II) if degα2 < degα1, then Theorem 1.2(II) holds;

(III) if degα1 = degα2, then Theorem 1.2(III) holds.

Remark 2. Actually, by using the similar method as in the proof of Theo-
rem 1.2, the condition on p1, p2 in Theorem 3 can be changed from “small
functions of both eα1(z) and eα2(z)” to “small functions of f”, and the same
conclusion still holds. Moreover, the forms of its transcendental solutions can
also be given.

Example 1. f0(z) = ee
z

is a solution of the following equation

f3f ′ + f ′′ = eze4e
z

+ (e2z + ez)ee
z

,

where n = 3, d = k = 1, α1(z) = 4ez, α2(z) = ez, p1 = ez, p2 = e2z + ez,
δ(∞, f0) = δ1)(0, f0) = 1.

The above Example 1 shows that the solution in Theorem 1.2(III)(2) can
exist. However, we raise the following question.

Question 2. Can the condition δ1)(0, f) > 0 in Theorem 1.2 be omitted or
not?

The following corollary deals with a particular case that the degree of the
non-dominant term is at most n.

Corollary 1.4. Let f be a transcendental meromorphic function in the plane
with δ(∞, f) = 1 and δ1)(0, f) > 0, n ≥ 2 be an integer, q be a constant, and
Qd(z, f) be a differential polynomial in f of degree d with small functions as
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coefficients. Suppose p1, p2 are nonzero small functions and α1, α2 are noncon-
stant entire functions. If n ≥ d+ 2 and the differential equation

(8) fnf ′ − qfn−1f ′ + n− 1

2n
q2fn−2f ′ +Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z),

holds, then the conclusion in Theorem 1.2 holds.

2. Preliminary lemmas

The following lemma plays an important role in uniqueness problems of
meromorphic functions.

Lemma 2.1 ([6]). Let fj(z) (j = 1, . . . , n) (n ≥ 2) be meromorphic functions,
and let gj(z) (j = 1, . . . , n) be entire functions satisfying

(i)
∑n
j=1 fj(z)e

gj(z) ≡ 0;

(ii) when 1 ≤ j < k ≤ n, then gi(z)− gk(z) is not a constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, fj) = o{T (r, egh−gk)} (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.

Then, fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.2 (Clunie Lemma [2]). Let f be a transcendental meromorphic so-
lution of the equation:

fnP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are polynomials in f and its derivatives with mero-
morphic coefficients {aλ |λ ∈ I} such that m(r, aλ) = S(r, f) for all r ∈ I. If
the total degree of Q(z, f) as a polynomial in f and its derivatives is at most
n, then m(r, P (z, f)) = S(r, f).

The following two lemmas are crucial to the proofs of Theorems 1.1 and 1.2.

Lemma 2.3. Let f be a transcendental meromorphic function in the plane
satisfying

(9) fnf (k) = Reα,

where n ≥ 1, k ≥ 1 are integers, α is a nonconstant entire function, and R is
a nonzero small function of f . Then f(z) = u exp(α/(n + 1)), where u is a
small function of f .

Proof. From equation (9), we have

nN

(
r,

1

f

)
= N

(
r,

1

fn

)
≤ N

(
r,

1

R

)
= S(r, f),

and

N(r, f (k)) ≤ N(r,R) = S(r, f).
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Therefore,

T

(
r,
Reα

fn+1

)
= T

(
r,
fnf (k)

fn+1

)
= m

(
r,
f (k)

f

)
+N

(
r,
f (k)

f

)
= S(r, f).

Set β(z) = Reα

fn+1 , then we have

f(z) =

(
R

β

) 1
n+1

e
α
n+1 = u(z)e

α
n+1 ,

where T (r, u) = S(r, f). �

By the proof of [8, Theorem 1.3] (or [2, Lemma 2.4.2, Clunie Lemma]), we
have the following lemma. Here for convenience of the readers we also give the
sketch of its proof.

Lemma 2.4. Let Q(z, f) be a differential polynomial in f of degree d with small
functions of f as coefficients. Then we have m(r,Q) ≤ dm(r, f) + S(r, f).

Proof. Defining E1 := {θ ∈ [0, 2π) | |f(reiθ)| < 1}, E2 := [0, 2π) \ E1, we may
consider the proximity function m(r,Qd) in two parts:

m(r,Q) =
1

2π

∫
E1

log+ |Q|dθ +
1

2π

∫
E2

log+ |Q|dθ.(10)

Writing, with λ = (l0, . . . , lν),

Q(z, f) =
∑
λ∈I

Qλ(z, f) =
∑
λ∈I

aλ(z)f l0(f ′)l1 · · · (f (ν))lν .

For z ∈ E1, we have

|Qλ(z, f)| = |aλ(z)f l0(f ′)l1 · · · (f (ν))lν |

≤ |aλ|
∣∣∣∣f ′f
∣∣∣∣l1 · · · ∣∣∣∣f (ν)f

∣∣∣∣lν .
Therefore, by the logarithmic derivative lemma, we obtain

1

2π

∫
E1

log+ |Qλ|dθ ≤ m(r, aλ) +

ν∑
j=1

ljm

(
r,
f (j)

f

)
= S(r, f).

Hence
1

2π

∫
E1

log+ |Q|dθ ≤
∑
λ∈I

∫
E1

log+ |Qλ|dθ +O(1) = S(r, f).(11)

For z ∈ E2, as l0 + l1 + · · ·+ lν ≤ d for all λ ∈ I, we have

|Q(z, f)| ≤
∑
λ∈I

∣∣∣aλ(z)f l0(f ′)l1 · · · (f (ν))lν
∣∣∣

≤ |f |d
(∑
λ∈I

|aλ|
∣∣∣∣f ′f
∣∣∣∣l1 · · · ∣∣∣∣f (ν)f

∣∣∣∣lν
)
.
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Thus we have
1

2π

∫
E2

log+ |Q|dθ ≤ dm(r, f) +
∑
λ∈I

m(r, aλ)(12)

+
∑
λ∈I

 ν∑
j=1

ljm

(
r,
f (j)

f

)+O(1)

= dm(r, f) + S(r, f).

By combining (10), (11) with (12), we obtain the conclusion. �

Lemma 2.5. Let n ≥ 2, k ≥ 1 be integers and Qd(z, f) denote an alge-
braic differential polynomial in f(z) of degree d ≤ n − 1 with small functions
of f as its coefficients. If p1(z), p2(z) are small functions of f , α1(z), α2(z)
are nonconstant entire functions and if f is a transcendental meromorphic
solution of the equation (7) with N(r, f) = S(r, f), then we have T (r, f) =
O (T (r, eα1) + T (r, eα2)), T (r, p1e

α1 + p2e
α2) = O(T (r, f)), and T (r, fnf (k) +

Qd(z, f)) 6= S(r, f).

Proof. By Lemma 2.4, we get that

m (r,Qd(z, f)) ≤ dm(r, f) + S(r, f).(13)

By combining (13) with N(r, f) = S(r, f), we get that

(n+ 1)T (r, f) = T (r, fn+1) = T

(
r,

1

fn+1

)
+ S(r, f)

≤ m

(
r,

1

fnf (k)

)
+m

(
r,
f (k)

f

)
+N

(
r,

1

fnf (k)

)
−N

(
r,

1

f (k)

)
+N

(
r,

1

f

)
+ S(r, f)

≤ T
(
r, fnf (k)

)
+N

(
r,

1

f

)
+ S(r, f)

= m
(
r, fnf (k)

)
+N

(
r,

1

f

)
+ S(r, f)

≤ m (r, p1e
α1) +m (r, p2e

α2) +m (r,Qd(z, f))

+N

(
r,

1

f

)
+ S(r, f)

≤ T (r, eα1) + T (r, eα2) + (d+ 1)T (r, f) + S(r, f).

This gives that

(n− d)T (r, f) ≤ T (r, eα1) + T (r, eα2) + S(r, f),

i.e., T (r, f) = O (T (r, eα1) + T (r, eα2)).
From (13), N(r, f) = S(r, f) and equation (7), we can also get T (r, p1e

α1 +
p2e

α2) = O(T (r, f)).
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Next, we prove that T (r, fnf (k) + Qd(z, f)) can not be a small function
of f . Otherwise, we will have fnf (k) + Qd(z, f) = β with T (r, β) = S(r, f).
Thus fnf (k) = β − Qd(z, f). Since d ≤ n − 1, from Lemma 2.2, we get
m(r, f (k)) = S(r, f) and m(r, ff (k)) = S(r, f). Then T (r, f (k)) = S(r, f) and
T (r, ff (k)) = S(r, f) since N(r, f) = S(r, f). By f (k) 6≡ 0 from the assumption
that f is transcendental, we have T (r, f) ≤ T (r, ff (k))+T (r, 1/f (k)) = S(r, f),
which yields a contradiction. �

3. Proof of Theorem 1.1

The sufficiency can be deduced by using Lemma 2.3 directly, so next we
prove the necessity.

Let f be a transcendental meromorphic solution of the equation (4) with
δ(∞, f) = 1 and δ1)(0, f) > 0. Then obviously we have N(r, f) = S(r, f).

We assert that R 6≡ 0. Otherwise, from (4), we get that

fnf (k) = −Qd∗(z, f).

Since d∗ ≤ n− 1, then by Lemma 2.2 we have

m(r, f (k)) = S(r, f), m(r, ff (k)) = S(r, f).

Combining with N(r, f) = S(r, f), we get that

T (r, f (k)) = S(r, f), T (r, ff (k)) = S(r, f).

Since f is transcendental, we have that f (k) 6≡ 0. Therefore,

T (r, f) ≤ T (r, ff (k)) + T (r, 1/f (k)) = S(r, f),

which yields a contradiction. So we have R 6≡ 0. Thus from (4) we get

eα =
fnf (k) +Qd∗(z, f)

R
.

Therefore, by using Lemma 2.4 to the differential polynomial fnf (k)+Qd∗(z, f)
with degree n+ 1, we get that

T (r, eα) ≤ T (r, fnf (k) +Qd∗(z, f)) + T (r,R)

= m(r, fnf (k) +Qd∗(z, f)) + S(r, f)

≤ (n+ 1)m(r, f) + S(r, f)

= (n+ 1)T (r, f) + S(r, f),

which means a small function of eα is also a small function of f . So we have
T (r, α′) = S(r, f).

By differentiating both sides of (4) we have

(14) nfn−1f ′f (k) + fnf (k+1) +Q′d∗ = (R′ +Rα′)eα.
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Multiplying (4) by (R′+Rα′) and (14) by R, and then subtracting the resulting
equations, we get

(15) fn−1φ = RQ′d∗ − (R′ +Rα′)Qd∗ ,

where

(16) φ = (R′ +Rα′)ff (k) −Rnf ′f (k) −Rff (k+1).

It follows from Lemma 2.2 that m(r, φ) = S(r, f). Combining with N(r, f) =
S(r, f), we have T (r, φ) = S(r, f).

Next we prove that φ ≡ 0. Otherwise, from formula (16), we get that

φ

f2
= (R′ +Rα′)

f (k)

f
− nRf

′

f

f (k)

f
−Rf

(k+1)

f
.

Thus,

2m

(
r,

1

f

)
≤ m

(
r,
φ

f2

)
+m

(
r,

1

φ

)
= S(r, f).(17)

It follows from (16) that

1

2
N(2

(
r,

1

f

)
≤ N

(
r,

1

φ

)
+N(r,R′ +Rα′) +N(r,R)

≤ T (r, φ) + S(r, f) = S(r, f),

implying that the zeros of f are mainly simple zeros. Thus, by combining with
(17), we obtain

T (r, f) = N

(
r,

1

f

)
+ S(r, f) = N1)

(
r,

1

f

)
+ S(r, f),

which contradicts with the assumption that δ1)(0, f) > 0. Therefore,

(18) (R′ +Rα′)ff (k) −Rnf ′f (k) −Rff (k+1) ≡ 0,

and

(19) RQ′d∗ − (R′ +Rα′)Qd∗ ≡ 0.

If Qd∗ ≡ 0, then equation (4) reduces to

fnf (k) = Reα.

Thus by Lemma 2.3, we get the conclusion.
If Qd∗ 6≡ 0, then from (19), we have

Q′d∗
Qd∗

=
R′

R
+ α′.

Therefore

(20) Qd∗ = cReα,

where c is a nonzero constant.
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By substituting (20) into equation (4), we get

(21) fnf (k) =

(
1

c
− 1

)
Qd∗ .

If c = 1, then we have fnf (k) ≡ 0. Thus we have f ≡ 0, or f is a polynomial, a
contradiction. Therefore, we have c 6= 1. Since d∗ ≤ n−1, by using Lemma 2.2
to (21), we have m(r, f (k)) = S(r, f) and m(r, ff (k)) = S(r, f). By combining
with N(r, f) = S(r, f), we get T (r, f (k)) = S(r, f) and T (r, ff (k)) = S(r, f).
Thus by f (k) 6≡ 0, we have T (r, f) ≤ T (r, ff (k)) +T (r, 1/f (k)) = S(r, f), which
yields a contradiction.

4. Proof of Theorem 1.2

Let f be a transcendental meromorphic solution of the equation (7) with
δ(∞, f) = 1 and δ1)(0, f) > 0. Then obviously we have N(r, f) = S(r, f). It
follows from Lemma 2.5 and the assumption d ≤ n− 2 < n− 1 that

(22) T (r, f) ≤ K0 (T (r, eα1) + T (r, eα2)) ,

(23) T (r, p1e
α1 + p2e

α2) ≤ K0T (r, f),

and

(24) T (r, fnf (k) +Qd(z, f)) 6= S(r, f)

as r →∞, where K0 (> 0) is a constant.
From (7), we have

nfn−1f ′f (k) + fnf (k+1) +Q′d = (p′1 + p1α
′
1)eα1 + (p′2 + p2α

′
2)eα2 .(25)

By eliminating eα2(z) from equations (7) and (25), we have

(p′2 + p2α
′
2)fnf (k) − np2fn−1f ′f (k) − p2fnf (k+1) + (p′2 + p2α

′
2)Qd − p2Q′d

= A1e
α1 , where A1 = (p′2 + p2α

′
2) p1 − p2 (p′1 + p1α

′
1) .(26)

Next we discuss the following three cases.
Case 1. T (r, eα1) = S(r, eα2). Then from (22) we have

T (r, f) ≤ 2K0 · T (r, eα2) as r →∞,
which means that a small function of f is also a small function of eα2 . So from
(23), we get

(1 + o(1))T (r, eα2) = T (r, p1e
α1 + p2e

α2) ≤ K0T (r, f) as r →∞,
which means that a small function of eα2 is also a small function of f . So we
have T (r, eα1) = S(r, f). We rewritten (7) as follows:

fn(z)f (k)(z) +Qd(z, f)− p1eα1 = p2e
α2 .

Therefore, by using Theorem 1.1 and Theorem 2, we get that Qd(z, f) = p1e
α1 ,

fnf (k) = p2e
α2 , and f = u1 exp(α2/(n+ 1)), where u1 is a small function of f .

Case 2. T (r, eα2) = S(r, eα1). The argument is similar as in Case 1.
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Case 3. T (r, eα1) = O(T (r, eα2)) and T (r, eα2) = O(T (r, eα1)). Then there
exist constants K1 and L1 (> 0) such that

(27) T (r, eα2) ≤ K1 · T (r, eα1), T (r, eα1) ≤ L1 · T (r, eα2)

as r →∞, which means that a small function of eα2 is also a small function of
eα1 , while a small function of eα1 is also a small function of eα2 .

Subcase 3.1. A1(z) ≡ 0. Then we have

(p′2 + p2α
′
2) p1 = p2 (p′1 + p1α

′
1) .

Therefore

p2e
α2 = c0p1e

α1 ,(28)

where c0 is a nonzero constant. So we have T (r, eα1−α2) = S(r, f).
Substituting (28) into equation (7), we get

fn(z)f (k)(z) +Qd(z, f) = (1 + c0)p1e
α1 =

(
1 +

1

c0

)
p2e

α2 .

Obviously, from (24) we have that 1 + c0 6= 0 and 1 + 1/c0 6= 0. Therefore,
by using Theorem 1.1 and Theorem 2, we get that Qd(z, f) ≡ 0, fnf (k) =
(p1 + p2e

α2−α1)eα1 = (p2 + p1e
α1−α2)eα2 , and f = s1 exp(α1/(n + 1)) =

s2 exp(α2/(n + 1)), where s1, s2 are small functions of f . This belongs to
Case III (1) in Theorem 1.2.

Subcase 3.2. A1(z) 6≡ 0. By combining (22) with (27), we get that

(29) T (r, f) ≤ K0(1 +K1) · T (r, eα1), T (r, f) ≤ K0(1 + L1) · T (r, eα2)

as r → ∞, which means that a small function of f is also a small function of
eα1 and eα2 .

By combining (26) with (27), we get that there exists K2 (> 0) such that

T (r, eα1) ≤ K2T (r, f), and T (r, eα2) ≤ K1K2T (r, f)

as r →∞, which means that any small function of eα1 (or eα2) is also a small
function of f . Therefore, we have S(r, f) = S(r, eα1) = S(r, eα2).

For convenience of calculation, we denote A2 = p′2 + p2α
′
2 and g = (p′2 +

p2α
′
2)Qd − p2Q′d. Obviously, A2 6≡ 0. Otherwise we will get that

p2 = c1e
−α2 ,

where c1 is a nonzero constant, which yields a contradiction by the fact that
T (r, p2) = S(r, eα2) .

Thus equation (26) becomes

A2f
nf (k) − np2fn−1f ′f (k) − p2fnf (k+1) + g = A1e

α1 .(30)

Differentiating both sides of (30), we have

A′2f
nf (k) + n(A2 − p′2)fn−1f ′f (k) + (A2 − p′2)fnf (k+1)

− np2fn−1f ′′f (k) − n(n− 1)p2f
n−2(f ′)2f (k) − 2np2f

n−1f ′f (k+1)
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− p2fnf (k+2) + g′ = (A′1 +A1α
′
1)eα1 .(31)

By eliminating eα1 from equations (30) and (31), we obtain

[A1A
′
2 − (A′1 +A1α

′
1)A2] fnf (k)

+ [nA1p2α
′
2 + np2(A′1 +A1α

′
1)] fn−1f ′f (k)

+ [A1p2α
′
2 + (A′1 +A1α

′
1)p2] fnf (k+1) − n(n− 1)A1p2f

n−2(f ′)2f (k)

− nA1p2f
n−1f ′′f (k) − 2np2A1f

n−1f ′f (k+1) − p2A1f
nf (k+2)

= (A′1 +A1α
′
1)g −A1g

′.(32)

Set B1 = A1A
′
2 − (A′1 + A1α

′
1)A2, B2 = nA1p2α

′
2 + np2(A′1 + A1α

′
1), B3 =

A1p2α
′
2 + (A′1 +A1α

′
1)p2, Q1 = (A′1 +A1α

′
1)g −A1g

′, then we have

fn−2Q = Q1,(33)

where

Q = B1f
2f (k) +B2ff

′f (k) +B3f
2f (k+1) − n(n− 1)A1p2(f ′)2f (k)

− nA1p2ff
′′f (k) − 2np2A1ff

′f (k+1) − p2A1f
2f (k+2).(34)

It follows from Lemma 2.2 that m(r,Q) = S(r, f). By combining with the
fact that N(r, f) = S(r, f), we have T (r,Q) = S(r, f).

Next we assert that Q ≡ 0. Otherwise, from formula (34), we get that

3m

(
r,

1

f

)
≤ m

(
r,
Q

f3

)
+m

(
r,

1

Q

)
≤ 4m

(
r,
f (k)

f

)
+ 4m

(
r,
f ′

f

)
+ 2m

(
r,
f (k+1)

f

)
+m

(
r,
f ′′

f

)
+m

(
r,
f (k+2)

f

)
+ S(r, f)

= S(r, f).(35)

It follows from (34) that

N(2

(
r,

1

f

)
≤ N(r,B1) +N(r,B2) +N(r,B3) +N(r,A1p2) +N

(
r,

1

Q

)
≤ T (r,Q) + S(r, f) = S(r, f),

implying that the zeros of f are mainly simple zeros. Thus, combining with
(35), we obtain

T (r, f) = N

(
r,

1

f

)
+ S(r, f) = N1)

(
r,

1

f

)
+ S(r, f),

which contradicts with the assumption that δ1)(0, f) > 0. Therefore,

B1f
2f (k) +B2ff

′f (k) +B3f
2f (k+1) − n(n− 1)A1p2(f ′)2f (k)

− nA1p2ff
′′f (k) − 2np2A1ff

′f (k+1) − p2A1f
2f (k+2) ≡ 0,(36)
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and

(37) Q1 = (A′1 +A1α
′
1)g −A1g

′ ≡ 0.

Subcase 3.2.1. g(z) ≡ 0, i.e.,

(38) (p′2 + p2α
′
2)Qd − p2Q′d ≡ 0.

If Qd ≡ 0, then equation (7) becomes

(39) fnf (k) = p1e
α1 + p2e

α2 .

Next, we prove that N(r, 1/f) = S(r, f). Otherwise, consider equation (36),
let z0 be a zero of f with multiplicity p, which is not a zero or pole of B1, B2, B3

and p2A1, then (f ′(z0))2f (k)(z0) = 0. Suppose f(z) = ap(z − z0)p + ap+1(z −
z0)p+1 + · · · , ap 6= 0.

For the case k = 1, we have p ≥ 2 from the fact that f ′(z0) = 0.
If p = 2, by calculating the coefficient of the lowest power of z − z0 in the

left of equation (36), we have

n(n− 1)(2a2)3 + 3n22a32 = 0.

Thus

2n2 + n = 0,

which is impossible since n ≥ 2.
If p ≥ 3, then by calculating the coefficient of the lowest power of z − z0 in

the left of equation (36), we have

n(n− 1)(pap)
3 + 3np2(p− 1)a3p + p(p− 1)(p− 2)a3p = 0,

thus

[(n+ 1)p− 1] [(n+ 1)p− 2] = 0.

This gives that

p =
1

n+ 1
, or p =

2

n+ 1
,

which is impossible since n ≥ 2 and p ≥ 3.
For the case k ≥ 2, suppose f (k)(z) = bm(z − z0)m + bm+1(z − z0)m+1 +

· · · , bm 6= 0. Then there exist the following three subcases.
I. f ′(z0) = 0 and f (k)(z0) = 0. Then p ≥ 2 and m ≥ 1.
If p ≥ 2 and m = 1. By calculating the coefficient of the lowest power of

z − z0 in the left of equation (36), we have

n(n− 1)(pap)
2b1 + np(p− 1)a2pb1 + 2npa2pb1 = 0,

thus,

(n− 1)p+ p− 1 + 2 = 0,

which yields a contradiction.
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If p ≥ 2 and m ≥ 2. By calculating the coefficient of the lowest power of
z − z0 in the left of equation (36), we have

n(n− 1)(pap)
2bm + np(p− 1)a2pbm + 2npa2pmbm + a2pm(m− 1)bm = 0,

thus

(np+m)(np+m− 1) = 0,

which also yields a contradiction.
II. f ′(z0) = 0 and f (k)(z0) 6= 0. Then 2 ≤ p ≤ k and m = 0. By calculating

the coefficient of the lowest power of z−z0 in the left of equation (36), we have

n(n− 1)(pap)
2b0 + napp(p− 1)apb0 = 0,

thus

(n− 1)p+ (p− 1) = 0,

which yields a contradiction.
III. f ′(z0) 6= 0 and f (k)(z0) = 0. Then p = 1 and m ≥ 1.
If p = 1 and m = 1, then by calculating the coefficient of the lowest power

of z − z0 in the left of equation (36), we have

n(n− 1)a21b1 + 2na21b1 = 0,

thus
n(n+ 1) = 0,

which yields a contradiction.
If p = 1 and m ≥ 2, then by calculating the coefficient of the lowest power

of z − z0 in the left of equation (36), we have

n(n− 1)a21bm + 2na21mbm + a21m(m− 1)bm = 0,

thus
(m+ n)(m+ n− 1) = 0,

which also yields a contradiction.
Hence, for k ≥ 1 we have

(40) N

(
r,

1

f

)
= S(r, f).

Rewrite (30) as

A2

A1

f (k)

f
− np2
A1

f ′

f

f (k)

f
− p2
A1

f (k+1)

f
=

eα1

fn+1
.(41)

Then by Logarithmic Derivative Lemma, from (41) we get

m

(
r,

eα1

fn+1

)
= S(r, f).

Therefore, by combining with (40),

T

(
r,

eα1

fn+1

)
= m

(
r,

eα1

fn+1

)
+N

(
r,

eα1

fn+1

)
= S(r, f).



1110 N. LI AND L. Z. YANG

We set

β(z) =
eα1

fn+1
,

then T (r, β) = S(r, f), and

(42) f =

(
1

β

) 1
n+1

e
α1
n+1 = t1(z)e

α1
n+1 ,

where t1(z) is a small function of f .
Substituting (42) into equation (39), we get that

qn+1(z)eα1 = p1e
α1 + p2e

α2 ,

where qn+1(z) is a small function of f , which gives that T (r, eα2−α1) = S(r, f).
Then fnf (k) = (p1 + ϕp2)eα1 , where ϕ = eα2−α1 such that T (r, ϕ) = S(r, f).
This belongs to Case III (1) in Theorem 1.2.

If Qd 6≡ 0, then equation (38) becomes

(43)
p′2
p2

+ α′2 =
Q′d
Qd

.

Therefore

p2e
α2 = Qdc2,

where c2 is a nonzero constant. Substituting it into (7) we have

fnf (k) + (1− c2)Qd = p1e
α1 .

Then by Theorem 1.1 and Theorem 2, we have c2 = 1, fnf (k) = p1e
α1 , and

f = u5 exp(α1/(n+ 1)), where u5 is a small function of f . Therefore,

(44) p2e
α2 = Qd.

By substituting f = u5 exp(α1/(n+ 1)) into (44), we get

n−2∑
l=0

ql(z)e
lα1
n+1 = p2e

α2 ,

where ql(z) are small functions of f . By Lemma 2.1, there must exists some

l (1 ≤ l ≤ n − 2) such that T (r, eα2− lα1
n+1 ) = S(r, f), i.e., T (r, e(n+1)α2−lα1) =

S(r, f). This belongs to Case III (2) in Theorem 1.2.
Subcase 3.2.2. g(z) 6≡ 0. Then from (37) we have

A′1
A1

+ α′1 =
g′

g
.

Therefore

A1e
α1 = gc3,

where c3 is a nonzero constant.
Substituting it into (30) we have

A2f
nf (k) − np2fn−1f ′f (k) − p2fnf (k+1) = (c3 − 1)g.(45)
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Denote ϕ = A2ff
(k) − np2f ′f (k) − p2ff (k+1). If c3 6= 1, then ϕ 6≡ 0. Thus

by Lemma 2.2, we have m(r, ϕ) = S(r, f) and m(r, fϕ) = S(r, f). Combining
with N(r, f) = S(r, f), we have T (r, ϕ) = S(r, f) and T (r, fϕ) = S(r, f). Then,
T (r, f) ≤ T (r, fϕ)+T (r, 1

ϕ ) = S(r, f), which yields a contradiction. Therefore,

c3 = 1 and ϕ ≡ 0, i.e.,

A2ff
(k) − np2f ′f (k) − p2ff (k+1) = 0.

This gives that

p′2
p2

+ α′2 = n
f ′

f
+
f (k+1)

f (k)
.

Thus

(46) fnf (k) = c4p2e
α2 ,

where c4 is a nonzero constant. Substituting (46) into (7), we have

(47)

(
1− 1

c4

)
fnf (k) +Qd(z, f) = p1e

α1 .

If c4 = 1, then we have

(48) fnf (k) = p2e
α2 ,

and

(49) Qd(z, f) = p1e
α1 .

By using Lemma 2.3 to (48), we have

(50) f = u6(z)e
α2
n+1 ,

where u6(z) is a small function of f . Substituting (50) into (49), by using

Lemma 2.1, there exists some l (1 ≤ l ≤ n − 2) such that T (r, eα1− lα2
n+1 ) =

S(r, f), i.e., T (r, e(n+1)α1−lα2) = S(r, f). This belongs to Case III (3) in The-
orem 1.2.

If c4 6= 1, then from (47) we have

(51) fnf (k) +
c4

c4 − 1
Qd(z, f) =

c4
c4 − 1

p1e
α1 .

By using Theorem 1.1 and Theorem 2 to (51), we have

Qd(z, f) ≡ 0.

Thus

g = (p′2 + p2α
′
2)Qd − p2Q′d ≡ 0,

a contradiction with g 6≡ 0.
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5. Proof of Corollary 1.3

Let α1(z) = apz
p + ap−1z

p−1 + · · · + a1z + a0, α2(z) = bqz
q + bq−1z

q−1 +
· · ·+ b1z + b0. It is well known [1, p. 7] that

T (r, eα1) =
|ap|
π
rp + o(rp) and T (r, eα2) =

|bq|
π
rq + o(rq).

Therefore, by combining with Theorem 1.2 we can get the conclusion.

6. Proof of Corollary 1.4

Assume that f is a transcendental meromorphic solution with δ(∞, f) = 1
and δ1)(

q
n , f) > 0 of equation (8). Let g(z) = f(z)− q

n , then g is a transcenden-
tal meromorphic solution with δ(∞, g) = 1 and δ1)(0, g) > 0 of the following
differential equation

gng(k) +Q∗(z, g) = p1e
α1 + p2e

α2 ,

where Q∗(z, g) is a differential equation with degree ≤ n − 2. The conclusion
of the theorem follows immediately from Theorem 1.2.
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