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RADIAL OSCILLATION OF LINEAR DIFFERENTIAL

EQUATION

Zhaojun Wu

Abstract. In this paper, the radial oscillation of the solutions of higher
order homogeneous linear differential equation

f(k) +An−2(z)f
(k−2) + · · ·+A1(z)f

′ + A0(z)f = 0

with transcendental entire function coefficients is studied. Results are ob-
tained to extend some results in [Z. Wu and D. Sun, Angular distribution

of solutions of higher order linear differential equations, J. Korean Math.
Soc. 44 (2007), no. 6, 1329–1338].

1. Introduction and main results

In this paper, the meromorphic function always means a function being
meromorphic in the whole complex plane C. Assume that the basic definitions,
theorems and standard notations of the Nevanlinna theory for meromorphic
function (see [11], [22] or [24]) are known. There have appeared many papers
on the global theory of complex differential equations which were studied from
the point of view of Nevanlinna theory, since 1982 when the article by Bank
and Laine [1] appeared in Trans. Amer. Math. Soc. We refer the reader to
the books by Laine [12], and by Gao etc. [6]. The first general research on the
radial oscillation theory of the solutions of

(1) f ′′ −A(z)f = 0

is due to Wang [17] and Wu [19] respectively. Here, we recall some definitions
by Wang [17] as follows (also see Rossi and Wang [14]).

Definition 1 (Sectorial exponent of convergence). For a ∈ C∞ := C ∪ {∞},
define

λα,β(f, a) = lim sup
r→∞

logn(r,Ω(α, β), f = a)

log r
,
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where Ω(α, β) = {z | α < arg z < β}, 0 < β − α ≤ π and n(r,Ω(α, β), f = a)
is the number of the roots of f(z) − a = 0 in Ω(α, β) ∩ {|z| < r}, counting
multiplicities. Especially, when a = 0, we write λα,β(f) = λα,β(f, 0).

Definition 2 (Radial exponent of convergence). For any θ ∈ [0, 2π) and a ∈
C∞, we define

λθ(f, a) = lim
ε→0+

λθ−ε,θ+ε(a, f).

Especially, when a = 0, we write λθ(f) = λθ(f, 0).

In 1994, Wu [19] had proved the following theorem.

Theorem A ([19]). Let A(z) be a transcendental entire function of finite order

in the plane and let f1, f2 be two linearly independent solutions of (1). Set E =

f1f2. Then λθ(E) = +∞, if and only if lim supr→∞
log logM(r,Ωθ,ε ,E)

log r
= +∞ for

any ε > 0, where M(r,Ωθ,ε, E) = sup{|E(teiτ )| : θ − ε ≤ τ ≤ θ + ε, 1 ≤ t ≤ r}.

Recently, Wu [18] proved the following theorem on connection of the ra-
dial exponent of convergence of zeros with Borel direction of the product of a
solution base of (1).

Theorem B ([18]). Let A(z) be a transcendental entire function of finite order

in the plane and f1, f2 be two linearly independent solutions for (1). Let E =
f1f2. Suppose that the exponent of convergence of zero-sequence λ(E) is ∞.

Then L : arg z = θ0 is an infinity order Borel direction of E if and only if

λθ0(E) = ∞.

For k ≥ 2, we consider the homogeneous linear differential equation

(2) f (k) +Ak−2f
(k−2) + · · ·+A0f = 0,

where A0, . . . , Ak−2 are entire functions with A0 6≡ 0. Bernal [3] studied the
iterated p-order of solutions of (2). In this paper, we shall study the con-
nection of the radial exponent of convergence of zeros with Borel direction
of the product of a solution base of linear differential equation (2) with en-
tire coefficients of finite iterated p-order. For the sake of convenience, we
define inductively (see [3], [10], [11], [15]), for r ∈ [0,+∞), exp[1] r = er

and exp[n+1] r = exp(exp[n] r), n ∈ N. For all r sufficiently large, we de-

fine log[1] r = log r and log[n+1] r = log(log[n] r), n ∈ N. We also denote

exp[0] r= r =log[0] r, log[−1] r = exp[1] r and exp[−1] r= log[1] r. We recall
the following definitions and remarks.

Definition 3 ([11, 15]). The iterated p-order σp(f) of a meromorphic function
f(z) is defined by

σp(f) = lim sup
r→∞

log[p] T (r, f)

log r
(p ∈ N).
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Remark 1 ([4]). (1) If p = 1, then we denote σ1(f) = σ(f); (2) If p = 2, then
we denote the so-called hyper order by σ2(f); (3) If f(z) is an entire function,
then

σp(f) = lim sup
r→∞

log[p+1] M(r, f)

log r
.

Definition 4 ([3, 15]). The growth index of the iterated order of a meromorphic
function f(z) is defined by

i(f) =



















0 if f is rational,

min{n ∈ N : σn(f) < ∞} if f is transcendental and

σn(f) < ∞ for some n ∈ N,

∞ if σn(f) = ∞ for all n ∈ N.

In [3], Bernal prove the following theorem.

Theorem C ([3]). Assume that A0, . . . , An−1 are entire functions and p =
max{i(Aj), j = 0, . . . , k − 1}. Set

L(f) := f (n) +An−1f
(n−1) +An−2(z)f

(n−2) + · · ·+A1(z)f
′ +A0(z)f.

If p > 0, let σ = max{σp(Aj), j = 0, . . . , k − 1}, then
(i) δ ≤ 1 + p, where δ = sup{i(f) : L(f) = 0}.
(ii) if p < ∞, then γp+1 ≤ σ, where γp+1 = sup{σp+1(f) : L(f) = 0}.

Definition 5 ([11, 15]). The iterated convergence exponent of the sequence of
a-points (a ∈ C∞) is defined by

λn(f − a) = λn(f, a) = lim sup
r→∞

log[n] N(r, 1
f−a

)

log r
(n ∈ N).

Remark 2 ([4]). λ1(f − a) = λ(f − a); λ1(f, 0) = λ(f);λp(f, 0) = λp(f).

Definition 6. The sectorial iterated convergence exponent of the sequence of
a-points (a ∈ C∞) is defined by

λn,α,β(f − a) = λn,α,β(f, a) = lim sup
r→∞

log[n] n(r,Ω(α, β), f = a)

log r
(n ∈ N).

The radial iterated convergence exponent of the sequence of a-points (a ∈ C∞)
is defined by

λn,θ(f − a) = λn,θ(f, a) = lim
ε→0+

λn,θ−ε,θ+ε(f, a) (n ∈ N).

Remark 3. λ1,α,β(f − a) = λα,β(f − a); λ1,θ(f − a) = λθ(f − a).

Definition 7. Let p ∈ N, and f(z) be a meromorphic function of iterated p-
order ρ(0 < ρ ≤ ∞). A ray L : arg z = θ is called a Borel direction of iterated
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p-order ρ of f , if no matter how small the positive number 0 < ε < π/2 is, for
each value a ∈ C∞, holds

lim sup
r→∞

log[p] n(r,Ω(θ − ε, θ + ε), f = a)

log r
= ρ,

with at most two exceptional values a.

Remark 4. When p = 1, Borel direction of iterated p-order ρ of f is called a
Borel direction of order ρ of f . When p = 2, Borel direction of iterated p-order
ρ of f is called a Borel direction of hyper order ρ of f .

In [23], the author prove the following theorem.

Theorem D ([23]). Assume that some (or all) of A0, . . . , Ak−2 are transcen-

dental entire functions of finite order growth and equation (2) possesses a so-

lution base f1, f2, . . . , fk. Set E = f1 · · · fk. Then λθ(E) = +∞, if and only

if

lim sup
r→∞

log logM(r,Ωθ,ε, E)

log r
= +∞

for any ε > 0.

This result and Theorem B motivate the present author to prove the follow-
ing theorem in [20].

Theorem E. Assume that some (or all) of A0, . . . , Ak−2 are transcendental

entire functions of finite order growth and equation (2) possesses a solution

base f1, f2, . . . , fk. Set E = f1 · · · fk. Suppose that the exponent of convergence

of zero-sequence λ(E) = ∞ and E is an entire function of hyper order ρ(0 <
ρ < ∞). Then λ2,θ(E) = ρ if and only if L : arg z = θ is a Borel direction of

hyper order ρ of E.

In this paper, we shall continue to research the radial oscillation of the
solutions of (2). In fact, we shall prove the following theorem.

Theorem 1. Assume that some (or all) of A0, . . . , Ak−2 are transcendental

entire functions, and p = max{i(Aj), j = 0, 1, . . . , k − 2} < ∞. If equation

(2) possesses a solution base f1, f2, . . . , fk and set E = f1 · · · fk. Then i(E) ≤
(p+ 1). If σ(p+1)(E) = ρ > 0, then the following statements are equivalent:

(i) L : arg z = θ is a Borel direction of iterated (p+ 1)-order ρ of E;
(ii) λ(p+1),θ(E) = ρ;

(iii) lim sup
r→∞

log[p+2] M(r,Ωθ,ε ,E)
log r

= ρ for any ε > 0.

By Theorem C, we know that i(E) ≤ p + 1. When k = 2 and p = 1, the
equivalence of (i) and (ii) is a precise version of Theorem B in the case of
σ2(E) = ρ > 0. When k ≥ 2 and p = 1, the equivalence of (i) and (ii) is
Theorem E. When k = 2 and p = 1, the equivalence of (ii) and (iii) has been
obtained by Huang and Chen [7] in an weakly form. When k ≥ 2 and p = 1,
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the equivalence of (ii) and (iii) has been obtained by Huang and Chen [8] in
an weakly form. Most recently, Zheng [24] give a system research about the
equivalence of (i) and (ii) by using the proximate order of Qinglai Hiong (see
[5]). Here, the innovative point is the equivalence of (ii) and (iii).

2. Some lemmas

The proof of Theorem 1 requires the Nevanlinna theory in an angular do-
main. Let f(z) be a meromorphic function and Ω(α, β) = {z | α ≤ arg z ≤ β}
be an angular domain, where 0 < β−α ≤ 2π. Nevanlinna defined the following
notations (see e.g. [5], [13], [24]).

Aα,β(r, f) =
k

π

∫ r

1

(
1

tk
−

tk

r2k
){log+ |f(teiα)|+ log+ |f(teiβ)|}

dt

t
;

Bα,β(r, f) =
2k

πrk

∫ β

α

log+ |f(reiθ)| sin k(θ − α)dθ;

Cα,β(r, f) = 2
∑

bv∈△

(
1

|bv|k
−

|bv|
k

r2k
) sin k(βv − α),

where k = π
β−α

, 1 ≤ r < ∞ and bv = |bv|e
iθv are the poles of f(z) in the sector

△ := {z : 1 < |z| < r, α < arg z < β}, each pole bv occurs in the sum
∑

bv∈△

as many times as it’s order. When pole bv occurs in the sum
∑

bv∈△only once,

we denote it by Cα,β(r, f). Moreover, for r > 1, we define

Dα,β(r, f) = Aα,β(r, f) +Bα,β(r, f), Sα,β(r, f) = Cα,β(r, f) +Dα,β(r, f).

For the sake of simplicity, we omit the subscript of all the notations and use
A(r, f), B(r, f), C(r, f), D(r, f) and S(r, f) to replace Aα,β(r, f), Bα,β(r, f),
Cα,β(r, f), Dα,β(r, f) and Sα,β(r, f) respectively. In the following, some prop-
erties of S(r, f) are given.

Lemma 1 ([24]). Let f(z) be a nonconstant meromorphic function and Ω(α, β)
be an angular domain, where 0 < β − α ≤ 2π. Then for any value a ∈ C, we
have

S(r,
1

f − a
) = S(r, f) + ε(r, a),

where ε(r, a) = O(1) as r → ∞.

Lemma 2 ([24]). Let f(z) be a meromorphic function and Ω(α, β) be an an-

gular domain, where 0 < β − α ≤ 2π. Then for arbitrary q distinct aj ∈ C∞,
we have

(3) (q − 2)S(r, f) ≤

q
∑

j=1

C(r,
1

f − aj
) +O(log rT (r, f)), r 6∈ F,

where F is a set of finite linear measure.
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Lemma 3 ([19]). Suppose that f(z) is a nonconstant meromorphic function

and Ω(α, β) is an angular domain, where 0 < β−α ≤ 2π. Then for any r < R,

A(r,
f ′

f
) ≤ K

{

(
R

r
)k

∫ R

1

log+ T (t, f)

t1+k
dt+ log+

r

R− r
+ log

R

r
+ 1

}

,

B(r,
f ′

f
) ≤

4k

rk
m(r,

f ′

f
).

where k = π
β−α

and K is a positive constant not depending on r and R.

Lemma 4. Let p ∈ N and p > 1 and f(z) be a meromorphic function such

that σp(f) = ρ(0 < ρ < ∞). A ray L : arg z = θ is a Borel direction of iterated

p-order ρ of f if and only if for any positive number 0 < ε < π/2, the equation

lim sup
r→∞

log[p] S(r, f)

log r
= ρ,

holds in the angular domain Ωε := {z : θ − ε ≤ arg z ≤ θ + ε}.

Proof. Assume that L is a Borel direction of iterated p-order ρ of f , and that
for some η(0 < η < π

2 ) in the angular domain Ωη, we have

(4) lim sup
r→∞

log[p] S(r, f)

log r
< ρ.

By Lemma 1, for any finite value a, in the angular domain Ωη, we have
S(r, 1

f−a
) = S(r, f) +O(1). Since C(r, a) ≤ S(r, 1

f−a
), then

(5) C(r, a) ≤ S(r,
1

f − a
) = S(r, f) +O(1).

On the other hand,

C(2r, a) ≥ Cθ− η
2 ,θ+

η
2
(2r, a)

≥ 2
∑

1<|bv|<r,θ−η
2<βv<θ+η

2

(
1

|bv|k
−

|bv|
k

(2r)2k
) sin k(βv − θ +

η

2
)

≥ 2
∑

1<|bv|<r,θ−η
3<βv<θ+η

3

(
1

|bv|k
−

|bv|
k

(2r)2k
) sin k(βv − θ +

η

2
),

where k = π
η
. In the sector △ : 1 < |b| < r, θ − η

3 < β < θ + η
3 , we have

0 < η
6 < βv − θ + η

2 < 5η
6 < π

2 . We write a sum of above expression as
a Stieltjes-integral and the partial integration of the above Stieltjes-integrals
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now results in

(6)

C(2r, a) ≥

∫ r

1

1

tk
dn(t) +

1

(2r)2k

∫ r

1

tkdn(t)

≥ k

∫ r

1

1

tk+1
n(t)dt+

n(r)

rk
−

rkn(r)

r2k

+
k

(2r)2k

∫ r

1

tk−1n(t)dt

≥
n(r)

rk
−

rkn(r)

(2r)2k

≥ (1−
1

22k
)
n(r)

rk

where a short-hand notation n(t) = n(t,Ω(θ − η
3 , θ +

η
3 ), f = a) will be used.

Substituting (6) to (5) and combining (4), we get

(7) lim sup
r→∞

log[p] n(r,Ω(θ − η
3 , θ +

η
3 ), f = a)

log r
< ρ.

Since a is arbitrary, the above expression is incompatible with the hypothesis
that L is a Borel direction of iterated p-order ρ of f .

Conversely, assume that for any η (0 < η < π
2 ), in the angular domain Ωη,

we have

lim sup
r→∞

log[p] S(r, f)

log r
= ρ.

Suppose that L is not a Borel direction of iterated p-order ρ of f . Then
there exist a η and three distinct values aj ∈ C∞ (j = 1, 2, 3), such that for
sufficiently large r, we have

(8) n(r,Ω(θ − η, θ + η), f = aj) < exp[p−1](rQ),

where Q < ρ is a constant. For the three distinct value aj , we have

(9) C(r, aj) ≤ 2n(r,Ω(θ − η, θ + η), f = aj).

We deduce from (8), (9) and Lemma 2 that S(r, f) < exp[p−1](rQ) for suffi-
ciently large r. Hence, we get a contradiction and Lemma 4 follows. �

Remark 5. In the proof of Lemma 4, we noted that for some η (0 < η < π
2 ) in

the angular domain Ωη, we have

lim sup
r→∞

log[p] S(r, f)

log r
≤ ρ.

In fact, if

lim sup
r→∞

log[p] S(r, f)

log r
> ρ.
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By Lemma 2, we have for some a ∈ C∞,

lim sup
r→∞

log[p] n(r,Ωη, f = a)

log r
> ρ.

This contradicts with σp(f) = ρ.

Lemma 5 ([24]). Let f(z) be an analytic function on Ω(α, β). Then we have

(10) logM(r,Ω(α, β), f) ≤ Krω{S(2r, f) + 1},

where ω = π
β−α

,M(r,Ω(α, β), f) = sup{|f(teiτ )| : α ≤ τ ≤ β, 1 ≤ t ≤ r} and

K is a positive constant.

3. Proof of Theorem 1

Proof. The Wronskian determinant W (f1, f2, . . . , fk) of fundamental system of
solutions {f1, f2, . . . , fk} is given by

W = W (f1, f2, . . . , fk) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
f ′

1

f1

f ′

2

f2
· · ·

f ′

n

fk

· · · · · ·
f
(k−1)
1

f1

f
(k−1)
2

f2
· · ·

f
(k−1)
k

fk

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Applying a Lemma [12, p. 16], we can derive that W is a positive constant and
denote it by K. Hence

1

E
=

1

K

W

E
=

1

K

∑

1≤il 6=il≤k

(−1)τΠk−1
l=1

f
(l)
il

fil
.

Let f 6≡ 0 be a solution of (2). It follows from Theorem C that the iterated
p-order of logT (r, f) is at most σ, where σ < ∞ is a constant.

For any θ ∈ R, using Lemma 3 in which R = 2r for sufficiently small ε, we
have

(11)
Aθ−ε,θ+ε(r,

f ′
i

fi
) = O(

∫ 2r

1

log+ T (t, fi)

t1+
π
2ε

dt) = O(

∫ 2r

1

exp[p−1] tσ+1

t1+
π
2ε

dt)

= O(exp[p−1] rσ+1)

for any fi, when p ≥ 2. And when p = 1, we have Aθ−ε,θ+ε(r,
f ′

i

fi
) = O(1).

Since

m(r,
f ′
i

fi
) = O(log rT (r, fi)) = O(exp[p−1] rσ+1).

Then we can deduce the following equation from Lemma 3

(12) Bθ−ε,θ+ε(r,
f ′
i

fi
) ≤

4k

rk
m(r,

f ′
i

fi
) = O(rσ+1− π

2ε ) = O(exp[p−1] rσ+1)

when p ≥ 2, and when p = 1, we have Bθ−ε,θ+ε(r,
f ′

i

fi
) = O(1).
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Since

Dθ−ε,θ+ε(r,
f
(h)
i

fi
) ≤

h
∑

i=1

Dθ−ε,θ+ε(r,
f
(l)
i

f
(l−1)
i

) +O(1),

where i = 1, 2, . . . , k;h = 2, 3, . . . , k − 1, then we have

Dθ−ε,θ+ε(r,
1
E
) = O(1);

when p = 1, and when p ≥ 2,

Dθ−ε,θ+ε(r,
1
E
) = O(exp[p−1] rσ+1).

By the definition and Lemma 1, for any θ ∈ R and any sufficiently small
ε > 0 in angular domain Ωε = {z | θ − ε ≤ arg z ≤ θ + ε}, we can deduce

(13) S(r, E) ≤ P{C(r, 1
E
) +O(exp[p−1] rσ+1)},

where P is a constant.
Now, we are in the position to prove the statements those in Theorem 1 are

equivalent.

3.1. Proof of the equivalence of (i) and (ii)

Suppose that L : arg z = θ is a Borel direction of iterated (p+ 1)-order ρ of
E. By Lemma 4, for any positive number 0 < ε < π/2,

lim sup
r→∞

log[p+1] S(r, E)

log r
= ρ,

holds in the angular domain Ωε := {z : θ− ε ≤ arg z ≤ θ+ ε}. Combining (13),
we can obtain

(14) lim sup
r→∞

log[p+1] C(r, 1
E
)

log r
= ρ.

Noting C(r, 1
E
) ≤ 2n(r,Ωε, E = 0), hence λ(p+1),θ(E) = ρ.

On the other hand, if λ(p+1),θ(E) = ρ, then for any 0 < η < π
2 , in the angular

domain Ωη, we can obtain the following equation as we did in the proof of (6)

(15) S(2r, E) ≥ (1−
1

22k
)
n(r)

rk
+O(1),

where n(r) = n(t,Ω(θ − η
3 , θ +

η
3 ), E = 0). Thus for any 0 < η < π

2 ,

lim sup
r→∞

log[p+1] S(r, E)

log r
= ρ,

holds in the angular domain Ωη. By Lemma 4, we know that L : arg z = θ is a
Borel direction of iterated (p+ 1)-order ρ of E.
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3.2. Proof of the equivalence of (i) and (iii)

Suppose that L : arg z = θ is a Borel direction of iterated (p+ 1)-order ρ of
E. By Lemma 4, for any positive number 0 < µ < π/2,

(16) lim sup
r→∞

log[p+1] S(r, E)

log r
= ρ

holds in the angular domain Ωµ. If there exists 0 < ε < π/2 such that

lim sup
r→∞

log[p+2] M(r,Ωθ,ε, E)

log r
< T < ρ.

Then we have

log |Erei(θ−ε)| < exp[p] rT , log |Erei(θ+ε)| < exp[p] rT

and log |Ereiη| < exp[p] rT for any large r and all θ ∈ [θ − ε, θ + ε]. Noting
that E is an entire function, we deduce from the definition of the Nevanlinna
angular characteristic that

lim sup
r→∞

log[p+1] S(r, E)

log r
< ρ.

This contradicts with (16). Hence, for any 0 < ε < π/2, we have

lim sup
r→∞

log[p+2] M(r,Ωθ,ε, E)

log r
= ρ.

On the other hand, if

lim sup
r→∞

log[p+2] M(r,Ωθ,ε, E)

log r
= ρ

for any 0 < ε < π/2, by using Lemma 5 and Remark 5, we have

(17) lim sup
r→∞

log[p+1] S(r, E)

log r
= ρ

holds in the angular domain Ωε. It follows Lemma 4 that L : arg z = θ is a
Borel direction of iterated (p+ 1)-order ρ of E. �
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