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Abstract. In this paper, we investigate higher-order linear differential equations with

entire coefficients of iterated order. We improve and extend the result of L. Z. Yang

by using the estimates for the logarithmic derivative of a transcendental meromorphic

function due to Gundersen and the extended Wiman-Valiron theory by Wang and Yi. We

also consider the nonhomogeneous linear differential equations.

1. Introduction and main results

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notation of the Nevanlinna value distribution theory of
meromorphic functions (see [12], [8]). The term “meromorphic function” will mean
meromorphic in the whole complex plane C.

The linear measure of a set E ⊂ [0,+∞) is defined as m(E) =
∫ +∞
0

χE(t) dt.
The logarithmic measure of a set E ⊂ [1,+∞) is defined by lm(E) =

∫ +∞
1

χE(t)/t dt,
where χE(t) is the characteristic function of E. The upper and lower densities of
E are

densE = lim sup
r→+∞

m(E ∩ [0, r])
r

, densE = lim inf
r→+∞

m(E ∩ [0, r])
r

.

For k ≥ 2, we consider a linear differential equation

(1.1) Akf (k) + Ak−1f
(k−1) + · · ·+ A0f = 0,
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where A0, · · · , Ak are entire functions with A0 6≡ 0. If Ak ≡ 1, it is well known that
all solutions of (1.1) are entire functions, and if some of the coefficients of (1.1) are
transcendental, then (1.1) has at least one solution with order σ(f) = ∞.

Thus the question which arises is: What conditions on A0, . . . , Ak−1 will guar-
antee that every solution f 6≡ 0 of (1.1) has infinite order if Ak ≡ 1?

For the above question, there are many results for second order linear differential
equations (see for example [5],[7],[4],[2]).

In 2005, L.Z. Yang considered the higher order linear differential equations and
obtained the following result.

Theorem 1.1([13, Theorem 1]). Let H be a set of complex numbers satisfying
dens{|z| : z ∈ H} > 0, and let A0(z), A1(z), · · · , Ak(z) be entire functions and
satisfy

|A0(z)| ≥ eα|z|µ ,

|Aj(z)| ≤ eβ|z|µ , j = 1, . . . , k,

as z → ∞ for z ∈ H. Then every meromorphic (or entire) solution f 6≡ 0 of (1.1)
satisfies σ(f) = ∞ and σ2(f) ≥ µ.

Theorem 1.2([13, Theorem 2]). Let H be a set of complex numbers satisfying
dens{|z| : z ∈ H} > 0, and let A0(z), A1(z), · · · , Ak−1(z) be entire functions and
Ak(z) ≡ 1 such that

max{σ(Aj) : j = 1, · · · , k − 1} ≤ σ(A0) = σ < +∞;

and for some constants 0 ≤ β < α and for any ε > 0 sufficiently small, we have

|A0(z)| ≥ eα|z|σ−ε

,

|Aj(z)| ≤ eβ|z|σ−ε

, j = 1, · · · , k,

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of (1.1) satisfies σ(f) = ∞ and
σ2(f) = σ(A0).

Remark 1. In Theorem 1.2, we note Ak(z) ≡ 1, this is to say, all the solutions
of equation (1.1) are entire functions. There will be a question to rise: If Ak(z) is
entire, what can be stated about the solutions of equation (1.1)? Obviously, the
solution f(z) of the equation (1.1) can be meromorphic function. In general, the
Wiman-Valiron theory will only be in effect for the solution of entire function f(z).
In this paper, we avoid the difficulty by using the method of Wang and Yi and
obtain the following result:

Theorem 1.3. Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0(z), A1(z), . . . , Ak−1(z), Ak(z) be entire functions such that

max{σ(Aj) : j = 1, · · · , k} ≤ σ(A0) = σ < +∞;
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and for some constants 0 ≤ β < α and for any ε > 0 sufficiently small, we have

(1.2) |A0(z)| ≥ eα|z|σ−ε

,

(1.3) |Aj(z)| ≤ eβ|z|σ−ε

, j = 1, · · · , k,

as z → ∞ for z ∈ H. Then every meromorphic solution f 6≡ 0 of (1.1) satisfies
σ(f) = ∞ and σ2(f) = σ(A0).

Now there exists another question: For so many solutions of infinite order, how
to describe precisely the properties of growth of solutions of infinite order of (1.1)?

In this paper, we improve and extend Theorem 1.1 and Theorem 1.3 by making
use of the concept of iterated order. For r ∈ [0,∞), we define exp1 r = er and
expi+1 r = exp(expi r) (i ∈ N). For r sufficiently large, we define log1 r = log r,
logi+1 r = log(logi r) (i ∈ N). To express the rate of growth of entire function of
infinite order, we introduce the notion of iterated order (see [9], [1]).

Definition 1. The iterated i-order of a meromorphic function f is defined by

σp(f) = lim sup
r→∞

logp T (r, f)
log r

(p ∈ N).

Remark 2. (1). If p = 1, then we denote σ1(f) = σ(f); (2). If p = 2, then we
denote by σ2(f) the so-called hyper order (see [14]).

Definition 2. The finiteness degree of the order of a meromorphic function f is
defined by

i(f) =


0 if f is rational,
min{j ∈ N : σj(f) < ∞} if f is transcendental with

σj(f) < ∞ for some j ∈ N,

∞ if σj(f) = ∞, ∀j ∈ N.

Definition 3. The iterated convergence exponent of the sequence of zeros of a
meromorphic function f is defined by

λi(f) = lim sup
r→∞

logi n(r, 1/f)
log r

(i ∈ N).

Theorem 1.4. Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0(z), A1(z), · · · , Ak(z) be entire functions and satisfy

(1.4) |A0(z)| ≥ expp{α|z|µ},
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(1.5) |Aj(z)| ≤ expp{β|z|µ}, j = 1, · · · , k − 1, k

as z → ∞ for z ∈ H, where 0 ≤ β < α, µ > 0, 1 ≤ p < ∞. Then every meromor-
phic (or entire) f 6≡ 0 of (1.1) satisfies σp+1(f) ≥ µ.

Theorem 1.5. Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0, and let A0(z), A1(z), · · · , Ak(z) be entire functions of iterated order with
max{σp(Aj) : j = 1, · · · , k} ≤ σp(A0) = σ < +∞, 1 ≤ p < ∞ such that for some
constants 0 ≤ β < α and for any given ε > 0, we have

(1.6) |A0(z)| ≥ expp{α|z|σ−ε},

(1.7) |Aj(z)| ≤ expp{β|z|σ−ε}, j = 1, · · · , k − 1, k,

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of (1.1) satisfies σp+1(f) =
σp(A0) = σ.

Considering nonhomogeneous linear differential equations

(1.8) Akf (k) + Ak−1f
(k−1) + · · ·+ A0f = F

corresponding to (1.1), we obtain the following results of the iterated order and
iterated convergence exponent of zeros of solutions of (1.1).

Theorem 1.6. Let F,A0(z), A1(z), · · · , Ak(z) satisfy the hypotheses of Theorem
1.5, and let F 6≡ 0 be an entire function of iterated order with i(F ) = q.

(i) If q < p+1 or q = p+1, σp+1(F ) < σp(A0), then every solution f(z) of (1.2)
satisfies λp+1(f) = λp+1(f) = σp+1(f) = σ, with at most one exceptional
solution f0 satisfying i(f0) < p + 1 or σp+1(f0) < σ.

(ii) If q > p + 1 or q = p + 1, σp(A0) < σp+1(F ) < +∞, then every solution f(z)
of (1.2) satisfies i(f) = q and σq(f) = σq(F ).

2. Lemmas

Lemma 2.1.([10]) Let F (r) and G(r) be monotone nondecreasing functions on
(0,∞) such that (i) F (r) ≤ G(r) n.e. or (ii) for r 6= H ∪ [0, 1] having finite log-
arithmic measure, then for any constant α > 1, there exists r0 > 0 such that
F (r) ≤ G(αr) for all r > r0.

Lemma 2.2(Gundersen [6]). Let f be a transcendental meromorphic function of
finite order σ. Let ε > 0 be a constant, and k and j be integers satisfying k > j ≥ 0.
Then the following two statements hold:

(a) There exists a set E1 ⊂ (1,∞) which has finite logarithmic measure, such
that for all z satisfying |z| 6∈ E1

⋃
[0, 1], we have

(2.1)
∣∣∣∣f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).



Growth order of meromorphic solutions of higher-order linear differential equations 127

(b) There exists a set E2 ⊂ [0, 2π) which has linear measure zero, such that if
θ ∈ [0, 2π)−E2, then there is a constant R = R(θ) > 0 such that (2.3) holds
for all z satisfying arg z = θ and R ≤ |z|.

Lemma 2.3(Gundersen [6]). Let f be a transcendental meromorphic function. Let
α > 1 be a constant, and k and j be integers satisfying k > j ≥ 0. Then the
following two statements hold:

(a) There exists a set E1 ⊂ (1,∞) which has finite logarithmic measure, and a
constant C > 0, such that for all z satisfying |z| 6∈ E1

⋃
[0, 1], we have (with

r = |z|)

(2.2)
∣∣∣∣f (k)(z)
f (j)(z)

∣∣∣∣ ≤ C

[
T (αr, f)

r
(log r)α log T (αr, f)

]k−j

.

(b) There exists a set E2 ⊂ [0, 2π) which has linear measure zero, such that if
θ ∈ [0, 2π)−E2, then there is a constant R = R(θ) > 0 such that (2.2) holds
for all z satisfying arg z = θ and R ≤ |z|.

Lemma 2.4([3], Lemma 1). Let g(z) be a meormorphic function with σ(g) = β <
∞. Then for any ε > 0, there exists a set E ⊂ (1,∞) with lmE < ∞, such that for
all z with |z| = r 6∈ ([0, 1] ∪ E), r →∞, then

|g(z)| ≤ exp{rβ+ε}.

Applying Lemma 2.5 to 1/g(z), it is clearly that for any given ε > 0, there exists
a set E ⊂ (1,∞) with lmE < ∞, such that for all z with |z| = r 6∈ ([0, 1]∪E), r →∞,
then

(2.3) exp{−rβ+ε} ≤ |g(z)| ≤ exp{rβ+ε}.

It is well known that the Wiman-Valiron theory (see[10]) is an indispensable
device while considering the growth of entire solution of a complex differential
equation. In order to consider the growth of meromorphic function solutions of
a complex differential equation, Wang and Yi [11] extended the Wiman-Valiron
theory from entire functions to meromorphic functions. Here we give the special
form where meromorphic function has infinite order:

Lemma 2.5. Let f(z) = g(z)/d(z) be the infinite order meromorphic function
and σ2(f) = α, where g(z) and d(z) are entire functions, σ(d) < ∞, there exists
a sequence rj(rj → ∞) satisfying zj = rje

iθj , θj ∈ [0, 2π), lim
j→∞

θj = θ0 ∈ [0, 2π),

|g(zj)| = M(rj , g) and j is sufficient large, we have

f (n)(zj)
f(zj)

=
(

νg(rj)
zj

)n (
1 + o(1))(n ∈ N),
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lim sup
r→∞

log log νg(r)
log r

= σ2(g) = α.

Similar with the proof of Lemma 2.5, we can obtain the following result. Here
we omit the detail.

Lemma 2.6. Let f(z) = g(z)/d(z) be the infinite order meromorphic function and
σp(f) = α, (p > 1), where g(z) and d(z) are entire functions, σp−1(d) < ∞, there
exists a sequence rj(rj → ∞) satisfying zj = rje

iθj , θj ∈ [0, 2π), lim
j→∞

θj = θ0 ∈

[0, 2π), |g(zj)| = M(rj , g) and j is sufficient large, we have

f (n)(zj)
f(zj)

=
(

νg(rj)
zj

)n (
1 + o(1))(n ∈ N),

lim sup
r→∞

logp νg(r)
log r

= σp(g) = α.

Lemma 2.7(Kinnunen [9, Remark 1.3]). If f is a meromorphic function with
i(f) = p ≥ 1, then σp(f) = σp(f ′).

Lemma 2.8([1]). Let f(z) be a meromorphic solution of the differential equation

f (k) + Bk−1f
(k−1) + · · ·+ B0f = F,

where B0, · · · , Bk−1, F 6≡ 0 are meromorphic functions, such that

(1) max{i(F ), i(Bj)(j = 0, · · · , k − 1)} < i(f) := p + 1, (0 < p < ∞); or

(2) max{σp(F ), σp(Bj)(j = 0, · · · , k − 1)} < σp+1(f).

Then λp+1(f) = λp+1(f) = σp+1(f).

3. Proof of main results

Proof of Theorem 1.3. Let f 6≡ 0 be a meromorphic solution of (1.1). By using the
same arguments as in Theorem 1.1, we have σ(f) = ∞.

Now for any given ε > 0, by the result of Theorem 1.1, we have σ2(f) ≥ σ − ε.
Since ε is arbitrary, we get σ2(f) ≥ σ(A0).

On the other hand, we can rewrite (1.1) to

(3.1) 1 = −
(Ak

A0

f (k)

f
+

Ak−1

A0

f (k−1)

f
+ · · ·+ A1

A0

f ′

f

)
.

Obviously, the poles of f must be the poles and zeros of Aj(j = 0, 1, · · · , k − 1, k),
then λ(1/f) < σ < ∞. By Hadmard factorization theorem, we know f can write

to f(z) =
g(z)
d(z)

, where g(z) and d(z) are entire functions, and λ(d) = σ(d) =
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λ(1/f) ≤ σ < ∞, σ2(f) = σ2(g). By Lemma 2.5, for any small ε > 0, there exists
a sequence rk(rk → ∞) satisfying zk = rkeiθk , θk ∈ [0, 2π), lim

k→∞
θk = θ0 ∈ [0, 2π),

|g(zk)| = M(rk, g) and k is sufficient large, we have

f (j)(zk)
f(zk)

=
(

νg(rk)
zk

)j (
1 + o(1)), (j = 0, 1, · · · , k)

and

(3.2) exp{rσ−ε
k } ≤ νg(rk) ≤ exp{rσ+ε

k }.

By the condition of Theorem 1.3 and Lemma 2.4, for any given ε > 0, and the
above rk(rk →∞) such that

|Aj(zk)| ≤ eβ|zk|σ+ε

, j = 0, 1, · · · , k.

Hence from the equation (1.1), we have(
νg(rk)
|zk|

)n

(3.3)

≤ erσ+ε
k

(
νg(rk)
|zk|

)n−1

|1 + o(1)|+ erσ+ε
k

(
νg(rk)
|zk|

)n−2

|1 + o(1)|

+ · · ·+ erσ+ε
k

(
νg(rk)
|zk|

)
|1 + o(1)|+ erσ+ε

k .

where the sequence rk(rk → ∞) satisfying zk = rkeiθk , θk ∈ [0, 2π), lim
k→∞

θk = θ0 ∈
[0, 2π), |g(zk)| = M(rk, g). By (3.2)-(3.3), we get

lim sup
r→∞

log log νg(r)
log r

≤ σ + ε.

Since ε is arbitrary, from Lemma 2.1, the above inequality and σ2(g) ≤ σ, we can
obtain σ2(f) ≤ σ. Together with σ2(f) ≥ σ, we complete the proof of Theorem 1.3.
�

Proof of Theorem 1.4. Let f 6≡ 0 be a meromorphic solution of infinite order of
(1.1). We can get the equation of (3.1).

By Lemma 2.3, there exist a constant c > 0 and a set E1 ⊂ [0,∞) having finite
linear measure such that |z| = r 6∈ E1 for all z = reiθ. Then we have

(3.4)
∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ c[rT (2r, f)]2k, j = 1, . . . , k.

By the hypotheses of Theorem 1.4, there exists a set H with dens{|z| : z ∈
H} > 0 such that for all z satisfying z ∈ H, we have

(3.5) |A0(z)| ≥ expp{α|z|µ},
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(3.6) |Aj(z)| ≤ expp{β|z|µ}, j = 1, · · · , k − 1, k,

as z →∞.
Hence from (3.1), (3.4)-(3.6), it follows that for all z satisfying z ∈ H and

z 6∈ E1, we have

(3.7) expp{α|z|µ} ≤ k expp{β|z|µ}c[rT (2r, f)]2k

as z →∞. Thus, there exists a set H1 = H \ E1 with dens{|z| : z ∈ H1} > 0 such
that

(3.8) expp{(α− β)|z|µ} ≤ kc[rT (2r, f)]2k

as z →∞. Therefore, by (3.8) and Definition 1, we obtain σp+1(f) ≥ µ. �

Proof of Theorem 1.5. By Theorem 1.4, we have σp+1(f) ≥ σ−ε, since ε is arbitrary,
we get σp+1(f) ≥ σp(A0) = σ. On the other hand, by Lemma 2.6, similar to the
proof of Theorem 1.3. We can get

(3.9) lim sup
r→∞

logp+1 νg(r)
log r

≤ σ + ε.

Since ε is arbitrary, by (3.9) and Lemma 2.1, we obtain σp+1(f) = σp+1(g) ≤ σ.
This and the fact that σp+1(f) ≥ σ yield σp+1(f) = σ. �

Proof of Theorem 1.6. (i) First, we show that (1.8) can possess at most one ex-
ceptional solution f0 satisfying σp+1(f0) < σ or i(f0) < p + 1. In fact, if f∗ is the
another solution with σp+1(f∗) < σ or i(f∗) < p + 1, then σp+1(f0 − f∗) < σ or
i(f0 − f∗) < p + 1. But f0 − f∗ is a solution of the corresponding homogeneous
equation (1.1) to (1.8), this contradicts Theorem 1.5. We assume that f is a so-
lution with σp+1(f) ≥ σ, and f1, f2, · · · , fk is a solution base of the corresponding
homogeneous equation (1.1). Then f can be expressed in the form

(3.10) f(z) = B1(z)f1(z) + B2(z)f2(z) + · · ·+ Bk(z)fk(z),

where B1(z), · · · , Bk(z) are suitable meromorphic functions determined by

(3.11)

B′
1(z)f1(z) + B′

2(z)f2(z) + · · ·+ B′
k(z)fk(z) = 0,

B′
1(z)f ′1(z) + B′

2(z)f ′2(z) + · · ·+ B′
k(z)f ′k(z) = 0,

...

B′
1(z)f (k−1)

1 (z) + B′
2(z)f (k−1)

2 (z) + · · ·+ B′
k(z)f (k−1)

k (z) = F (z).

Since the Wronskian W (f1, f2, · · · , fk) is a differential polynomials in f1, f2, · · · , fk

with constant coefficients, it is easy to deduce that σp+1(W ) ≤ σp+1(fj) = σp(A0) =
σ. From (3.11),

(3.12) B′
j = F ·Gj(f1, · · · , fk) ·W (f1, · · · , fk)−1, j = 1, · · · , k,
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where Gj(f1, · · · , fk) are differential polynomials in f1, f2, · · · , fk with constant
coefficients, thus

(3.13) σp+1(Gj) ≤ σp+1(fj) = σp(A0) = σ.

Since i(F ) < p + 1 or i(F ) = p + 1 while σp+1(F ) < σp(A0), by Lemma 2.7 and
(3.13), for j = 1, · · · , k, we have

(3.14) σp+1(Bj) = σp+1(B′
j) ≤ max{σp+1(F ), σp(A0)} = σp(A0) = σ .

Then from (3.10) and (3.14), we get

(3.15) σp+1(f) ≤ max{σp+1(fj), σp+1(Bj)} = σp(A0) = σ.

This and the assumption σp+1(f) ≥ σ yield σp+1(f) = σ. If f is a solution of the
equation (1.8) satisfying σp+1(f) = σ, by Lemma 2.8, we have

λp+1(f) = λp+1(f) = σp+1(f) = σ.

(ii) From the hypotheses of Theorem 1.6 and (3.10)-(3.15), we obtain

(3.16) σq(f) ≤ σq(F ).

From (1.2), a simple consideration of order implies

σq(f) ≥ σq(F ).

By this inequality and (3.16), σq(f) = σq(F ). This completes the proof of Theorem
1.6. �
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