참고문헌
- I. Aktas and A. Baricz, Bounds for radii of starlikeness of some q-Bessel functions, Results Math. 72 (2017), no. 1-2, 947-963. https://doi.org/10.1007/s00025-017-0668-6
- I. Aktas, A. Baricz, and H. Orhan, Bounds for radii of starlikeness and convexity of some special functions, Turkish J. Math. 42 (2018), no. 1, 211-226. https://doi.org/10.3906/mat-1610-41
- I. Aktas, A. Baricz, and N. Yagmur, Bounds for the radii of univalence of some special functions, Math. Inequal. Appl. 20 (2017), no. 3, 825-843. https://doi.org/10.7153/mia-20-52
- A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica 48(71) (2006), no. 1, 13-18.
- A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155-178.
- A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-12230-9
- A. Baricz, D. K. Dimitrov, and I. Mezo, Radii of starlikeness and convexity of some q-Bessel functions, J. Math. Anal. Appl. 435 (2016), no. 1, 968-985. https://doi.org/ 10.1016/j.jmaa.2015.10.065
- A. Baricz, D. K. Dimitrov, H. Orhan, and N. Yagmur, Radii of starlikeness of some special functions, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3355-3367. https://doi.org/10.1090/proc/13120
- A. Baricz, P. A. Kupan, and R. Szasz, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2019-2025. https://doi.org/10.1090/S0002-9939-2014-11902-2
-
A. Baricz, H. Orhan, and R. Szasz, The radius of
$-\alpha}$ -convexity of normalized Bessel functions of the first kind, Comput. Methods Funct. Theory 16 (2016), no. 1, 93-103. https://doi.org/10.1007/s40315-015-0123-1 - A. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct. 21 (2010), no. 9-10, 641-653. https://doi.org/10.1080/10652460903516736
- A. Baricz and R. Szasz, The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl. (Singap.) 12 (2014), no. 5, 485-509. https://doi.org/10.1142/S0219530514500316
- A. Baricz and R. Szasz, Close-to-convexity of some special functions and their derivatives, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 1, 427-437. https://doi.org/10.1007/s40840-015-0180-7
- A. Baricz, E. Toklu, and E. Kadioglu, Radii of starlikeness and convexity of Wright functions, Math. Commun. 23 (2018), no. 1, 97-117.
- A. Baricz and N. Yagmur, Geometric properties of some Lommel and Struve functions, Ramanujan J. 42 (2017), no. 2, 325-346. https://doi.org/10.1007/s11139-015-9724-6
- R. K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc. 11 (1960), 278- 283. https://doi.org/10.2307/2032969
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
-
M. E. H. Ismail, The zeros of basic Bessel functions, the functions
$J_{v+ax}$ (x), and associated orthogonal polynomials, J. Math. Anal. Appl. 86 (1982), no. 1, 1-19. https://doi.org/10.1016/0022-247X(82)90248-7 - M. E. H. Ismail and M. E. Muldoon, On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions, J. Math. Anal. Appl. 135 (1988), no. 1, 187-207. https://doi.org/10.1016/0022-247X(88)90148-5
- M. E. H. Ismail and M. E. Muldoon, Bounds for the small real and purely imaginary zeros of Bessel and relatedfunctions, Methods Appl. Anal. 2 (1995), no. 1, 1-21. https://doi.org/10.4310/MAA.1995.v2.n1.a1
- H. T. Koelink and R. F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel functionand associated q-Lommel polynomials, J. Math. Anal. Appl. 186 (1994), no. 3, 690-710.https://doi.org/10.1006/jmaa.1994.1327
- T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankeltransforms, Trans. Amer. Math. Soc. 333 (1992), no. 1, 445-461. https://doi.org/10.2307/2154118
- E. Kreyszig and J. Todd, The radius of univalence of Bessel functions. I, Illinois J.Math. 4 (1960), 143-149. http://projecteuclid.org/euclid.ijm/1255455740
- B. Ya. Levin, Lectures on entire functions, translated from the Russian manuscript byTkachenko, Translations of Mathematical Monographs, 150, American MathematicalSociety, Providence, RI, 1996.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge UniversityPress, Cambridge, England, 1944.
- H. S. Wilf, The radius of univalence of certain entire functions, Illinois J. Math. 6(1962), 242-244. http://projecteuclid.org/euclid.ijm/1255632321 https://doi.org/10.1215/ijm/1255632321