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SOLUTIONS FOR QUADRATIC TRINOMIAL PARTIAL

DIFFERENTIAL-DIFFERENCE EQUATIONS IN Cn

Molla Basir Ahamed and Sanju Mandal

Abstract. In this paper, we utilize Nevanlinna theory to study the ex-

istence and forms of solutions for quadratic trinomial complex partial
differential-difference equations of the form aF 2+2ωFG+ bG2 = exp(g),

where ab ̸= 0, ω ∈ C with ω2 ̸= 0, ab and g is a polynomial in Cn. In
order to achieve a comprehensive and thorough analysis, we study the

characteristics of solutions in two specific cases: one when ω2 ̸= 0, ab and

the other when ω = 0. Because polynomials in several complex variables
may exhibit periodic behavior, a property that differs from polynomials

in single complex variables, our study of finding solutions of equations in

Cn is significant. The main results of the paper improved several known
results in Cn for n ≥ 2. Additionally, the corollaries generalize results

of Xu et al. [Rocky Mountain J. Math. 52(6) (2022), 2169–2187] for

trinomial equations with arbitrary coefficients in Cn. Finally, we pro-
vide examples that endorse the validity of the conclusions drawn from

the main results and their related remarks.

1. Introduction

Partial differential equations (PDEs) or partial differential-difference equa-
tions (PDDEs) are fundamental mathematical equations used to describe a
wide range of phenomena in science and engineering. While various numerical
and computational methods have been developed to obtain approximate solu-
tions for these intricate equations, the exploration of true analytic solutions has
been comparatively limited. This paper aims to bridge this gap by proposing
a novel approach that harnesses the power of Nevanlinna theory for several
complex variables to unveil the elusive realm of analytic solutions of PDEs
and PDDEs. Nevanlinna theory, rooted in complex analysis, offers a unique
perspective on the behavior of meromorphic functions, which in turn provides
a powerful tool for uncovering the intricacies of analytic solutions to complex
PDEs and PDDEs. Through the application of Nevanlinna theory, this study
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strives to shed light on unexplored analytical solutions, offering new insights
into the underlying structure and properties of these equations.

Moreover, the Nevanlinna theory has emerged as a powerful and flexible
tool in the investigation of functional equations, particularly in the context
of Fermat-type equations that involve several complex variables. Researchers
have extensively utilized this theory to explore the presence of solutions to
these equations in the complex domain. By employing essential concepts like
the logarithmic derivative lemma and its difference analogue, mathematicians
have achieved significant advancements in understanding the intricate behavior
of these functional equations in several complex variables. The adaptation and
development of Nevanlinna theory to accommodate several complex variables
have recently spurred a surge in research activities, with a specific focus on
unraveling the solutions of Fermat-type functional equations in C2 or even
higher-dimensional spaces like Cn. This broader approach has opened up novel
avenues of exploration, shedding light on the existence and characteristics of
solutions for these equations in complex higher-dimensional settings, presenting
a captivating and challenging frontier for mathematical inquiry.

In this paper, we consider solutions of certain functional equations in Cn

related to Fermat varieties. Among the most basic functional equations are
the circle functional equation f2 + g2 = 1, and the Fermat cubic f3 + g3 =
1. Generalizations of these power equations are called Fermat-type functional
equations, which are associated with diagonal varieties, and have been the
subject of interest in global complex analysis in connection with the extensions
of Picard-type theorems and results on hyperbolic sub-manifolds of projective
space (see for example [10, 19, 41]). Due to the development of the difference
analogue lemma of logarithmic derivative lemma, in recent year an increasing
amount of interests has been grown up for several properties of entire and
meromorphic solutions of several difference functional equations both in one
and several complex variables. Since non-constant polynomials in Cn (for n ≥
2) may be periodic, the nature of solutions of Fermat-type equations in Cn is
completely different from that in C. This is one of the reason why we consider
Fermat-type functional equations in several complex variables in our study.

The study of Fermat-type functional equation has been an interesting subject
in the field of complex analysis in connection with extensions of Nevanlinna’s
theory. For extensive research on the Fermat-type functional equations, we
refer to the articles [1,5,6,35,36,38,40] and references therein. We will assume
that the reader is familiar with basic elements of the Nevanlinna’s theory of
meromorphic function f in one or several complex variables (see e.g., [16, 17,
43]), such as the characteristic function T (r, f), the counting function N(r, f)
for poles of f , reduce counting function N(r, f) of f , proximation function
m(r, f) in the value distribution theory, also known as Nevanlinna theory. We
denote by S(r, f), any function satisfying S(r, f) = ◦{T (r, f)} as r → ∞,
possibly outside a set of finite measure. In addition, we use the notation ρ(f)
to denote the order of growth of the meromorphic function f in Cn, and defined
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by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
.

It has always been a well-known and interesting problem to investigate the
existence and form of solutions to Fermat-type functional equations of the form

fn(z) + gn(z) = 1(1.1)

regard as the Fermat diophantine equation xn + yn = 1 over functional fields,
where n ≥ 2 is an integer. The classical results on meromorphic solutions
in C of (1.1) have been studied and forms of the solutions are obtained (see
e.g. [2, 11, 28]). It is understood that (1.1) does not admit transcendental
meromorphic (resp. entire) solutions when n ≥ 4 (resp. n ≥ 3). If n = 3,

then equation (1.1) admits meromorphic solutions f = (3 +
√
3℘′(β))/6℘(β)

and g = η(3−
√
3℘′(β))/6℘(β), for some non-constant entire function β, where

η3 = 1 and ℘ denotes the Weierstrass ℘-function satisfying (℘′)2 ≡ 4℘3 − 1
after appropriately choosing its periods. For n = 2, (1.1) has nontrivial (non-
constant) entire solutions f(z) = cos(ψ(z)) and g(z) = sin(ψ(z)), where ψ is
an entire function. For the study of meromorphic solutions to (1.1) in Cn and
applications to complex partial differential equations, we refer the reader to
[22–25] and references therein.

This article mainly concerns the analytic solutions for trinomial quadratic
partial differential-difference equations (in short, PDDE) with arbitrary coef-
ficients of the form aF 2 + 2ωFG + bG2 = exp(g), where a, b, ω are complex
constants and g is a polynomial in Cn. In particular, for a = 1 = b and
g(z) = 2kπi, k being an integer, there are number of results in C and C2. In
fact, what could be the characterization of solutions of the trinomial in Cn is
not explored yet and need to study. In general, one cannot expect the exis-
tence of analytic solutions, and even when global analytic or entire solutions
exist, it is difficult to find such solutions in closed form in Cn. The finite order
solutions to the Fermat-type binomial and trinomial equations in C over some
commonly studied function fields have been investigated by many authors, and
there is an extensive literature on these equations and generalizations as well
as connections to other problems (see e.g., [4, 7, 11–13,28, 34, 41, 42]). Further-
more, it appears that the solutions of the system of Fermat-type binomial or
trinomial equations in C2 has been recently studied in [35, 38]. However, no
study has so far been done on the solutions of quadratic trinomial functional
equations in Cn. In this paper, our main aim is to describe transcendental
solutions for quadratic trinomial PDDEs in Cn. Henceforth, throughout this
paper, we assume that z + c = (z1 + c1, . . . , zn + cn), for any z = (z1, . . . , zn)
and c = (c1, . . . , cn) are in Cn. The difference operator ∆cf of entire functions
f in Cn is defined by ∆cf(z) := f(z + c)− f(z).

Liu et al. [26] have investigated the Fermat-type difference equation f2(z)+
f2(z+ c) = 1 in C and obtained the finite order transcendental entire solutions
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satisfy f(z) = sin(Az + B), where B is a constant and A = ((4k + 1)π)/(2c),
where k is an integer. Later, Han and Lu [15] established the solution to the
more general complex difference equation fn(z)+gn(z) = eαz+β . Moreover, Liu
et al. [26] showed that the existence of solutions for the complex differential-
difference equations f ′(z)2 + f(z + c)2 = 1 and f ′(z)2 + [∆cf(z)]

2 = 1 in C.
Our aim is to analyze solutions of partial differential equations in Cn. As

is known to all, partial differential equations (PDEs) are occurring in various
areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas
dynamics, and traffic flow (see [8, 9]). In general, it is difficult to find entire
and meromorphic solutions for a nonlinear PDE. By employing Nevanlinna
theory and the method of complex analysis, there were a number of literature
focusing on the solutions of some PDEs and theirs many variants (see [3, 5,6,
14,18,21,24,27,32,39]).

1.1. Solutions of Fermat-type partial differential equations in C2:

The solutions of Fermat-type PDEs were investigated by [3, 20, 31]. Most
noticeably, in 1995, Khavinson [18] derived that any entire solution of the
partial differential equation in C2,(

∂u

∂z1

)2

+

(
∂u

∂z2

)2

= 1

is necessarily linear, i.e., u(z1, z2) = az1+bz2+c, where a, b, c ∈ C, and a2+b2 =
1. This PDE in the real variable case occurs in the study of characteristic
surfaces and wave propagation theory, and it is the two-dimensional eiconal
equation, one of the main equations of geometric optics (see [8]). Furthermore,
Li [22, 24] have continued the research and discussed solutions of a series of

PDEs with more general forms including ( ∂f
∂z1

)2+( ∂f
∂z2

)2 = eg, ( ∂f
∂z1

)2+( ∂f
∂z2

)2 =

p, etc., where g, p are polynomials in C2. In 2020, Xu and Cao [37] investigated
the entire and meromorphic solutions of the Fermat-type functional equations
such as partial differential equation and obtained the following result

Theorem 1.1 ([37, Theorem 1.4]). Any transcendental entire solution with
finite order of Fermat-type partial differential equation

f2(z1, z2) +

(
∂f(z1, z2)

∂z1

)2

= 1(1.2)

has the form of f(z1, z2) = sin(z1 + g(z2)), where g(z2) is a polynomial in one
variable z2.

Recently, Xu et al. [40] have established solutions of the following PDDEs(
α
∂f(z)

∂z1
+ β

∂f(z)

∂z2

)2

+ f(z + c)2 = exp(g(z))(1.3)
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and (
α
∂f(z)

∂z1
+ β

∂f(z)

∂z2

)2

+ [∆cf(z)]
2 = exp(g(z))(1.4)

in C2, and they have obtained the precise form of the solution in C2.

1.2. Motivations and some questions:

Initially, several researchers considered Fermat-type functional equations on
C and extensively explored the solutions. The main tools used in such equations
are the Nevanlinna theory, especially the logarithmic derivative lemma and the
difference analogue lemma of the logarithmic derivative lemma. However, with
the development of these lemmas for several complex variables, there has been
a recent surge in research focusing on exploring the solutions of Fermat-type
functional equations in C2 or even in Cn. While the results obtained for C2

have limited scope, similar equations can be considered in Cn, making the
study interesting to explore the solutions in that case. Consequently, through
a detailed exploration of the results concerning Fermat-type equations in C2

and their proofs, it has become evident that these results can be extended to
Cn. Additionally, the scope for selecting combinations of partial derivatives
can be made broad than what was considered in the earlier known results. The
results presented above naturally prompt several questions to be raised.

Question 1.1. What can be said about the form of solutions in Cn, if we ex-
tend the binomial equations (1.3) and (1.4) to a more general trinomial equation
(2.1) with an arbitrary coefficient.

Question 1.2. Does there exists solutions of (1.2) in Theorem 1.1, if we take

Lk(f) :=
∑k

t=1 λt
∂tf(z)
∂zt

i
in the place of ∂f(z1,z2)

∂z1
in Cn with arbitrary coef-

ficients? If exists, then what would be the form of solutions, where λt are
constants in C, t = 1, 2, . . . , k?

Motivated by the above question, our purpose of this article is to explor-
ing the finite order transcendental entire solutions of the quadratic trinomial
partial differential equations. To find precise solutions of trinomial quadratic
functional equations we use with certain techniques. More precisely, Saleeby
[32] initiates this type of study considering the quadratic trinomial equations
of the form f2 + 2αfg + g2 = 1, where α ∈ C \ {−1, 1}, which is associated
with the partial differential equations

u2x + 2αuxuy + u2y = 1,(1.5)

where (x, y) ∈ C2 and showed that the entire and meromorphic solutions of
(1.5) have the form u(x, y) = ax+ by + c, where a2 + 2αab+ b2 = 1

The main tools used in this paper are the Nevanlinna theory and the char-
acteristic equations for quasi-linear PDEs and linear PDEs. The paper is
organized as follows. Our main results about the existence and the forms of
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entire solutions and their corollaries with examples will be exhibited in Section
2. The proofs of the main results will be given in Section 3.

2. Main results, corollaries, and examples

Motivated by method of proof of results in [3, 40], we explore the finite
order transcendental entire solutions of quadratic trinomial partial differential
equations in Cn. Henceforth, throughout this paper, we assume that z + c =
(z1 + c1, . . . , zn + cn), for any z = (z1, . . . , zn) and c = (c1, . . . , cn) are in Cn.

To serve the purpose, we define ω1 := − ω√
ab

±
√
ω2−ab√

ab
and ω2 := − ω√

ab
∓

√
ω2−ab√

ab
. Let g(z) =

∑p
|I|=0 aα1,...,αn

zα1
1 · · · zαn

n be a polynomial in Cn, where

I = (α1, . . . , αn) are two multi-index with |I| =
∑n

j=0 αj and αj are non-
negative integers.

We aim to investigate the solutions of the following trinomial equation

a

(
α
∂f(z)

∂zi
+ β

∂f(z)

∂zj

)2

+ 2ω

(
α
∂f(z)

∂zi
+ β

∂f(z)

∂zj

)
(γf(z + c) + δf(z))

+ b (γf(z + c) + δf(z))
2
= exp (g(z))

(2.1)

in Cn that corresponds to (1.3) and (1.4).
Our objective is to thoroughly investigate the explicit representation of so-

lutions f for the equation (2.1) and the polynomial g. The resulting conclusion
provides a comprehensive response to Question 1.1.

Theorem 2.1. Let c = (c1, . . . , cn) ∈ Cn \ {(0, . . . , 0)}, ab ̸= 0, α, β, γ, δ be
constants in C that are not all zero and ω2 ̸= 0, ab, and 1 ≤ i < j ≤ n, and
(αcj − βci) ̸= 0, where ci, cj ∈ C. If f is a finite order transcendental entire
solution of the PDDE (2.1), then f must assume one of the following forms:

(i)

f(z) = ϕ

(
zj −

β

α
zi

)
,

where ϕ is a finite order transcendental entire function satisfying

γϕ

(
zj −

β

α
zi + cj −

β

α
ci

)
+ δϕ

(
zj −

β

α
zi

)
= ± 1√

b
exp

(
g(z)

2

)
.

(ii)

f(z) = ± 1

α
√
a

∫ zi/α

0

exp

(
L(z) +H(s1) +R

2

)
dzi + ψ1

(
zj −

β

α
zi

)
,

g(z) = L(z) +H(s1) + R, where L(z) = a1z1 + · · · + anzn and H(s1)
is a polynomial in s1 := d1z1 + · · · + dnzn with d1c1 + · · · + dncn = 0
such that H(z + c) = H(z), R ∈ C, a1c1 + · · · + ancn = 2 ln(− δ

γ )
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and ai, di ∈ C for i = 1, . . . , n and ψ1 is a finite order entire function
satisfying

ψ1

(
zj −

β

α
zi + cj −

β

α
ci

)
= − δ

γ
ψ1

(
zj −

β

α
zi

)
.

(iii) if αdi + βdj ̸= 0 for di, dj ∈ {d1, . . . , dn} ⊂ C, then

f(z) =
2(ω2ξ

2 − ω1)

ξ
√
a(ω2 − ω1)(kiα+ kjβ)

exp

(
L(z) +R2

2

)
+ ϕ1

(
zj −

β

α
zi

)
,

g(z) = L(z)+R2, where L(z) = k1z1+· · ·+knzn, R2 ∈ C, ϕ1 is a finite
order entire function satisfying similar condition as ψ1 in (ii) with

√
a(ξ2 − 1)

2γ
√
b(ω2ξ2 − ω1)

(αki + βkj)−
δ

γ
= exp

(
k1c1 + · · ·+ kncn

2

)
.

(iv) if αdi + βdj ̸= 0 for di, dj ∈ {d1, . . . , dn} ⊂ C, then

f(z) =
1√

a(ω2 − ω1)

(
ω2 exp (L1(z) +R3)

(αa1i + βa1j)
− ω1 exp (L2(z) +R4)

(αa2i + βa2j)

)
+ ϕ2

(
zj −

β

α
zi

)
,

g(z) = L1(z)+L2(z)+R3 +R4, L1(z) ̸= L2(z), where Ll(z) = al1z1 +
· · ·+alnzn and R3, R4 ∈ C, ϕ2 is a finite order function with satisfying
similar condition as ψ1 in (ii) with

√
a

γω2

√
b

(
(αa1i + βa1j)− δ

√
bω2

)
exp (−L1(c)) ≡ 1,

√
a

γω1

√
b

(
(αa2i + βa2j)− δ

√
bω1

)
exp (−L2(c)) ≡ 1.

Remark 2.1. It is evident that Theorem 2.1 in Cn has been established in
a manner that extends the scope of the study conducted by Xu et al. [40,
Theorems 2.1, 2.2] and Xu et al. [36, Theorem 1.2].

The following examples are exhibited to validate the existence and precise
form of the solutions of equations in Theorem 2.1.

Example 2.1. For c = (2, 2, 3) ∈ C3 and a = β = 1, b = 3, α = 2, γ = 2, δ =
−5, the function

f(z1, z2, z3) =
(4∓ 3

√
13)

∓4
√
26

exp

3z1 + ln
(

22∓15
√
13

2(4+
√
13)

)
z2 − 2z3 +

πi
7

2


+ ϕ1

(
z3 −

1

2
z1

)



982 M. B. AHAMED AND S. MANDAL

for ϕ1
(
z3 − 1

2z1 + 2
)
= 5

2ϕ1
(
z3 − 1

2z1
)
; is a transcendental entire solution in

C3 of the differential-difference equation(
2
∂f(z)

∂z1
+
∂f(z)

∂z3

)2

− 8ω

(
2
∂f(z)

∂z1
+
∂f(z)

∂z3

)
(2f(z + c)− 5f(z))

+ 3 (2f(z + c)− 5f(z))
2
= exp (g(z)) ,

where g(z) = 3z1 + ln
(

22∓15
√
13

2(4+
√
13)

)
z2 − 2z3 +

πi
7 .

Example 2.2. For c = (3, 1,−4) ∈ C3 and a = α = 3, b = γ = 1, β = 2, δ =
−1, the function

f(z1, z2, z3) =
(5∓

√
22)

∓36
√
66

exp(g1(z1, z2, z3))−
(5±

√
22)

∓72
√
66

exp(g2(z1, z2, z3))

+ exp

(
πi

(
2z1
3

+ z3

))
,

where
g1(z1, z2, z3) = 4z1 + ln

(
3(23∓

√
22)

5∓
√
22

)
z2 + 3z3 +

(πi+
√
3)√

7

g2(z1, z2, z3) = 8z1 + ln

(√
3(36

√
3 + 5±

√
22)

5±
√
22

)
z2 + 6z3 +

(πi+
√
5)√

7

are transcendental entire solutions in C3 of the differential-difference equation

3

(
3
∂f(z)

∂z1
+ 2

∂f(z)

∂z3

)2

− 10

(
3
∂f(z)

∂z1
+ 2

∂f(z)

∂z3

)
(f(z + c)− f(z))

+ (f(z + c)− f(z))
2
= exp(g(z)),

where

g(z) = 12z1 +

(
ln

(
3(23∓

√
22)

5∓
√
22

)
+ ln

(√
3(36

√
3 + 5±

√
22)

5±
√
22

))
z2

+ 9z3 +
(2πi+

√
5 +

√
3)√

7
.

Hereafter, we explore our second principal finding, which involves deriving
the precise solutions to a quadratic trinomial partial differential equation, pro-
viding a comprehensive response to Question 1.2. In this case, we consider the
following trinomial PDE

af2(z) + 2ωf(z)

(
k∑

t=1

λt
∂tf(z)

∂zti

)
+ b

(
k∑

t=1

λt
∂tf(z)

∂zti

)2

= 1(2.2)
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and obtained the following result.

Theorem 2.2. Let ab ̸= 0, and 1 ≤ i ≤ n. The PDE (2.2) admits a transcen-
dental entire solution of finite order in Cn. Moreover,

(I) if ω2 ̸= 0, ab, then f assumes the following form

f(z) =
ω2 exp (F (z))− ω1 exp (−F (z))√

a(ω2 − ω1)
,

where F (z) = βzi + ϕ(z1, . . . , zi−1, zi+1, . . . , zn) with β ∈ C \ {0} and
ϕ is an arbitrary polynomial in z1, . . . , zi−1, zi+1, . . . , zn such that

ω2

√
b

k∑
t=1

λtβ
t =

√
a and ω1

√
b

k∑
t=1

(−1)tλtβ
t =

√
a.

(II) if ω2 = 0, then f assumes the following form

f(z) =
1√
a
cosh (ηzi + ϕ(z1, . . . , zi−1, zi+1, . . . , zn)) ,

where η is a non-zero constant in C and ϕ(z1, . . . , zi−1, zi+1, . . . , zn) is
an arbitrary polynomial in z1, . . . , zi−1, zi+1, . . . , zn such that

i
√
b

k∑
t=1

λtη
t =

√
a and i

√
b

k∑
t=1

(−1)tλtη
t = −

√
a.

Remark 2.2. It is apparent that Theorem 2.2 in Cn extends the Fermat-type
functional equations [3, Theorem 1.13] and [37, Theorem 1.4] to the quadratic
trinomial equation with a more general setting.

As a consequence of Theorem 2.2, the following result can be derive easily
which is an improved version of [3, Theorem 1.13] and [37, Theorem 1.4] in C2.
The corollary, in essence, offers a more comprehensive and inclusive perspective,
encompassing the entire scope of [3, Theorem 1.13] and [37, Theorem 1.4].

Corollary 2.1. Suppose that ab ̸= 0. The PDE

af2(z) + 2ωf(z)

(
k∑

t=1

λt
∂tf(z)

∂zt1

)
+ b

(
k∑

t=1

λt
∂tf(z)

∂zt1

)2

= 1.(2.3)

in C2 admits transcendental entire solutions f of finite order. Moreover,

(I) if ω2 ̸= 0, ab, then f assumes the following form

f(z) =
ω2 exp (βz1 + ψ(z2))− ω1 exp (−βz1 − ψ(z2))√

a(ω2 − ω1)
,

where β is a non-zero constant in C and ψ(z2) is an arbitrary polyno-
mial in z2 such that

ω2

√
b

k∑
t=1

λtβ
t =

√
a and ω1

√
b

k∑
t=1

(−1)tλtβ
t =

√
a.
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(II) if ω2 = 0, then f takes the following form

f(z) =
1√
a
cosh (ηz1 + ϕ(z2)) ,

where η is a non-zero constant in C and ϕ(z2) is an arbitrary polyno-
mial in z2 such that

i
√
b

k∑
t=1

λtη
t =

√
a and i

√
b

k∑
t=1

(−1)tλtη
t = −

√
a.

By the following examples, we show that the solution of equation (2.2) for
(I) and (II) in Theorem 2.2 is precise.

Example 2.3. For ω =
√
3, a = 2 and b = 1, the function

f(z) =
1√
2
cosh

(√
2iz1 + ϕ(z2, z3)

)
+

√
3√
2
sinh

(√
2iz1 + ϕ(z2, z3)

)
,

where ϕ is an arbitrary polynomial in z2, z3, is a transcendental entire solution
in C3 of the partial differential equation

2f2(z) + 2
√
3f(z)

(
√
2
∂f(z)

∂z1
+

√
3

2

∂2f(z)

∂z21
+

(1 + 2i)

2
√
2i

∂3f(z)

∂z31

)

+

(
√
2
∂f(z)

∂z1
+

√
3

2

∂2f(z)

∂z21
+

(1 + 2i)

2
√
2i

∂3f(z)

∂z31

)2

= 1.

Example 2.4. For a = 3, b = 2 and η =
√
3, the function

f(z) =
1√
3
cosh

(√
3z1 + ψ(z2, z3)

)
,

where ψ is an arbitrary polynomial in z2, z3, is a transcendental entire solution
in C3 of the quadratic partial differential equation

3f2(z) +

(
√
5
∂f(z)

∂z1
+

(1− i
√
10)

3
√
2i

∂3f(z)

∂z31

)2

= 1.

In the next section, we will introduce several key lemmas in Nevanlinna
theory. In the detailed discussion of the proof for the main results, these
lemmas play a key role.

3. Some key lemmas and proof of the main results

First, we present here some necessary lemmas which will play a key roles in
proving the main results of this paper.

Lemma 3.1 ([30, 33]). For any entire function F on Cn, F (0) ̸= 0 and put
ρ(nF ) = ρ < ∞, where ρ(nF ) denotes be the order of the counting function of
zeros of F . Then there exist a canonical function fF and a function gF ∈ Cn
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such that F (z) = fF (z)e
gF (z). For the special case n = 1, fF is the canonical

product of Weierstrass.

Lemma 3.2 ([29]). If g and h are entire functions on the complex plane C
and g(h) is an entire function of finite order, then there are only two possible
cases: either

(i) the internal function h is a polynomial and the external function g is
of finite order; or

(ii) the internal function h is not a polynomial but a function of finite order,
and the external function g is of zero order.

Lemma 3.3 ([17]). Suppose that a0(z), a1(z), . . . , am(z) (m ≥ 1) are mero-
morphic functions on Cn and g0(z), g1(z), . . . , gm(z) are entire functions on
Cn such that gi(z)− gj(z) are not constants for 0 ≤ i < j ≤ m. If

m∑
i=0

ai(z)e
gi(z) ≡ 0

and ||T (r, ai) = o(T (r)), i = 0, 1, . . . ,m hold, where T (r) := min0≤i<j≤m

T (r, egi−gj ), then ai(z) ≡ 0 for i = 0, 1, . . . ,m.

Lemma 3.4 ([17]). Let fj (̸≡ 0), j = 1, 2, 3, be meromorphic functions on Cn

such that f1 is non-constant and f1 + f2 + f3 = 1 such that

3∑
j=1

{
N2

(
r,

1

fj

)
+ 2N(r, fj)

}
< λT (r, f1) +O(log+ T (r, f1)),

for all r outside possibly a set with finite logarithmic measure, where λ < 1 is
a positive number. Then either f2 = 1 or f3 = 1.

Remark 3.1. Here, note that N2(r, 1/f) is the counting function of the zeros
of function f in open disk |z| ≤ r, where the simple zero is counted once, and
the multiple zero is counted twice.

3.1. Proof of Theorems 2.1 and 2.2

For the convenience of the reader, we will present our proofs of Theorems
2.1 and 2.2 in detail.

Proof of Theorem 2.1. Suppose that f(z) is a finite order transcendental entire
solution of (2.1). The equation (2.1) can be written as

(
√
aF − ω1

√
bG)(

√
aF − ω2

√
bG) = 1,(3.1)

where F and G are defined by

F :=

α
∂f(z)

∂zi
+ β

∂f(z)

∂zj

exp
(

g(z)
2

) and G :=
γf(z + c) + δf(z)

exp
(

g(z)
2

) .(3.2)
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Since f is a finite order transcendental entire function and g is a polynomial,
by Lemmas 3.1 and 3.2, there exists a polynomial p in Cn such that

√
aF − ω1

√
bG = exp (p) and

√
aF − ω2

√
bG = exp (−p) .(3.3)

A simple computation using (3.2) and (3.3) gives us

α
∂f(z)

∂zi
+ β

∂f(z)

∂zj
=
ω2 exp (h1(z))− ω1 exp (h2(z))√

a(ω2 − ω1)
(3.4)

and

γf(z + c) + δf(z) =
exp (h1(z))− exp (h2(z))√

b(ω2 − ω1)
,(3.5)

where

h1(z) =
g(z)

2
+ p(z) and h2(z) =

g(z)

2
− p(z).(3.6)

Thus, it follows from (3.4) and (3.5) that

H21(z) exp (h1(z)− h1(z + c))−H22(z) exp (h2(z)− h1(z + c))(3.7)

+K2 exp (h2(z + c)− h1(z + c)) ≡ 1,

where
H21(z) =

√
a

(
α
∂h1(z)

∂zi
+ β

∂h1(z)

∂zj

)
− δ

√
bω2

γω2

√
b

,

H22(z) =

√
a

(
α
∂h2(z)

∂zi
+ β

∂h2(z)

∂zj

)
− δ

√
bω1

γω2

√
b

and K2 =
ω1

ω2
.

The equation (3.7) can be written as g21 + g22 + g23 = 1. It is easy to see that
g23 ̸= 0, where 

g21 = H21(z) exp (h1(z)− h1(z + c)) ,

g22 = −H22(z) exp (h2(z)− h1(z + c)) ,

g23 = K2 exp (h2(z + c)− h1(z + c)) .

Case A: If exp (h2(z + c)− h1(z + c)) is a constant, then h2(z+c)−h1(z+c) =
K, where K ∈ C is a constant. From (3.6), it is easy to see that p(z) = −K
is a constant. Suppose that ξ = exp (p(z)). Now, the equations (3.4) and (3.5)
become 

α
∂f(z)

∂zi
+ β

∂f(z)

∂zj
=M1 exp

(
g(z)
2

)
;

γf(z + c) + δf(z) =M2 exp
(

g(z)
2

)
,

(3.8)
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where

M1 =
ω2ξ − ω1ξ

−1

√
a(ω2 − ω1)

and M2 =
ξ − ξ−1

√
b(ω2 − ω1)

satisfying

M2
1 +M2

2 =
b(ω2ξ

2 − ω1)
2 + a(ξ2 − 1)2

abξ2(ω2 − ω1)2
.(3.9)

Now, we discuss the following three sub-cases.

Sub-case A1: If M1 = 0, then we obtain ξ2 = ω1/ω2. In view of (3.9) and

using ω1ω2 = 1, it is easy to see that M2 = ±(1/
√
b). The equation (3.8) can

be written as

α
∂f(z)

∂zi
+ β

∂f(z)

∂zj
= 0 and(3.10)

γf(z + c) + δf(z) =M2 exp

(
g(z)

2

)
.(3.11)

Solving (3.10), we obtain that

f(z) = ϕ

(
zj −

β

α
zi

)
,

where ϕ(zj − β
αzi) is a finite order transcendental entire function satisfying

γϕ

(
zj −

β

α
zi + cj −

β

α
ci

)
+ δϕ

(
zj −

β

α
zi

)
= ± 1√

b
exp

(
g(z)

2

)
.

Sub-case A2: If M2 = 0, then we see that ξ2 = 1. Using (3.9), a simple
computation shows that M1 = ±1/

√
a. Therefore, from (3.8) it follows that

α
∂f(z)

∂zi
+ β

∂f(z)

∂zj
= ± 1√

a
exp

(
g(z)

2

)
and γf(z + c) + δf(z) = 0.(3.12)

We see from second equation of (3.12) that

γ

(
α
∂f(z + c)

∂zi
+ β

∂f(z + c)

∂zj

)
+ δ

(
α
∂f(z)

∂zi
+ β

∂f(z)

∂zj

)
= 0,

which implies that exp ((g(z + c)− g(z))/2) = −(δ/γ). It is evident that g(z+
c)− g(z) must be a constant. Consequently, we have g(z) = L(z)+H(s1)+R,
where L(z) = a1z1+ · · ·+anzn and H(s1) is a polynomial in s1 := d1z1+ · · ·+
dnzn with d1c1 + · · ·+ dncn = 0 such that H(z+ c) = H(z), d1, . . . , dn, R ∈ C,
and a1c1+ · · ·+ancn = 2 ln (−(δ/γ)). The characteristic equations for the first
equation of (3.12) are

dzi
dt

= α,
dzj
dt

= β,
df

dt
= ± 1√

a
exp

(
g(z)

2

)
.



988 M. B. AHAMED AND S. MANDAL

Using the initial conditions: zi = 0, zj = s and f = f(0, s) := ψ1(s), with a
parameter s, we obtain the following parametric representation for the solutions
of the characteristic equations: zi = αt, zj = βt+ s,

f(s, t) = ± 1√
a

∫ t

0

exp

(
g(z)

2

)
dt+ ψ1(s)

or,

f(z) = ± 1

α
√
a

∫ zi/α

0

exp

(
a1z1 + · · ·+ anzn +H(s1) +R

2

)
dzi

+ ψ1

(
zj −

β

α
zi

)
,

where ψ1 is a finite order entire function. Substituting f(z) into the second
equation of (3.12) and comparing both side, we obtain

ψ1

(
zj −

β

α
zi + cj −

β

α
ci

)
= − δ

γ
ψ1

(
zj −

β

α
zi

)
.

Sub-case A3: Suppose thatM1 ̸= 0 andM2 ̸= 0. Then, a simple computation
using (3.8) shows that

M2

2γM1

(
α
∂g(z)

∂zi
+ β

∂g(z)

∂zj

)
− δ

γ
= exp

(
g(z + c)− g(z)

2

)
.(3.13)

As g(z) is a polynomial, from (3.13) it follows that g(z + c)− g(z) = η, where
η is a constant in C. It yields that g(z) = L1(z) +H(s1) +R1, where L1(z) =
a11z1 + · · ·+ a1nzn and H(s1) is a polynomial in s1 := d1z1 + · · ·+ dnzn with
d1c1 + · · · + dncn = 0 such that H(z + c) = H(z), R1 ∈ C. Thus, from (3.13)
we see that

α
∂L1(z)

∂zi
+ β

∂L1(z)

∂zj
+ α

∂H(z)

∂zi
+ β

∂H(z)

∂zj
≡M5

or

α
∂H(s)

∂zi
+ β

∂H(s)

∂zj
≡ (αdi + βdj)H

′ ≡M6,

where

M5 = (2γM1/M2) (exp (η/2) + (δ/γ)) andM6 =M5 − (αa1i + βa1j).

Since αdi+βdj ̸= 0, hence H ′ must be a constant. Thus, it follows that H(s) =
A3s+A4 = A3(d1z1 + · · ·+ dnzn) +A4, where A3 =M6/(αdi + βdj), A4 ∈ C.
Therefore, we obtain

g(z) = L1(z) +H(s1) +R1 = L(z) +R2 = k1z1 + · · ·+ knzn +R2,(3.14)
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where k1 = (A3d1 + a11), . . . , kn = (A3dn + a1n) and R2 = A4 + R1. In view
of (3.13) and (3.14), we see that

M2

2γM1
(αki + βkj)−

δ

γ
= exp

(
k1c1 + · · ·+ kncn

2

)
.

Also, the first equation of (3.8) can be written as

α
∂f(z)

∂zi
+ β

∂f(z)

∂zj
=M1 exp

(
L(z) +R2

2

)
.(3.15)

Solving the PDE (3.15), we obtain

f(z) =
2(ω2ξ

2 − ω1)

ξ
√
a(ω2 − ω1)(kiα+ kjβ)

exp

(
L(z) +R2

2

)
+ ϕ1

(
zj −

β

α
zi

)
.

(3.16)

Moreover, substituting (3.16) into the second equation of (3.8) and comparing
both sides, we obtain

ϕ1

(
zj −

β

α
zi + cj −

β

α
ci

)
= − δ

γ
ϕ1

(
zj −

β

α
zi

)
.

Case B: If exp (h2(z + c)− h1(z + c)) is non-constant, then obviously, both
H21(z) ≡ 0 and H22(z) ≡ 0 cannot hold simultaneously. Otherwise, from (3.7)
we see that K2 exp (h2(z + c)− h1(z + c)) ≡ 1, which is a contradiction.

If H21(z) ≡ 0 and H22(z) ̸≡ 0, then in view of (3.7), we see that

−H22(z) exp (h2(z)− h1(z + c)) +K2 exp (h2(z + c)− h1(z + c)) ≡ 1.(3.17)

Because exp (h2(z + c)− h1(z + c)) is non-constant, in view of (3.17), we con-
clude that exp (h2(z)− h1(z + c)) is also non-constant. Consequently, it can
be shown that exp (h2(z + c)− h2(z)) is non-constant. Otherwise, if h2(z +
c) − h2(z) = η1, where η1 ∈ C, then, from (3.17) we see that (−H22(z)e

−η1 +
K2) exp (h2(z + c)− h1(z + c)) ≡ 1, which is a contraction as

exp(h2(z + c)− h1(z + c))

is non-constant. Therefore, the equation (3.17) can be written as

−H22(z) exp (h2(z)) +K2 exp (h2(z + c))− exp (h1(z + c)) ≡ 0.(3.18)

In view of Lemma 3.3, from (3.18), we arrive at a contradiction.
By the similar argument, we get a contradiction if H21(z) ̸≡ 0 and H22(z) ≡

0. Therefore, we obtain that H21(z) ̸≡ 0 and H22(z) ̸≡ 0. Since H21(z) ̸≡ 0 and
H22(z) ̸≡ 0, it is clear that the entire functions g21 and g22 both have no zeros
and poles. As h1 and h2 are polynomials and K1 exp (h2(z + c)− h1(z + c)) is
non-constant, it is easy to see that the following condition in Lemma 3.4

3∑
j=1

{
N2

(
r,

1

g2j

)
+ 2N(r, g2j)

}
= 0 < λT (r, g23) +O(log+ T (r, g23))
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is satisfied for all r outside possibly a set with finite logarithmic measure, where
λ < 1 is a positive number. Thus, in view of Lemma 3.4, we have

H21(z) exp (h1(z)− h1(z + c)) ≡ 1 or −H22(z) exp (h2(z)− h1(z + c)) ≡ 1.

Sub-case B1: Assume that H21(z) exp (h1(z)− h1(z + c)) ≡ 1. Then from

(3.7), it is easy to see that H22(z)
K2

exp (h2(z)− h2(z + c)) ≡ 1. Since h1, h2 are

polynomials, it follows that h1(z)− h1(z + c) = η2 and h2(z)− h2(z + c) = η3,
where η2, η3 ∈ C. Thus we have h1(z) = L1(z) + H1(s1) + R3 and h2(z) =
L2(z) +H2(s1) +R4, where Ll(z) = al1z1 + · · ·+ alnzn and Hl(s1) for l = 1, 2
are polynomial in s1 := d1z1 + · · ·+ dnzn with d1c1 + · · ·+ dncn = 0 such that
Hl(z+c) = Hl(z) for l = 1, 2, and R3, R4 ∈ C. Since αdi+βdj ̸= 0, by the simi-
lar argument as in Case A, we see thatHl(s1) is a linear polynomial in s. There-
fore, it is easy to see that Ll(z)+Hl(s1) (l = 1, 2) composed of linear functions.
For convenience, we always refer to h1(z) = L1(z)+R3 and h2(z) = L2(z)+R4.
Obviously, L1(z) ̸= L2(z), otherwise, h2(z + c)− h1(z + c) will be a constant,
which will turn out that exp (h2(z + c)− h1(z + c)) is a constant, a contradic-
tion. Substituting h1(z) and h2(z) into H21(z) exp (h1(z)− h1(z + c)) ≡ 1 and
H22(z)
K2

exp (h2(z)− h2(z + c)) ≡ 1, we obtain
√
a

γω2

√
b

(
(αa1i + βa1j)− δ

√
bω2

)
exp (−L1(c)) ≡ 1,

√
a

γω1

√
b

(
(αa2i + βa2j)− δ

√
bω1

)
exp (−L2(c)) ≡ 1.

The equation (3.4) can be written as

α
∂f(z)

∂zi
+ β

∂f(z)

∂zj
=
ω2 exp (L1(z) +R3)− ω1 exp (L2(z) +R4)√

a(ω2 − ω1)
.(3.19)

Solving the PDE (3.19), we obtain

f(z) =
ω2 exp (L1(z) +R3)√
a(ω2 − ω1)(αa1i + βa1j)

− ω1 exp (L2(z) +R4)√
a(ω2 − ω1)(αa2i + βa2j)

(3.20)

+ ϕ2

(
zj −

β

α
zi

)
.

Furthermore, substituting (3.20) into the second equation of (3.5) and com-
paring both sides, we obtain

ϕ2

(
zj −

β

α
zi + cj −

β

α
ci

)
= − δ

γ
ϕ2

(
zj −

β

α
zi

)
.

From (3.6), it follows that

g(z) = h1(z) + h2(z) = L(z) +R5,

where L(z) = L1(z) + L2(z) and R5 = R3 +R4.
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Sub-case B2: Suppose that −H22(z) exp (h2(z)− h1(z + c)) ≡ 1. Then, from

(3.7) we see that −H21(z)
K2

exp (h1(z)− h2(z + c)) ≡ 1. Since h1, h2 are poly-

nomials, it follows that h2(z) − h1(z + c) = η4 and h1(z) − h2(z + c) = η5,
where η4, η5 ∈ C. A simple computation shows that h1(z + 2c) − h1(z) =
−η4 − η5 and h2(z + 2c) − h2(z) = −η4 − η5. Therefore, we conclude that
h1(z) = L(z) + H(s1) + R6 and h2(z) = L(z) + H(s1) + R7, where L(z) =
a1z1 + · · · + anzn and H(s1) is a polynomial in s1 := d1z1 + · · · + dnzn with
d1c1+ · · ·+dncn = 0 such that H(z+ c) = H(z), and R6, R7 ∈ C. Now, we see
that h2(z+c)−h1(z+c) = R7−R6, which shows that exp (h2(z + c)− h1(z + c))
is a constant, a contradiction. This completes the proof. □

Proof of Theorem 2.2. For a better clarity in our presentation, we divide the
proof into two cases:
Case I: Assume that ω2 ̸= 0, ab and f is a finite order transcendental entire
solution of (2.2). The equation (2.2) can be written as

(
√
af − ω1

√
bLk(f))(

√
af − ω2

√
bLk(f)) = 1.(3.21)

By the similar argument being used in the proof of the Theorem 2.1, there
exists a non-constant polynomial p in Cn such that

√
af − ω1

√
bLk(f) = exp (p) and

√
af − ω2

√
bLk(f) = exp (−p) .(3.22)

From (3.22), it is easy to se that

f(z) =
ω2 exp (p(z))− ω1 exp (−p(z))√

a(ω2 − ω1)
(3.23)

and

Lk(f) =
exp (p(z))− exp (−p(z))√

b(ω2 − ω1)
.(3.24)

Differentiating (3.23) t-times partially with respect to zi, we obtain

∂tf(z)

∂zti
=
ω2h1t(z) exp (p(z))− ω1h2t(z) exp (−p(z))√

a(ω2 − ω1)
,(3.25)

where 
h1t(z) =

(
∂p

∂zi

)t

+H1t

(
∂tp

∂zti
, . . . ,

∂p

∂zi

)
h2t(z) = (−1)t

(
∂p

∂zi

)t

+H2t

(
∂tp

∂zti
, . . . ,

∂p

∂zi

)
,

(3.26)

H1t and H2t are polynomials of partial derivatives of p(z) of degree less than
t, t = 1, 2, . . . , k. In view of (3.23), (3.24) and (3.25), a simple computation
shows that(

ω2

√
b

k∑
t=1

λth1t(z)−
√
a

)
exp (2p(z)) =

(
ω1

√
b

k∑
t=1

λth2t(z)−
√
a

)
.(3.27)
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Since p is a non-constant polynomial, it follows from (3.27) that

ω2

√
b

k∑
t=1

λth1t(z) =
√
a and ω1

√
b

k∑
t=1

λth2t(z) =
√
a.(3.28)

From (3.26) and (3.28), it is easy to observe that ∂p
∂zi

must be a non-zero
constant in C, say β. Consequently, we have

p(z) = βzi + ϕ(z1, . . . , zi−1, zi+1, . . . , zn),

where ϕ(z1, . . . , zi−1, zi+1, . . . , zn) is a polynomial in z1, . . . , zi−1, zi+1, . . . , zn
in Cn. Clearly, it follows from (3.28) that

ω2

√
b

k∑
t=1

λtβ
t =

√
a and ω1

√
b

k∑
t=1

(−1)tλtβ
t =

√
a.

Hence, from (3.23) we obtain

f(z) =
ω2 exp (F (z))− ω1 exp (−F (z))√

a(ω2 − ω1)
,

where F (z) = βzi + ϕ(z1, . . . , zi−1, zi+1, . . . , zn). This completes the proof of
(I).

Case II: Let ω2 = 0 and f be a finite order transcendental entire solution of
(2.2). The equation (2.2) can be written as(

√
af(z) + i

√
b

k∑
t=1

λt
∂tf(z)

∂zti

)(
√
af(z)− i

√
b

k∑
t=1

λt
∂tf(z)

∂zti

)
= 1.

By the similar argument being used in the proof of the Theorem 2.1, there
exists a non-constant polynomial p in Cn such that

f(z) =
exp (p(z)) + exp (−p(z))

2
√
a

and(3.29)

k∑
t=1

λt
∂tf(z)

∂zti
=

exp (p(z))− exp (−p(z))
2i
√
b

.

Similarly, as in Case I, form (3.29), we obtain(
i
√
b

k∑
t=1

λth1t(z)−
√
a

)
exp (2p(z)) = −

(
i
√
b

k∑
t=1

λth2t(z) +
√
a

)
.(3.30)

As p is a non-constant polynomial, from (3.30) we observe that

i
√
b

k∑
t=1

λth1t(z) =
√
a and i

√
b

k∑
t=1

λth2t(z) = −
√
a.(3.31)
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In view of (3.26) and (3.31), it is easy to see that ∂p
∂zi

must be a non-zero
constant in C, say η. Thus, we see that

p(z) = ηzi + ψ(z1, . . . , zi−1, zi+1, . . . , zn),

where ψ(z1, . . . , zi−1, zi+1, . . . , zn) is a polynomial in z1, . . . , zi−1, zi+1, . . . , zn
in Cn. Therefore, from (3.31), we see that

i
√
b

k∑
t=1

λtη
t =

√
a and i

√
b

k∑
t=1

λtη
t = −

√
a.

Hence, f takes the following form

f(z) =
1√
a
cosh (ηzi + ψ(z1, . . . , zi−1, zi+1, . . . , zn)) .

This completes the proof of (II). □
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