• Title/Summary/Keyword: totally umbilical and totally geodesic

Search Result 15, Processing Time 0.021 seconds

Totally Umbilical Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds

  • Sachdeva, Rashmi;Kumar, Rakesh;Bhatia, Satvinder Singh
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.503-516
    • /
    • 2017
  • In this paper, we study totally umbilical slant lightlike submanifolds of indefinite Kaehler manifolds. We prove that there do not exist totally umbilical proper slant lightlike submanifolds in indefinite Kaehler manifolds other than totally geodesic proper slant lightlike submanifolds. We also prove that there do not exist totally umbilical proper slant lightlike submanifolds of indefinite Kaehler space forms. Finally, we give a characterization theorem on minimal slant lightlike submanifolds.

LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-770
    • /
    • 2012
  • In this paper, we study the geometry lightlike hypersurfaces (M, $g$, S(TM)) of a semi-Riemannian manifold ($\tilde{M}$, $\tilde{g}$) of quasi-constant curvature subject to the conditions: (1) The curvature vector field of $\tilde{M}$ is tangent to M, and (2) the screen distribution S(TM) is either totally geodesic in M or totally umbilical in $\tilde{M}$.

HALF LIGHTLIKE SUBMANIFOLDS WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • We study the geometry of half light like submanifold M of a semi-Riemannian space form $\bar{M}$(c) subject to the conditions : (a) the screen distribution on M is totally umbilic in M and the coscreen distribution on M is conformal Killing on $\bar{M}$ or (b) the screen distribution is totally geodesic in M and M is irrotational.

NON-INVARIANT HYPERSURFACES OF A (𝜖, 𝛿)-TRANS SASAKIAN MANIFOLDS

  • Khan, Toukeer;Rizvi, Sheeba
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.985-994
    • /
    • 2021
  • The object of this paper is to study non-invariant hypersurface of a (𝜖, 𝛿)-trans Sasakian manifolds equipped with (f, g, u, v, λ)-structure. Some properties obeyed by this structure are obtained. The necessary and sufficient conditions also have been obtained for totally umbilical non-invariant hypersurface with (f, g, u, v, λ)-structure of a (𝜖, 𝛿)-trans Sasakian manifolds to be totally geodesic. The second fundamental form of a non-invariant hypersurface of a (𝜖, 𝛿)-trans Sasakian manifolds with (f, g, u, v, λ)-structure has been traced under the condition when f is parallel.

SEMI-SLANT LIGHTLIKE SUBMERSIONS WITH TOTALLY UMBILICAL FIBRES

  • Gaurav Sharma;Sangeet Kumar;Dinesh Kumar Sharma
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.452-472
    • /
    • 2024
  • We introduce the study of a semi-slant lightlike submersion from an indefinite Kaehler manifold onto an r-lightlike manifold. After giving the definition of a semi-slant lightlike submersion, we establish the existence Theorems for this class of lightlike submersions. Then, we derive the integrability conditions for the distributions D1, D2 and ∆ associated with a semi-slant lightlike submersion. Consequently, we find some necessary and sufficient conditions for the foliations determined by the distributions D1, D2 and ∆. Subsequently, we examine the geometry of totally umbilical fibres of a semi-slant lightlike submersion.

SEMI-INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLD

  • Bagewadi, Channabasappa Shanthappa;Nirmala, Dharmanaik;Siddesha, Mallannara Siddalingappa
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1331-1339
    • /
    • 2018
  • In this paper the decomposition of basic equations of $(LCS)_n$-manifolds is carried out into horizontal and vertical projections. Further, we study the integrability of the distributions $D,D{\oplus}[{\xi}]$ and $D^{\perp}$ totally geodesic of semi-invariant submanifolds of $(LCS)_n$-manifold.

CERTAIN RESULTS ON SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE-FORMS

  • Yadav, Sunil Kumar;Chaubey, Sudhakar K
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.123-137
    • /
    • 2020
  • The object of the present paper is to study certain geometrical properties of the submanifolds of generalized Sasakian space-forms. We deduce some results related to the invariant and anti-invariant slant submanifolds of the generalized Sasakian spaceforms. Finally, we study the properties of the sectional curvature, totally geodesic and umbilical submanifolds of the generalized Sasakian space-forms. To prove the existence of almost semiinvariant and anti-invariant submanifolds, we provide the non-trivial examples.

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.769-781
    • /
    • 2011
  • We study the geometry of half lightlike sbmanifolds M of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric metric connection subject to the conditions: (1) The screen distribution S(TM) is totally umbilical (geodesic) and (2) the co-screen distribution $S(TM^{\bot})$ of M is a conformal Killing one.

ON LIGHTLIKE HYPERSURFACES OF COSYMPLECTIC SPACE FORM

  • Ejaz Sabir Lone;Pankaj Pandey
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.223-234
    • /
    • 2023
  • The main purpose of this paper is to study the lightlike hypersurface (M, $\overline{g}$) of cosymplectic space form $\overline{M}$(c). In this paper, we computed the Gauss and Codazzi formulae of (M, $\overline{g}$) of cosymplectic manifold ($\overline{M}$, g). We showed that we can't obtain screen semi-invariant lightlike hypersurface (SCI-LH) of $\overline{M}$(c) with parallel second fundamental form h, parallel screen distribution and c ≠ 0. We showed that if second fundamental form h and local second fundamental form B are parallel, then (M, $\overline{g}$) is totally geodesic. Finally we showed that if (M, $\overline{g}$) is umbilical, then cosymplectic manifold ($\overline{M}$, g) is flat.

ON GENERIC SUBMANIFOLDS OF LP-SASAKIAN MANIFOLDS WITH CONCURRENT VECTOR FIELDS

  • Ghosh, Sujoy;Jun, Jae-Bok;Sarkar, Avijit
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.361-375
    • /
    • 2021
  • The object of the present paper is to deduce some important results on generic submanifolds and also generic product of LP-Sasakian manifolds with concurrent vector fields. Also, we provide a necessary and sufficient condition for which the invariant distribution D and anti-invariant distribution D of M are Einstein. Also, we deduce an interesting necessary and sufficient condition for submanifolds of LP-Sasakian manifolds to be totally umbilical submanifolds. Especially we deal with the generic submanifolds admitting a Ricci soliton in LP-Sasakian manifolds endowed with concurrent vector fields.