LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

Dae Ho Jin

ABSTRACT. In this paper, we study the geometry lightlike hypersurfaces (M,g,S(TM)) of a semi-Riemannian manifold $(\widetilde{M},\widetilde{g})$ of quasi-constant curvature subject to the conditions: (1) The curvature vector field of \widetilde{M} is tangent to M, and (2) the screen distribution S(TM) is either totally geodesic in M or totally umbilical in \widetilde{M} .

1. Introduction

B. Y. Chen and K. Yano [2] introduced the notion of a Riemannian manifold of quasi-constant curvature as a Riemannian manifold $(\widetilde{M}, \widetilde{g})$ with the curvature tensor \widetilde{R} satisfying the condition

$$(1.1) \qquad \widetilde{g}(\widetilde{R}(X,Y)Z,W) = \alpha \{ \widetilde{g}(Y,Z)g(X,W) - \widetilde{g}(X,Z)g(Y,W) \}$$

$$+ \beta \{ \widetilde{g}(X,W)\theta(Y)\theta(Z) - \widetilde{g}(X,Z)\theta(Y)\theta(W)$$

$$+ \widetilde{g}(Y,Z)\theta(X)\theta(W) - \widetilde{g}(Y,W)\theta(X)\theta(Z) \},$$

where α , β are scalar functions and θ is a 1-form defined by

(1.2)
$$\theta(X) = \widetilde{g}(X, \zeta),$$

and ζ is a unit vector field on \widetilde{M} which called the *curvature vector field* of \widetilde{M} . It is well known that if the curvature tensor \widetilde{R} is of the form (1.1), then \widetilde{M} is conformally flat. If $\beta = 0$, then \widetilde{M} is a space of constant curvature.

A non-flat Riemannian manifold \widetilde{M} of dimension n(>2) is called a quasi-Einstein manifold [1] if its Ricci tensor \widetilde{Ric} satisfies the condition

$$\widetilde{Ric}(X,Y) = a\,\widetilde{g}(X,Y) + b\,\phi(X)\phi(Y),$$

where a, b are scalar functions such that $b \neq 0$ and ϕ is a non-vanishing 1-form such that $\widetilde{g}(X, U) = \phi(X)$ for any vector field X, where U is a unit vector

Received July 5, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.

Key words and phrases. totally geodesic, totally umbilical, lightlike hypersurface, semi-Riemannian manifold of quasi-constant curvature.

field. If b=0, then \widetilde{M} is an Einstein manifold. It can be easily seen that every Riemannian manifold of quasi-constant curvature is a quasi-Einstein manifold.

The purpose of this paper is to study lightlike hypersurfaces of a semi-Riemannian manifold of quasi-constant curvature. We prove two characterization theorems for lightlike hypersurfaces (M,g,S(TM)) of a semi-Riemannian manifold $(\widetilde{M},\widetilde{g})$ of quasi-constant curvature:

- If S(TM) is totally geodesic in M and the curvature vector field ζ of \widetilde{M} is tangent to M, then \widetilde{M} and M are flat manifolds (Theorem 3.3).
- If S(TM) is totally umbilical in \widetilde{M} and ζ is tangent to M, then \widetilde{M} is a space of non-zero constant curvature α and M is an Einstein manifold (Theorem 3.4).

2. Lightlike hypersurface

It is well known that the normal bundle TM^{\perp} of the lightlike hypersurfaces M of a semi-Riemannian manifold $(\widetilde{M},\widetilde{g})$ is a subbundle of TM of rank 1. A complementary vector bundle S(TM) of TM^{\perp} in TM is non-degenerate distribution on M, called a *screen distribution* on M, and

$$(2.1) TM = TM^{\perp} \oplus_{orth} S(TM),$$

where \oplus_{orth} denotes the orthogonal direct sum. We denote such a lightlike hypersurface by M=(M,g,S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. It is well-known [4] that, for any null section ξ of TM^{\perp} on a coordinate neighborhood $\mathcal{U}\subset M$, there exists a unique null section N of a unique vector bundle tr(TM) in $S(TM)^{\perp}$ satisfying

$$(2.2) \qquad \widetilde{g}\left(\xi,\,N\right) \,=\, 1, \quad \widetilde{g}(N,\,N) \,=\, \widetilde{g}(N,\,X) \,=\, 0, \; \forall\,X \in \Gamma\left(S(TM)|_{\mathcal{U}}\right).$$

Then the tangent bundle $T\widetilde{M}$ of \widetilde{M} is decomposed as follows;

$$(2.3) T\widetilde{M} = TM \oplus tr(TM) = \{TM^{\perp} \oplus tr(TM)\} \oplus_{orth} S(TM).$$

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to S(TM) respectively.

Let $\widetilde{\nabla}$ be the Levi-Civita connection of \widetilde{M} and P the projection morphism of $\Gamma(TM)$ on $\Gamma(S(TM))$ with respect to the decomposition (2.1). For any vector fields $X, Y \in \Gamma(TM)$, the local Gauss and Weingartan formulas are given by

$$(2.4) \widetilde{\nabla}_X Y = \nabla_X Y + B(X, Y) N,$$

$$(2.5) \widetilde{\nabla}_X N = -A_N X + \tau(X) N,$$

$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

$$\nabla_X \xi = -A_{\varepsilon}^* X - \tau(X) \xi,$$

where ∇ and ∇^* are the linear connections on TM and S(TM) respectively, B and C are the local second fundamental forms on TM and S(TM) respectively, A_N and A_{ε}^* are the shape operators on TM and S(TM) respectively and τ is

a 1-form on TM. Since $\widetilde{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric. From the fact that $B(X,Y) = g(\nabla_X Y, \xi)$, we know that B is independent of the choice of a screen distribution and satisfies

(2.8)
$$B(X, \xi) = 0, \quad \forall X \in \Gamma(TM).$$

The induced connection ∇ of M is not metric and satisfies

(2.9)
$$(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y),$$

for any $X, Y, Z \in \Gamma(TM)$, where η is a 1-form such that

(2.10)
$$\eta(X) = \widetilde{g}(X, N), \quad \forall X \in \Gamma(TM).$$

But the connection ∇^* on S(TM) is metric. The above two local second fundamental forms of M and on S(TM) are related to their shape operators by

$$(2.11) B(X,Y) = g(A_{\varepsilon}^*X,Y), \widetilde{g}(A_{\varepsilon}^*X,N) = 0,$$

$$(2.11) \hspace{1cm} B(X,\,Y) = g(A_{\xi}^*X,\,Y), \hspace{1cm} \widetilde{g}(A_{\xi}^*X,\,N) = 0, \\ (2.12) \hspace{1cm} C(X,\,PY) = g(A_NX,\,PY), \hspace{1cm} \widetilde{g}(A_NX,\,N) = 0.$$

From (2.11), A_{ε}^* is S(TM)-valued and self-adjoint on TM such that

(2.13)
$$A_{\xi}^* \xi = 0.$$

We denote by \widetilde{R} , R and R^* the curvature tensors of the Levi-Civita connection $\widetilde{\nabla}$ of \widetilde{M} , the induced connection ∇ of M and the connection ∇^* on S(TM), respectively. Using the Gauss-Weingarten equations for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM) such that

(2.14)
$$\widetilde{g}(\widetilde{R}(X,Y)Z, PW) = g(R(X,Y)Z, PW) + B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW),$$

$$(2.15) \ \widetilde{g}(\widetilde{R}(X,Y)Z,\,\xi) = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + B(Y,Z)\tau(X) - B(X,Z)\tau(Y),$$

$$(2.16)\ \ \widetilde{g}(\widetilde{R}(X,Y)Z,\,N)=\widetilde{g}(R(X,Y)Z,\,N),$$

$$(2.17) \ \widetilde{g}(\widetilde{R}(X,Y)\xi, N) = g(A_{\varepsilon}^*X, A_{N}Y) - g(A_{\varepsilon}^*Y, A_{N}X) - 2d\tau(X,Y),$$

$$(2.18) \ g(R(X,Y)PZ,\,PW) = g(R^*(X,Y)PZ,\,PW)$$

$$+ C(X, PZ)B(Y, PW) - C(Y, PZ)B(X, PW),$$

$$\begin{aligned} (2.19) \ \ \widetilde{g}(R(X,Y)PZ,\,N) &= (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ) \\ &+ C(X,PZ)\tau(Y) - C(Y,PZ)\tau(X) \end{aligned}$$

for any $X, Y, Z, W \in \Gamma(TM)$.

The *Ricci tensor*, denoted by \widetilde{Ric} , of \widetilde{M} is defined by

$$\widetilde{Ric}(X,Y) = trace\{Z \to \widetilde{R}(Z,X)Y\}$$

for any $X, Y \in \Gamma(T\widetilde{M})$. Let dim $\widetilde{M} = m + 2$. Locally, \widetilde{Ric} is given by

(2.20)
$$\widetilde{Ric}(X,Y) = \sum_{i=1}^{m+2} \epsilon_i \, \widetilde{g}(\widetilde{R}(E_i,X)Y, E_i),$$

where $\{E_1, \ldots, E_{m+2}\}$ is an orthonormal frame field of $T\widetilde{M}$. If

(2.21)
$$\widetilde{Ric} = \widetilde{\kappa}\widetilde{g}, \quad \widetilde{\kappa} \text{ is a constant,}$$

then \widetilde{M} is an Einstein manifold. The scalar curvature \widetilde{r} is defined by

(2.22)
$$\widetilde{r} = \sum_{i=1}^{m+2} \epsilon_i \widetilde{Ric}(E_i, E_i).$$

Putting (2.21) in (2.22) implies that \widetilde{M} is Einstein if and only if

$$\widetilde{Ric} = \frac{\widetilde{r}}{m+2}\,\widetilde{g}.$$

3. Tangential curvature vector field

Let M be a lightlike hypersurface of a semi-Riemannian manifold \widetilde{M} of quasi-constant curvature. We may assume that the curvature vector field ζ of \widetilde{M} is a unit spacelike vector field and $\dim \widetilde{M} > 3$. Consider an induced quasi-orthonormal frame field $\{\xi; W_a\}$ on M, where $TM^{\perp} = Span\{\xi\}$ and $S(TM) = Span\{W_a\}$ and let $E = \{\xi, N, W_a\}$ be the corresponding frame field on \widetilde{M} . By using (2.20), we get

(3.1)
$$\widetilde{Ric}(X,Y) = \sum_{a=1}^{m} \epsilon_a \, \widetilde{g}(\widetilde{R}(W_a, X)Y, W_a) + \widetilde{g}(\widetilde{R}(\xi, X)Y, N) + \widetilde{g}(\widetilde{R}(N, X)Y, \xi),$$

where ϵ_a denotes the causal character (±1) of respective vector field W_a . Let $R^{(0,2)}$ denote the induced Ricci type tensor of type (0, 2) on M given by

$$(3.2) R^{(0,2)}(X,Y) = trace\{Z \to R(Z,X)Y\}, \quad \forall X, Y \in \Gamma(TM).$$

Using the induced quasi-orthonormal frame field $\{\xi; W_a\}$ on M, we obtain

(3.3)
$$R^{(0,2)}(X,Y) = \sum_{a=1}^{m} \epsilon_a g(R(W_a, X)Y, W_a) + \tilde{g}(R(\xi, X)Y, N).$$

Substituting (2.15) and (2.18) in (3.1) an using (2.12) and (2.13), we obtain

(3.4)
$$R^{(0,2)}(X,Y) = \widetilde{Ric}(X,Y) + B(X,Y)trA_N - g(A_NX, A_{\xi}^*Y) - \widetilde{g}(R(\xi,Y)X,N), \quad \forall X, Y \in \Gamma(TM).$$

This shows that $R^{(0,2)}$ is not symmetric. The tensor field $R^{(0,2)}$, defined by (3.2), is called its *induced Ricci tensor* [5], denoted by Ric, if it is symmetric. Using (2.17), (3.4) and the first Bianchi's identity, we obtain

$$R^{(0,2)}(X,Y) - R^{(0,2)}(Y,X) = 2d\tau(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Theorem 3.1 ([4, 5]). Let M be a lightlike hypersurface of a semi-Riemannian manifold \widetilde{M} . Then the Ricci type tensor $R^{(0,2)}$ is symmetric if and only if the 1-form τ is closed, i.e., $d\tau = 0$, on any coordinate neighborhood $\mathcal{U} \subset M$.

In the sequel, we assume that the curvature vector field ζ of \widetilde{M} is tangent to M and let $e = \theta(N)$. From (1.1), (2.15) and (2.16), we have

$$(3.5) \qquad (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = B(X, Z)\tau(Y) - B(Y, Z)\tau(X),$$

(3.6)
$$\widetilde{g}(R(X,Y)Z, N) = \{\alpha\eta(X) + e\beta\theta(X)\}g(Y,Z) - \{\alpha\eta(Y) + e\beta\theta(Y)\}g(X,Z) + \beta\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(Z)$$

for all $X, Y, Z \in \Gamma(TM)$. Using (1.1), (2.20) and (3.6), we have

$$(3.7) \qquad \widetilde{Ric}(X,Y) = \{(m+1)\alpha + \beta\}g(X,Y) + m\beta\,\theta(X)\theta(Y),$$

(3.8)
$$\widetilde{g}(R(\xi, Y)X, N) = \alpha g(X, Y) + \beta \theta(X)\theta(Y), \ \forall X, Y \in \Gamma(TM).$$

Substituting this two equations into (3.4), we have

(3.9)
$$R^{(0,2)}(X,Y) = \{m\alpha + \beta\}g(X,Y) + \beta(m-1)\theta(X)\theta(Y) + B(X,Y)trA_N - g(A_NX, A_{\xi}^*Y), \ \forall X, Y \in \Gamma(TM).$$

Definition 1. We say that the screen distribution S(TM) of M is totally umbilical [4] in M if, on any coordinate neighborhood $\mathcal{U} \subset M$, there is a smooth function γ such that $A_NX = \gamma PX$ for any $X \in \Gamma(TM)$, or equivalently,

(3.10)
$$C(X, PY) = \gamma q(X, Y), \quad \forall X, Y \in \Gamma(TM).$$

In case $\gamma = 0$ on \mathcal{U} , we say that S(TM) is totally geodesic in M.

Using (3.9) and the fact A_{ε}^* is self-adjoint, we have:

Theorem 3.2. Let M be a lightlike hypersurface of a semi-Riemannian manifold \widetilde{M} of quasi-constant curvature. If S(TM) is totally umbilical in M and ζ is tangent to M, then $R^{(0,2)}$ is an induced Ricci tensor Ric of M.

Theorem 3.3. Let M be a lightlike hypersurface of a semi-Riemannian manifold \widetilde{M} of quasi constant curvature. If S(TM) is totally geodesic in M and ζ is tangent to M, then the functions α and β , defined by (1.1), vanish identically. Furthermore, \widetilde{M} and M are flat manifolds.

Proof. As C=0, we have $\widetilde{g}(R(X,Y)PZ,N)=0$ due to (2.19). From Theorem 3.1 and Theorem 3.2, we show that $d\tau=0$ on TM. Thus we also have $\widetilde{g}(R(X,Y)\xi,N)=0$ due to (2.17). From this two results we get

$$\widetilde{g}(R(X,Y)Z,N) = 0, \quad \forall X, Y, Z \in \Gamma(TM).$$

From this equation and the equation (3.8), we have

(3.12)
$$\beta \theta(X)\theta(Y) = -\alpha g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Substituting (3.12) into (1.1) and using (2.14), (2.15) and (3.5), we have

$$(3.13) R(X,Y)Z = \alpha \{g(X,Z)Y - g(Y,Z)X\}, \quad \forall X, Y, Z \in \Gamma(TM).$$

Thus M is a space of constant curvature $-\alpha$. Taking $X = Y = \zeta$ to (3.12), we have $\alpha + \beta = 0$. Substituting (3.12) and $A_N = 0$ into (3.9), we have

$$Ric(X,Y) = 0, \quad \forall X, Y \in \Gamma(TM).$$

Substituting (3.13) and $g(R(\xi, Y)X, N) = 0$ into (3.3), we also have

$$Ric(X,Y) = -(m-1)\alpha g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

From the last two equations, we obtain $\alpha = 0$ as m > 1. Thus $\beta = 0$ and \widetilde{M} and M are flat manifolds, by (1.1) and (3.13).

Corollary 1. There exist no non-flat lightlike hypersurfaces M of semi-Riemannian manifold \widetilde{M} of quasi-constant curvature such that S(TM) is totally geodesic in M and the curvature vector field ζ of \widetilde{M} is tangent to M.

Theorem 3.4. Theorem 3.4. Let M be a lightlike hypersurface of a semi-Riemannian manifold \widetilde{M} of quasi constant curvature. If S(TM) is totally umbilical in \widetilde{M} and ζ is tangent to M, then the scaler function β vanishes identically. Furthermore, \widetilde{M} is a space of constant curvature α and M is an Einstein manifold such that Ric = (r/m)g, where r is the scalar curvature of M

Proof. Assume S(TM) is totally umbilical in \widetilde{M} . Then we have (3.10) and

(3.14)
$$B(X,Y) = \rho g(X,Y), \ \forall X, Y \in \Gamma(TM).$$

Applying ∇_Z to (3.10) and using (2.9), we have

$$(\nabla_X C)(Y, PZ) = (X\gamma)g(Y, PZ) + \gamma B(X, PZ)\eta(Y)$$

for all $X, Y, Z \in \Gamma(TM)$. Substituting this into (2.19) and using (3.6), (3.14) and the fact $\theta(\xi) = 0$, we obtain

$$\begin{aligned} &\{X[\gamma] - \gamma \tau(X) - \rho \gamma \eta(X) - \alpha \eta(X) - e\beta \theta(X)\}g(Y, Z) \\ &= \{Y[\gamma] - \gamma \tau(Y) - \rho \gamma \eta(Y) - \alpha \eta(Y) - e\beta \theta(Y)\}g(X, Z) \\ &+ \beta \{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(Z), \quad \forall X, Y, Z \in \Gamma(TM). \end{aligned}$$

Replacing Y by ξ to this equation and using the fact $\theta(\xi) = 0$, we have

$$\{\xi[\gamma] - \gamma \tau(\xi) - \rho \gamma - \alpha\} q(X, Y) = \beta \theta(X) \theta(Y), \quad \forall X, Y \in \Gamma(TM).$$

Taking $X = Y = \zeta$ to this equation, we have $\beta = \xi[\gamma] - \gamma \tau(\xi) - \rho \gamma - \alpha$ and (3.15) $g(X,Y) = \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM).$

Substituting (3.15) into (1.1) and using (2.14), (2.15) and (3.14), we have

$$(3.16) \ g(R(X,Y)Z,W) = (\alpha + 2\beta + \rho\gamma)\{g(Y,Z)g(X,W) - g(X,Z)g(Y,W)\}\$$

for all $X, Y, Z, W \in \Gamma(TM)$. Substituting (3.8) and (3.16) into (3.3), we have

$$(3.17) \ Ric(X,Y) = \{ m\alpha + (2m-1)\beta + (m-1)\rho\gamma \} g(X,Y), \ \forall X,Y \in \Gamma(TM).$$

On the other hand, substituting (3.15) into (3.9) and using the facts $trA_N = m\gamma$ and $g(A_{\varepsilon}^*X, A_NY) = \rho\gamma g(X, Y)$, we have

(3.18)
$$Ric(X,Y) = \{m(\alpha + \beta) + (m-1)\rho\gamma\}g(X,Y), \ \forall X, Y \in \Gamma(TM).$$

Comparing (3.17) and (3.18), we obtain

$$(m-1)\beta = 0.$$

As m > 1, we have $\beta = 0$. Thus M is a space of constant curvature α . Let $\kappa = m\alpha + (m-1)\rho\gamma$. Then the equations (3.17) and (3.18) reduce to

(3.19)
$$Ric(X,Y) = \kappa g(X,Y), \ \forall X, Y \in \Gamma(TM).$$

Thus M is an Einstein manifold. The scalar quantity r [3] of M, obtained from $R^{(0,2)}$ by the method of (2.22) is given by

$$r = R^{(0,2)}(\xi,\xi) + \sum_{a=1}^{m} \epsilon_a R^{(0,2)}(W_a, W_a).$$

Since M is an Einstein manifold satisfying (3.19), we obtain

$$r = \kappa g(\xi, \, \xi) + \kappa \sum_{a=1}^{m} \epsilon_a \, g(W_a, \, W_a) = \kappa \, m.$$

Thus we have

$$Ric(X,Y) = (r/m)g(X,Y)$$

which provides a geometric interpretation of lightlike Einstein hypersurfaces (same as in Riemannian case) as we have shown that the constant $\kappa = r/m$. \square

References

- M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen 57 (2000), no. 3-4, 297–306.
- [2] B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N. S.) 26 (1972), 318–322.
- [3] K. L. Duggal, On scalar curvature in lightlike geometry, J. Geom. Phys. 57 (2007), no. 2, 473–481.
- [4] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [5] K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
- [6] ______, A classification of Einstein lightlike hypersurfaces of a Lorentzian space form,
 J. Geom. Phys. 60 (2010), no. 12, 1881–1889.

Department of Mathematics Dongguk University Gyeongju 780-714, Korea

 $E ext{-}mail\ address: jindh@dongguk.ac.kr}$