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Abstract. In this paper, we study totally umbilical slant lightlike submanifolds of indef-

inite Kaehler manifolds. We prove that there do not exist totally umbilical proper slant

lightlike submanifolds in indefinite Kaehler manifolds other than totally geodesic proper

slant lightlike submanifolds. We also prove that there do not exist totally umbilical proper

slant lightlike submanifolds of indefinite Kaehler space forms. Finally, we give a charac-

terization theorem on minimal slant lightlike submanifolds.

1. Introduction

The notion of slant submanifolds was initiated by B. Y. Chen, as a generaliza-
tion of both holomorphic and totally real submanifolds in complex geometry [5, 6].
Since then such submanifolds have been studied by many authors. In particular,
N. Papaghiuc [15] introduced semi-slant submanifolds. A. Lotta [12, 13], defined
and studied slant submanifolds in contact geometry. J. L. Cabrerizo et al. studied
slant, semi-slant and bi-slant submanifolds in contact geometry [3, 4]. They all
studied the geometry of slant submanifolds with positive definite metric. Therefore
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this geometry may not be applicable to the other branches of mathematics and
physics, where the metric is not necessarily definite. Thus the geometry of slant
submanifolds with indefinite metric became a topic of chief discussion and Sahin [21]
played a very crucial role in this study by introducing the notion of slant lightlike
submanifolds of indefinite Hermitian manifolds. R. S. Gupta et al. [11], introduced
the notion of a slant lightlike submanifold of an indefinite Cosymplectic manifold
and obtained necessary and sufficient conditions for the existence of a slant lightlike
submanifold. Recently in [18, 19, 20], we also studied the geometry of slant and
hemi-slant lightlike submanifolds of indefinite contact manifolds.

Sahin [22] proved that there do not exist totally umbilical proper slant subman-
ifolds in Kaehler manifolds other than totally geodesic proper slant submanifolds.
It is known that a proper slant submanifold of a Kaehler manifold is even dimen-
sional, but this is not true for slant lightlike submanifold [21]. In [16] and [17],
authors already proved that there do not exist totally contact umbilical proper slant
lightlike submanifolds in indefinite Cosymplectic and indefinite Sasakian manifolds
other than totally contact geodesic proper slant lightlike submanifolds, respectively.
In this paper, we study totally umbilical slant lightlike submanifolds of indefinite
Kaehler manifolds. We prove that there do not exist totally umbilical proper slant
lightlike submanifolds in indefinite Kaehler manifolds other than totally geodesic
proper slant lightlike submanifolds. We also prove that there do not exist totally
umbilical proper slant lightlike submanifolds of indefinite Kaehler space forms. Fi-
nally, we give characterization theorems on minimal slant lightlike submanifolds.

2. Lightlike Submanifolds

Let (M̄, ḡ) be a real (m+n)-dimensional semi-Riemannian manifold of constant
index q such that m,n ≥ 1, 1 ≤ q ≤ m+n−1 and (M, g) be an m-dimensional sub-
manifold of M̄ and g the induced metric of ḡ on M . If ḡ is degenerate on the tangent
bundle TM of M then M is called a lightlike submanifold of M̄ . For a degenerate
metric g on M , TM⊥ is a degenerate n-dimensional subspace of TxM̄ . Thus, both
TxM and TxM

⊥ are degenerate orthogonal subspaces but no longer complementary.
In this case, there exists a subspace RadTxM = TxM ∩ TxM

⊥ which is known as
radical (null) subspace. If the mapping RadTM : x ∈ M −→ RadTxM , defines a
smooth distribution on M of rank r > 0 then the submanifold M of M̄ is called an
r-lightlike submanifold (for detail see [7]) and RadTM is called the radical distri-
bution on M .

Let S(TM) be a screen distribution which is a semi-Riemannian complementary
distribution of Rad(TM) in TM , that is,

(2.1) TM = RadTM⊥S(TM),

and S(TM⊥) is a complementary vector subbundle to RadTM in TM⊥. Let
tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles to
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TM in TM̄ |M and to RadTM in S(TM⊥)⊥ respectively. Then we have

(2.2) tr(TM) = ltr(TM)⊥S(TM⊥).

(2.3) TM̄ |M= TM ⊕ tr(TM) = (RadTM ⊕ ltr(TM))⊥S(TM)⊥S(TM⊥).

Let u be a local coordinate neighborhood of M then for quasi-orthonormal fields of
frames {ξ1, ..., ξr,Wr+1, ...,Wn, N1, ..., Nr, Xr+1, ..., Xm}, we have

Theorem 2.1.([7]) Let (M, g, S(TM), S(TM⊥)) be an r-lightlike submanifold of
a semi-Riemannian manifold (M̄, ḡ). Then there exists a complementary vector
bundle ltr(TM) of RadTM in S(TM⊥)⊥ and a basis of Γ(ltr(TM) |u) consisting
of smooth section {Ni} of S(TM⊥)⊥ |u, where u is a coordinate neighborhood of
M , such that

(2.4) ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0, for any i, j ∈ {1, 2, .., r},

where {ξ1, ..., ξr} is a lightlike basis of Γ(Rad(TM)).

Let ∇̄ be the Levi-Civita connection on M̄ . Then according to the decomposition
(2.3), the Gauss and Weingarten formulas are given by

(2.5) ∇̄XY = ∇XY + h(X,Y ), ∇̄XU = −AUX + ∇⊥
XU,

for any X,Y ∈ Γ(TM) and U ∈ Γ(tr(TM)), where {∇XY,AUX} and {h(X,Y ),
∇⊥

XU} belongs to Γ(TM) and Γ(tr(TM)), respectively. Here ∇ is a torsion-free
linear connection on M , h is a symmetric bilinear form on Γ(TM) which is called
second fundamental form, AU is linear a operator on M , known as shape operator.

According to (2.2), considering the projection morphisms L and S of tr(TM)
on ltr(TM) and S(TM⊥), respectively then Gauss and Weingarten formulas give

(2.6) ∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∇̄XU = −AUX + Dl
XU + Ds

XU,

where we put hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), Dl
XU = L(∇⊥

XU),
Ds

XU = S(∇⊥
XU).

As hl and hs are Γ(ltr(TM))-valued and Γ(S(TM⊥))-valued respectively, there-
fore they are called as the lightlike second fundamental form and the screen second
fundamental form on M . In particular

(2.7) ∇̄XN = −ANX+∇l
XN+Ds(X,N), ∇̄XW = −AWX+∇s

XW+Dl(X,W ),

where X ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). By using (2.2)-(2.3)
and (2.6)-(2.7), we obtain

(2.8) ḡ(hs(X,Y ),W ) + ḡ(Y,Dl(X,W )) = g(AWX,Y ),
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for any ξ ∈ Γ(RadTM), W ∈ Γ(S(TM⊥)) and N,N ′ ∈ Γ(ltr(TM)).
Let P̄ is a projection of TM on S(TM). Now, we consider the decomposition

(2.4), we can write

(2.9) ∇X P̄ Y = ∇∗
X P̄ Y + h∗(X, P̄Y ), ∇Xξ = −A∗

ξX + ∇∗t
Xξ,

for any X,Y ∈ Γ(TM) and ξ ∈ Γ(RadTM), where {∇∗
X P̄ Y , A∗

ξX} and

{h∗(X, P̄Y ), ∇∗t
Xξ} belong to Γ(S(TM)) and Γ(RadTM) respectively. Here ∇∗

and ∇∗t
X are linear connections on S(TM) and RadTM respectively. By using (2.7)

and (2.9), we obtain

(2.10) ḡ(hl(X, P̄Y ), ξ) = g(A∗
ξX, P̄Y ), ḡ(h∗(X, P̄Y ), N) = ḡ(ANX, P̄Y ).

In [1], Barros and Romero defined indefinite Kaehler manifolds as

Definition 2.2. Let (M̄, J̄ , ḡ) be an indefinite almost Hermitian manifold and ∇̄ be
the Levi-Civita connection on M̄ with respect to ḡ. Then M̄ is called an indefinite
Kaehler manifold if J̄ is parallel with respect to ∇̄, that is, (∇̄X J̄)Y = 0, for any
X,Y ∈ Γ(TM̄).

3. Slant Lightlike Submanifolds

A lightlike submanifold has two distributions, namely radical distribution and
screen distribution. The radical distribution is totally lightlike and it is not possible
to define angle between two vector fields of radical distribution. Furthermore, the
screen distribution is non-degenerate. There are some definitions for angle between
two vector fields in Lorentzian setup [14], but not appropriate for our goal because
a manifold with Lorentzian metric can not admit an almost Hermitian structure
[10]. Therefore to introduce the notion of slant lightlike submanifolds one needs
a Riemannian distribution. For such distribution Sahin [21] proved the following
lemma.

Lemma 3.1. Let M be an r-lightlike submanifold of an indefinite Hermi-
tian manifold M̄ of index 2r. Suppose that J̄RadTM is a distribution on M
such that RadTM ∩ J̄RadTM = {0}. Then any complementary distribution to
J̄RadTM ⊕ J̄ ltr(TM) in S(TM) is Riemannian.

In the light of above lemma Sahin [21], defines slant lightlike submanifolds as

Definition 3.2. Let M be a r-lightlike submanifold of an indefinite Hermitian
manifold M̄ of index 2r. Then M is a slant lightlike submanifold of M̄ if the
following conditions are satisfied

(A) Rad(TM) is a distribution on M such that

J̄RadTM ∩Rad(TM) = {0}.
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(B) For each non-zero vector field tangent to D at p ∈ U ⊂ M , the angle θ(X)
between J̄X and the vector space Dp is constant, that is, it is independent of
the choice of p ∈ U ⊂ M and X ∈ Dp, where D is complementary distribution
to J̄RadTM ⊕ J̄ ltr(TM) in the screen distribution S(TM).

This constant angle θ(X) is called slant angle of the distribution D. A slant lightlike
submanifold is said to be proper if D ̸= {0} and θ ̸= 0, π

2 . Since a submanifold M

is invariant (respectively anti-invariant) if J̄TpM ⊂ TpM , (respectively J̄TpM ⊂
TpM

⊥), for any p ∈ M . Therefore from above definition, it is clear that M is
invariant (respectively anti-invariant) if θ(X) = 0, (respectively θ(X) = π

2 ).
The tangent bundle TM of M is decomposed as

(3.1) TM = RadTM⊥S(TM) = RadTM⊥(J̄RadTM ⊕ J̄ ltr(TM))⊥D.

For any X ∈ Γ(TM) we write

(3.2) J̄X = TX + FX,

where TX is the tangential component of J̄X and FX is the transversal component
of J̄X. Similarly for any V ∈ Γ(tr(TM)) we write

(3.3) J̄V = BV + CV,

where BV is the tangential component of J̄V and CV is the transversal component
of J̄V . Using the decomposition in (3.1), we denote by P1, P2, Q1 and Q2 the
projection on the distributions RadTM , J̄RadTM , J̄ ltr(TM) and D, respectively.
Then for any X ∈ Γ(TM), we can write

(3.4) X = P1X + P2X + Q1X + Q2X.

Applying J̄ to (3.4) we obtain

(3.5) J̄X = J̄P1X + J̄P2X + FQ1X + TQ2X + FQ2X.

Then using (3.2) and (3.3), we get

J̄P1X = TP1X ∈ Γ(J̄RadTM), J̄P2X = TP2X ∈ Γ(RadTM),

FP1X = FP2X = 0, TQ2X ∈ Γ(D), FQ1X ∈ Γ(ltr(TM)).

Lemma 3.3. Let M be a slant lightlike submanifold of an indefinite Kaehler man-
ifold M̄ then FQ2X ∈ Γ(S(TM⊥)), for any X ∈ Γ(TM).

Proof. Using (2.2) and (2.4) it is clear that FQ2X ∈ Γ(S(TM⊥)) if and only if
g(FQ2X, ξ) = 0, for any ξ ∈ Γ(RadTM). Therefore g(FQ2X, ξ) = g(J̄Q2X −
TQ2X, ξ) = g(J̄Q2X, ξ) = −g(Q2X, J̄ξ) = 0, gives the result. 2
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Thus from the Lemma 3.3. it follows that F (Dp) is a subspace of S(TM⊥).
Therefore there exists an invariant subspace µp of TpM̄ such that

(3.6) S(TpM
⊥) = F (Dp)⊥µp,

and

(3.7) TpM̄ = S(TpM)⊥{Rad(TpM) ⊕ ltr(TpM)}⊥{F (Dp)⊥µp}.

Differentiating (3.5) and using (2.6)-(2.7), (3.2) and (3.3), for any X,Y ∈ Γ(TM),
we have

(∇XT )Y = AFQ1Y X + AFQ2Y X + Bh(X,Y ),

and

Ds(X,FQ1Y ) + Dl(X,FQ2Y ) = F∇XY − h(X,TY ) + Ch(X,Y )

−∇s
XFQ2Y −∇l

XFQ1Y.(3.8)

Corollary 3.4.([21]) Let M be a slant lightlike submanifold of an indefinite Her-
mitian manifold M̄ . Then we have

(3.9) g(TQ2X,TQ2Y ) = cos2θg(Q2X,Q2Y ),

and

(3.10) g(FQ2X,FQ2Y ) = sin2θg(Q2X,Q2Y ),

for any X,Y ∈ Γ(TM).

4. Totally Umbilical Slant Lightlike Submanifolds

Definition 4.1.([8]) A lightlike submanifold (M, g) of a semi-Riemannian manifold
(M̄, ḡ) is said to be a totally umbilical in M̄ if there is a smooth transversal vector
field H ∈ Γ(tr(TM)) on M , called the transversal curvature vector field of M , such
that, for X,Y ∈ Γ(TM),

(4.1) h(X,Y ) = Hḡ(X,Y ).

Using (2.6)-(2.7) it is clear that M is a totally umbilical, if and only if, on each
coordinate neighborhood u there exist smooth vector fields H l ∈ Γ(ltr(TM)) and
Hs ∈ Γ(S(TM⊥)) such that

(4.2) hl(X,Y ) = H lg(X,Y ), hs(X,Y ) = Hsg(X,Y ), Dl(X,W ) = 0,

for X,Y ∈ Γ(TM) and W ∈ Γ(S(TM⊥)). A lightlike submanifold is said to be
totally geodesic if h(X,Y ) = 0, for any X,Y ∈ Γ(TM). Therefore in other words,
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a lightlike submanifold is totally geodesic if H l = 0 and Hs = 0.

Theorem 4.2. Let M be a totally umbilical slant lightlike submanifold of an indef-
inite Kaehler manifold M̄ . Then at least one of the following statements is true:
(i) M is an anti-invariant submanifold.
(ii) D = {0}.
(iii) If M is a proper slant submanifold, then Hs ∈ Γ(µ).

Proof. Let M be a totally umbilical slant lightlike submanifold of an indefinite
Kaehler manifold M̄ , then for any X = Q2X ∈ Γ(D) using (4.1), we have

h(TQ2X,TQ2X) = g(TQ2X,TQ2X)H,

therefore from (2.5), (3.9) and above equation, we get

∇̄TQ2XTQ2X −∇TQ2XTQ2X = cos2θg(Q2X,Q2X)H.

Using (3.2) and the fact that M̄ is Kaehler manifold, we obtain

J̄∇̄TQ2XQ2X − ∇̄TQ2XFQ2X −∇TQ2XTQ2X = cos2θg(Q2X,Q2X)H.

Then using (2.6) and (2.7), we get

J̄∇TQ2XQ2X + J̄hl(TQ2X,X) + J̄hs(TQ2X,X) + AFQ2XTQ2X

−∇s
TQ2XFQ2X −Dl(TQ2X,FQ2X) −∇TQ2XTQ2X = cos2θg(Q2X,Q2X)H.

Thus using (3.2), (3.3) and (4.2), we have

T∇TQ2XQ2X + F∇TQ2XQ2X + g(TQ2X,X)J̄H l + g(TQ2X,X)BHs

+g(TQ2X,X)CHs + AFQ2XTQ2X −∇s
TQ2XFQ2X −Dl(TQ2X,FQ2X)

−∇TQ2XTQ2X = cos2θg(Q2X,Q2X)H.

Equating the transversal components, we get

F∇TQ2XQ2X + g(TQ2X,X)CHs −∇s
TQ2XFQ2X −Dl(TQ2X,FQ2X)

= cos2θg(Q2X,Q2X)H.(4.3)

On the other hand, (3.10) holds for any X = Y ∈ Γ(D) and by taking the covariant
derivative with respect to TQ2X, we obtain

g(∇s
TQ2XFQ2X,FQ2X) = sin2θg(∇TQ2XQ2X,Q2X).(4.4)

Now taking the inner product in (4.3) with FQ2X, we obtain

g(F∇TQ2XQ2X,FQ2X) − g(∇s
TQ2XFQ2X,FQ2X)

= cos2θg(Q2X,Q2X)g(Hs, FQ2X).
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Then using (3.10) and (4.4), we get

cos2θg(Q2X,Q2X)g(Hs, FQ2X) = 0.(4.5)

Thus from (4.5), it follows that either θ = π/2 or Q2X = 0 or Hs ∈ Γ(µ). This
completes the proof. 2

Lemma 4.3. Let M be a totally umbilical slant lightlike submanifold of an indefinite
Kaehler manifold M̄ then g(∇XX, J̄ξ) = 0, for any X ∈ Γ(D) and ξ ∈ Γ(RadTM).

Proof. Let X ∈ Γ(D) then using (2.6) and (2.7) for a totally umbilical slant lightlike
submanifold, we have

g(∇XX, J̄ξ) = ḡ(∇̄XX, J̄ξ) = −ḡ(∇̄XTQ2X, ξ) − ḡ(∇̄XFQ2X, ξ)

= −ḡ(Dl(X,FQ2X), ξ).(4.6)

Now replace W by FQ2X and Y by ξ in (2.8) and using that M is totally umbilical
slant lightlike submanifold, we obtain

ḡ(Dl(X,FQ2X), ξ) = −ḡ(hs(X, ξ), FQ2X) = −g(Q2X, ξ)g(Hs, FQ2X)

= 0.(4.7)

Therefore from (4.6) and (4.7), the result follows. 2

Theorem 4.4. Every totally umbilical proper slant lightlike submanifold M of an
indefinite Kaehler manifold M̄ is totally geodesic.

Proof. Since M is a totally umbilical slant lightlike submanifold therefore we have
h(TQ2X,TQ2X) = g(TQ2X,TQ2X)H, for any X = Q2X ∈ Γ(D). Using (3.9),
we get

(4.8) h(TQ2X,TQ2X) = cos2θg(Q2X,Q2X)H.

For any X ∈ Γ(D), using (3.8), we obtain

F∇TQ2XX = h(TQ2X,TQ2X) − Ch(TQ2X,Q2X) + ∇s
TQ2XFQ2X

+Dl(TQ2X,FQ2X),

since M is a totally umbilical slant lightlike submanifold therefore Ch(TQ2X,X) =
g(TQ2X,X)CH = 0 and using (4.8), we get

(4.9) cos2θg(Q2X,Q2X)H = F∇TQ2XX −∇s
TQ2XFQ2X −Dl(TQ2X,FQ2X).

Taking the scalar product of both sides of (4.9) with respect to FQ2X, we obtain

cos2θg(Q2X,Q2X)ḡ(Hs, FQ2X) = ḡ(F∇TQ2XX,FQ2X)

−ḡ(∇s
TQ2XFQ2X,FQ2X),
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using (3.10), we get

cos2θg(Q2X,Q2X)ḡ(Hs, FQ2X) = sin2θḡ(∇TQ2XX,X)

−ḡ(∇s
TQ2XFQ2X,FQ2X).(4.10)

Since (3.10) holds for any X = Y ∈ Γ(D) and by taking the covariant derivative
with respect to ∇̄TQ2X , we get

(4.11) ḡ(∇s
TQ2XFQ2X,FQ2X) = sin2θg(∇TQ2XQ2X,Q2X).

Using (4.11) in (4.10), we obtain

cos2θg(Q2X,Q2X)ḡ(Hs, FQ2X) = 0.

Since M is a proper slant lightlike submanifold and g is a Riemannian metric on D
therefore we have ḡ(Hs, FQ2X) = 0. Thus using Lemma 3.3. and (3.6), we obtain

(4.12) Hs ∈ Γ(µ).

Now, since M̄ is an indefinite Kaehler manifold therefore for any X,Y ∈ Γ(D), we
have ∇̄X J̄Y = J̄∇̄XY , this implies that

∇XTQ2Y + g(X,TQ2Y )H −AFQ2Y X + ∇s
XFQ2Y + Dl(X,FQ2Y )

= T∇XY + F∇XY + g(X,Y )J̄H.(4.13)

Taking the scalar product of both sides of (4.13) with respect to J̄Hs and then
using (3.7) and (4.12), we obtain

(4.14) ḡ(∇s
XFQ2X, J̄Hs) = g(X,Y )g(Hs,Hs).

Since µ is an invariant subspace therefore using the Kaehlerian character of M̄ , we
have ∇̄X J̄Hs = J̄∇̄XHs, this implies that

−AJ̄HsX + ∇s
X J̄Hs + Dl(X, J̄Hs) = −TAHsX − FAHsX + B∇s

XHs

+C∇s
XHs + J̄Dl(X,Hs).(4.15)

Taking the scalar product of both sides of above equation with respect to FQ2Y
and using invariant character of µ, that is, C∇s

XHs ∈ Γ(µ), we get

(4.16) ḡ(∇s
X J̄Hs, FQ2Y )) = −g(FAHsX,FQ2Y ) = −sin2θg(AHsX,Q2Y ).

Since ∇̄ is a metric connection therefore (∇̄Xg)(FQ2Y, J̄H
s) = 0 this further implies

that ḡ(∇s
XFQ2Y, J̄H

s) = ḡ(∇s
X J̄Hs, FQ2Y ), therefore using (4.16), we obtain

(4.17) ḡ(∇s
XFQ2Y, J̄H

s) = −sin2θg(AHsX,Q2Y ).

From (4.14) and (4.17), we have

(4.18) g(X,Y )g(Hs,Hs) = −sin2θg(AHsX,Q2Y ),
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using (2.8) in (4.18), we obtain

g(X,Y )g(Hs,Hs) = −sin2θḡ(hs(X,Q2Y ),Hs) = −sin2θg(X,Y )g(Hs,Hs),

this implies that
(1 + sin2θ)g(X,Y )g(Hs, Hs) = 0.

Since g is a Riemannian metric on D therefore we obtain

(4.19) Hs = 0.

Furthermore, using the Kaehler character of M̄ , we have ∇̄X J̄X = J̄∇̄XX for
any X = Q2X ∈ Γ(D), this implies that ∇XTQ2X + h(X,TQ2X) − AFQ2XX +
∇s

XFQ2X + Dl(X,FQ2X) = T∇XX + F∇XX + Bh(X,X) + Ch(X,X). Since
M is totally umbilical slant lightlike manifold therefore using h(X,TQ2X) = 0 in
above equation and then comparing the tangential components, we obtain

(4.20) ∇XTQ2X −AFQ2XX = T∇XX + Bh(X,X).

Taking the scalar product of both sides of (4.20) with respect to J̄ξ ∈ Γ(J̄Rad(TM))
and using the Lemma 4.3., we get

(4.21) g(AFQ2XX, J̄ξ) + ḡ(hl(X,X), ξ) = 0.

Now using (2.8), we have

ḡ(hs(X, J̄ξ), FQ2X) + ḡ(J̄ξ,Dl(X,FQ2X)) = g(AFQ2XX, J̄ξ),

using M is totally umbilical slant lightlike submanifold and (4.19), the above equa-
tion implies that

(4.22) g(AFQ2XX, J̄ξ) = 0.

Using (4.22) in (4.21), we obtain that ḡ(hl(X,X), ξ) = 0, this implies that

g(Q2X,Q2X)ḡ(H l, ξ) = 0.

Since g is a Riemannian metric on D therefore ḡ(H l, ξ) = 0 then using (2.4), we
obtain that

(4.23) H l = 0.

Thus from (4.19) and (4.23), the proof is complete. 2

Theorem 4.5. Let M be a totally umbilical proper slant lightlike submanifold of an
indefinite Kaehler manifold M̄ then the induced connection ∇ is a metric connection
on M .
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Proof. Using (4.2) and (4.23), we have hl = 0 then using the Theorem 2.2 in [7], at
page 159, the induced connection ∇ becomes a metric connection on M . 2

Denote by R̄ and R the curvature tensors of ∇̄ and ∇ respectively then by
straightforward calculations ([7]), we have

R̄(X,Y )Z = R(X,Y )Z + Ahl(X,Z)Y −Ahl(Y,Z)X + Ahs(X,Z)Y

−Ahs(Y,Z)X + (∇Xhl)(Y, Z) − (∇Y h
l)(X,Z)

+Dl(X,hs(Y, Z)) −Dl(Y, hs(X,Z)) + (∇Xhs)(Y, Z)

−(∇Y h
s)(X,Z) + Ds(X,hl(Y, Z)) −Ds(Y, hl(X,Z)),(4.24)

where

(∇Xhs)(Y,Z) = ∇s
Xhs(Y, Z) − hs(∇XY, Z) − hs(Y,∇XZ).

(∇Xhl)(Y,Z) = ∇l
Xhl(Y, Z) − hl(∇XY, Z) − hl(Y,∇XZ).(4.25)

An indefinite complex space form is a connected indefinite Kaehler manifold of con-
stant holomorphic sectional curvature c and denoted by M̄(c). Then the curvature
tensor R̄ of M̄(c) is given by

R̄(X,Y )Z =
c

4
{ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX

−ḡ(JX,Z)JY + 2ḡ(X,JY )JZ},(4.26)

for X,Y, Z vector fields on M̄ . 2

Theorem 4.6. There exists no totally umbilical proper slant lightlike submanifold
of an indefinite complex space form M̄(c), c ̸= 0.

Proof. Suppose M be a totally umbilical proper lightlike submanifold of M̄(c)
such that c ̸= 0. Then using (4.26), for any X ∈ Γ(D), Z ∈ Γ(J̄ ltr(TM)) and
ξ ∈ Γ(Rad(TM)), we obtain

(4.27) ḡ(R̄(X, J̄X)Z, ξ) = − c

2
g(X,X)g(J̄Z, ξ).

On the other hand using (4.2) and (4.24), we get

(4.28) ḡ(R̄(X, J̄X)Z, ξ) = ḡ((∇Xhl)(J̄X, Z), ξ) − ḡ((∇J̄Xhl)(X,Z), ξ).

Using (4.2) and (4.25), we have

(4.29) (∇Xhl)(J̄X, Z) = −g(∇XTQ2X,Z)H l − g(TQ2X,∇XZ)H l.

Similarly

(4.30) (∇J̄Xhl)(X,Z) = −g(∇J̄XX,Z)H l − g(X,∇J̄XZ)H l.
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Using (4.29) and (4.30) in (4.28), we obtain

ḡ(R̄(X, J̄X)Z, ξ) = −g(∇XTQ2X,Z)ḡ(H l, ξ) − g(TQ2X,∇XZ)ḡ(H l, ξ)

+g(∇J̄XX,Z)ḡ(H l, ξ) + g(X,∇J̄XZ)ḡ(H l, ξ).(4.31)

Now using (4.2), we have

(4.32) g(TX,∇XZ) = −ḡ(∇̄XTQ2X,Z) = −g(∇XTQ2X,Z),

and

(4.33) g(X,∇J̄XZ) = −ḡ(∇̄J̄XX,Z) = −g(∇J̄XX,Z).

Using (4.32) and (4.33) in (4.31), we obtain

(4.34) ḡ(R̄(X, J̄X)Z, ξ) = 0.

Thus using (4.34) in (4.27), we have

c

2
g(X,X)g(J̄Z, ξ) = 0.

Since g is a Riemannian metric on D and (2.4) implies that g(J̄Z, ξ) ̸= 0, therefore
c = 0. This contradiction completes the proof. 2

In [7], a minimal lightlike submanifold M is defined when M is a hypersurface of
a 4-dimensional Minkowski space. Then in [2], a general notion of minimal lightlike
submanifold of a semi-Riemannian manifold M̄ is introduced as follows:

Definition 4.7. A lightlike submanifold (M, g, S(TM)) isometrically immersed in
a semi-Riemannian manifold (M̄, ḡ) is minimal if

(i) hs = 0 on Rad(TM) and

(ii) trace h = 0, where trace is written with respect to g restricted to S(TM).

We use the quasi orthonormal basis of M given by

{ξ1, ....., ξr, J̄ξ1, ....., J̄ξr, e1, ....., eq, J̄N1, ....., J̄Nr},

such that {ξ1, ....., ξr}, {J̄ξ1, ....., J̄ξr}, {e1, ....., eq} and {J̄N1, ....., J̄Nr} form a ba-
sis of Rad(TM), J̄(Rad(TM)), D and J̄(ltr(TM)) respectively.

Definition 4.8.([9]) A lightlike submanifold is called irrotational if and only if
∇̄Xξ ∈ Γ(TM) for all X ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)).

Theorem 4.9. Let M be an irrotational slant lightlike submanifold of an indefinite
Kaehler manifold M̄ . Then M is minimal if and only if

traceAWk
|S(TM) = 0, traceA∗

ξi |S(TM) = 0,
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where {Wk}lk=1 is a basis of S(TM⊥) and {ξi}ri=1 is a basis of Rad(TM).

Proof. Since M is an irrotational so this implies that hs(X, ξ) = 0 for X ∈ Γ(TM)
and ξ ∈ Γ(Rad(TM)). Thus hs vanishes on Rad(TM). Hence M is minimal if and
only if trace h = 0 on S(TM), that is, M is minimal if and only if

r∑
i=1

h(J̄ξi, J̄ξi) +
r∑

i=1

h(J̄Ni, J̄Ni) +

q∑
j=1

h(ej , ej) = 0.

Using (2.8) and (2.10) we obtain

r∑
i=1

h(J̄ξi, J̄ξi) =
r∑

i=1

{1

r

r∑
a=1

g(A∗
ξa J̄ξi, J̄ξi)Na

+
1

l

l∑
k=1

g(AWk
J̄ξi, J̄ξi)Wk}.(4.35)

Similarly, we have

r∑
i=1

h(J̄Ni, J̄Ni) =
r∑

i=1

{1

r

r∑
a=1

g(A∗
ξa J̄Ni, J̄Ni)Na

+
1

l

l∑
k=1

g(AWk
ej , ej)Wk},(4.36)

and

q∑
j=1

h(ej , ej) =

q∑
j=1

{1

r

r∑
i=1

g(A∗
ξiej , ej)Ni +

1

l

l∑
k=1

g(AWk
ej , ej)Wk}.(4.37)

Thus our assertion follows from (4.35)-(4.37). 2
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