GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

Dae Ho Jin*

Abstract. We study the geometry of half lightlike sbmanifolds M of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection subject to the conditions: (1) The screen distribution $S(T M)$ is totally umbilical (geodesic) and (2) the co-screen distribution $S\left(T M^{\perp}\right)$ of M is a conformal Killing one.

1. Introduction

H. A. Hayden [3] introduced the notion of a semi-symmetric metric connection on a Riemannian manifold. K. Yano [8] studied some properties of a Riemannian manifold endowed with a semi-symmetric metric connection. T. Imai [4] found some properties of a hypersurface of a Riemannian manifold with a semi-symmetric metric connection. Z. Nakao [7] studied submanifolds of a Riemannian manifold with semi-symmetric metric connections.

The objective of this paper is the study of half lightlike version of above classical results. We focus on the geometry of half lightlike submanifolds M of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semisymmetric metric connection subject to the conditions: (1) The screen distribution $S(T M)$ is totally umbilical and (2) the co-screen distribution $S\left(T M^{\perp}\right)$ is a conformal Killing one. The reason for this geometric condition on M is due to the fact that such a class admits an integrable screen distribution and the induced Ricci tensor of M to be symmetric. In Section 2, we prove a classification theorem for such a class. This theorem shows that if the torsion vector field of \widetilde{M} is tangent to M, then the local second fundamental forms B and C of M and $S(T M)$

[^0]respectively satisfy either $B=0$ or $C=0$. In Section 3 , we study the geometry of half lightlike submanifolds M of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection such that $S(T M)$ is totally geodesic and $S\left(T M^{\perp}\right)$ is conformal Killing.

2. Semi-symmetric metric connection

Let $(\widetilde{M}, \widetilde{g})$ be a semi-Riemannian manifold. A connection $\widetilde{\nabla}$ on \widetilde{M} is called a semi-symmetric metric connection [3] if it is metric, i.e., $\widetilde{\nabla} \widetilde{g}=0$ and its torsion tensor \widetilde{T} satisfies

$$
\begin{equation*}
\widetilde{T}(X, Y)=\pi(Y) X-\pi(X) Y \tag{1.1}
\end{equation*}
$$

for any vector fields X and Y of \widetilde{M}, where π is a 1 -form defined by

$$
\pi(X)=\widetilde{g}(X, \zeta)
$$

and ζ is a vector field on \widetilde{M}, which called the torsion vector field.
It is well known [2] that the radical distribution $\operatorname{Rad}(T M)=T M \cap$ $T M^{\perp}$ of half lightlike submanifolds M of a semi-Rimannian manifold of codimension 2 is a subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$. Thus there exist complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, which called the screen and co-screen distribution on M;

$$
\begin{align*}
& T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} S(T M) \tag{1.2}\\
& T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
\end{align*}
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a half lightlike submanifold by $M=(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M) \bmod -$ ule of smooth sections of any vector bundle E over M. Consider the orthogonal complementary distribution $S(T M)^{\perp}$ to $S(T M)$ in $T \widetilde{M}$. Certainly $T M^{\perp}$ is a subbundle of $S(T M)^{\perp}$. As $S\left(T M^{\perp}\right)$ is a nondegenerate subbundle of $S(T M)^{\perp}$, the orthogonal complementary distribution $S\left(T M^{\perp}\right)^{\perp}$ to $S\left(T M^{\perp}\right)$ in $S(T M)^{\perp}$ is also a non-degenerate distribution. Clearly $\operatorname{Rad}(T M)$ is a subbundle of $S\left(T M^{\perp}\right)^{\perp}$. Choose $L \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ as a unit vector field with $\widetilde{g}(L, L)=\epsilon= \pm 1$. For any null section ξ of $\operatorname{Rad}(T M)$, there exists a uniquely defined null vector field $N \in \Gamma\left(S\left(T M^{\perp}\right)^{\perp}\right)$ satisfying

$$
\widetilde{g}(\xi, N)=1, \widetilde{g}(N, N)=\widetilde{g}(N, X)=\widetilde{g}(N, L)=0, \forall X \in \Gamma(S(T M))
$$

Denote by $\operatorname{ltr}(T M)$ the vector subbundle of $S\left(T M^{\perp}\right)^{\perp}$ locally spanned by N. Then we show that $S\left(T M^{\perp}\right)^{\perp}=\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)$. Let $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} l \operatorname{ltr}(T M)$. We call $N, \operatorname{ltr}(T M)$ and $\operatorname{tr}(T M)$ the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution $S(T M)$ respectively. Then $T \widetilde{M}$ is decomposed as follow:

$$
\begin{align*}
T \widetilde{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \tag{1.3}\\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) .
\end{align*}
$$

Let P be the projection morphism of $T M$ on $S(T M)$ with respect to the decomposition (1.2). The local Gauss and Weingarten formulas of M and $S(T M)$ are given by

$$
\begin{align*}
& \widetilde{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) L \tag{1.4}\\
& \widetilde{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) L, \tag{1.5}\\
& \widetilde{\nabla}_{X} L=-A_{L} X+\phi(X) N, \tag{1.6}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi, \tag{1.7}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi, \quad \forall X, Y \in \Gamma(T M) \tag{1.8}
\end{align*}
$$

respectively, where ∇ and ∇^{*} are induced connections on $T M$ and $S(T M)$ respectively, B and D are called the local second fundamental forms of M, C is called the local second fundamental form on $S(T M)$. A_{N}, A_{ξ}^{*} and A_{L} are linear operators on $T M$ and τ, ρ and ϕ are 1-forms on $T M$. We say that $h(X, Y)=B(X, Y) N+D(X, Y) L$ is the second fundamental tensor of M. The induced connection ∇ on M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{1.9}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$, where η is a 1 -form on $T M$ such that

$$
\begin{equation*}
\eta(X)=\widetilde{g}(X, N), \forall X \in \Gamma(T M) \tag{1.10}
\end{equation*}
$$

But the connection ∇^{*} is metric. Using (1.1) and (1.4), we show that

$$
\begin{equation*}
T(X, Y)=\pi(Y) X-\pi(X) Y, \quad \forall X, Y \in \Gamma(T M), \tag{1.11}
\end{equation*}
$$

and B and D are symmetric, where T is the torsion tensor with respect to ∇. From (1.9) and (1.11), we show that the induced connection ∇ of M is a semi-symmetric non-metric connection of M. From the facts $B(X, Y)=\widetilde{g}\left(\widetilde{\nabla}_{X} Y, \xi\right)$ and $D(X, Y)=\epsilon \widetilde{g}\left(\widetilde{\nabla}_{X} Y, L\right)$, we know that B and D are independent of the choice of $S(T M)$ and satisfy

$$
\begin{equation*}
B(X, \xi)=0, D(X, \xi)=-\epsilon \phi(X), \forall X \in \Gamma(T M) \tag{1.12}
\end{equation*}
$$

The above three local second fundamental forms are related to their shape operators by

$$
\begin{array}{lll}
(1.13) & B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \widetilde{g}\left(A_{\xi}^{*} X, N\right)=0 \\
(1.14) & C(X, P Y)=g\left(A_{N} X, P Y\right), & \widetilde{g}\left(A_{N} X, N\right)=0 \\
(1.15) & \epsilon D(X, Y)=g\left(A_{L} X, Y\right)-\phi(X) \eta(Y), \widetilde{g}\left(A_{L} X, N\right)=\epsilon \rho(X), \tag{1.14}
\end{array}
$$

for all $X, Y \in \Gamma(T M)$. By (1.13) and (1.14), we show that A_{ξ}^{*} and A_{N} are $\Gamma(S(T M)$)-valued shape operators related to B and C respectively and A_{ξ}^{*} is self-adjoint on $T M$ and

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 \tag{1.16}
\end{equation*}
$$

Denote by \widetilde{R}, R and R^{*} the curvature tensors of the semi-symmetric metric connection $\widetilde{\nabla}$ on \widetilde{M}, the induced connection ∇ on M and the induced connection ∇^{*} on $S(T M)$ respectively. Using the Gauss - Weingarten equations (1.4) $\sim(1.8)$ for M and $S(T M)$, we obtain the Gauss-Codazzi equations for M and $S(T M)$:
(1.17) $\widetilde{g}(\widetilde{R}(X, Y) Z, P W)=g(R(X, Y) Z, P W)$
$+B(X, Z) C(Y, P W)-B(Y, Z) C(X, P W)$
$+\epsilon\{D(X, Z) D(Y, P W)-D(Y, Z) D(X, P W)\}$,

$$
\begin{align*}
& \widetilde{g}(\widetilde{R}(X, Y) Z, \xi)=\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z) \tag{1.18}\\
& \quad+[\tau(X)-\pi(X)] B(Y, Z)-[\tau(Y)-\pi(Y)] B(X, Z) \\
& \quad+\phi(X) D(Y, Z)-\phi(Y) D(X, Z)
\end{align*}
$$

$$
\begin{align*}
& \widetilde{g}(\widetilde{R}(X, Y) Z, N)=\widetilde{g}(R(X, Y) Z, N) \tag{1.19}\\
& \quad+\epsilon\{\rho(Y) D(X, Z)-\rho(X) D(Y, Z)\} \tag{1.20}
\end{align*}
$$

(1.21) $\widetilde{g}(\widetilde{R}(X, Y) \xi, N)=g\left(A_{\xi}^{*} X, A_{N} Y\right)-g\left(A_{\xi}^{*} Y, A_{N} X\right)$

$$
-2 d \tau(X, Y)+\rho(X) \phi(Y)-\rho(Y) \phi(X)
$$

(1.22) $\quad g(R(X, Y) P Z, P W)=g\left(R^{*}(X, Y) P Z, P W\right)$

$$
+C(X, P Z) B(Y, P W)-C(Y, P Z) B(X, P W)
$$

$$
\begin{align*}
& \widetilde{g}(R(X, Y) P Z, N)=\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z) \tag{1.23}\\
& \quad+[\tau(Y)+\pi(Y)] C(X, P Z)-[\tau(X)+\pi(X)] C(Y, P Z)
\end{align*}
$$

for all $X, Y, Z, W \in \Gamma(T M)$.

The Ricci curvature tensor, denoted by $\widetilde{R i c}$, of \widetilde{M} is defined by

$$
\widetilde{\operatorname{Ric}}(X, Y)=\operatorname{trace}\{Z \rightarrow \widetilde{R}(Z, X) Y\}
$$

for any $X, Y \in \Gamma(T \widetilde{M})$. Let $\operatorname{dim} \widetilde{M}=m+3$. Locally, $\widetilde{\text { Ric }}$ is given by

$$
\begin{equation*}
\widetilde{\operatorname{Ric}}(X, Y)=\sum \epsilon_{i} \widetilde{g}\left(\widetilde{R}\left(E_{i}, X\right) Y, E_{i}\right) \tag{1.24}
\end{equation*}
$$

where $\left\{E_{1}, \ldots, E_{m+3}\right\}$ is an orthonormal frame field of $T \widetilde{M}$ and $\epsilon_{i}(=$ $\pm 1)$ denotes the causal character of respective vector field E_{i}. If the Ricci tensor $\widetilde{R i c}$ is of the form

$$
\widetilde{R i c}=\widetilde{\kappa} \widetilde{g}, \quad \widetilde{\kappa} \text { is a smooth function on } \widetilde{M},
$$

then \widetilde{M} is called to be an Einstein manifold. If \widetilde{M} is connected Einstein manifold with $\operatorname{dim}(\widetilde{M})=2$, then $\widetilde{\kappa}$ is a constant. A semi-Riemannian manifold \widetilde{M} of constant curvature c is called a space form, denote it by $\widetilde{M}(c)$. Then the curvature tensor \widetilde{R} of \widetilde{M} is given by

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=c\{\widetilde{g}(Y, Z) X-\widetilde{g}(X, Z) Y\}, \quad \forall X, Y, Z \in \Gamma(T \widetilde{M}) . \tag{1.25}
\end{equation*}
$$

In general, $S(T M)$ is not necessarily integrable. The following result gives equivalent conditions for the integrability of $S(T M)$:

Theorem 2.1. Let M be a half lightlike submanifold of a semiRiemannian manifold \widetilde{M} admitting a semi-symmetric metric connection. The following assertions are equivalent :
(1) The screen distribution $S(T M)$ is an integrable distribution.
(2) C is symmetric, i.e., $C(X, Y)=C(Y, X)$ for all $X, Y \in \Gamma(S(T M))$.
(3) The shape operator A_{N} is self-adjoint with respect to g, i.e.,

$$
g\left(A_{N} X, Y\right)=g\left(X, A_{N} Y\right), \quad \forall X, Y \in \Gamma(S(T M)) .
$$

Proof. First, note that a vector field X on M belongs to $S(T M)$ if and only if we have $\eta(X)=0$. Next, by using (1.7) and (1.11), we have

$$
C(X, Y)-C(Y, X)=\eta([X, Y]), \quad \forall X, Y \in \Gamma(S(T M))
$$

which implies the equivalence of (1) and (2). Finally, the equivalence of (2) and (3) follows from the first equation of (1.14) [denote (1.14) $)_{1}$].

3. Totally umbilical screen distributions

Let $R^{(0,2)}$ denote the induced Ricci type tensor on M given by

$$
\begin{equation*}
R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\}, \quad \forall X, Y \in \Gamma(T M) . \tag{2.1}
\end{equation*}
$$

Consider the induced quasi-orthonormal frame $\left\{\xi ; W_{a}\right\}$ on M, where $\operatorname{Rad}(T M)=\operatorname{Span}\{\xi\}$ and $S(T M)=\operatorname{Span}\left\{W_{a}\right\}$ and let $\left\{\xi, W_{a} ; L, N\right\}$ be the corresponding frame field on \widetilde{M}. Using (1.24) and (2.1), we get

$$
\begin{align*}
\widetilde{\operatorname{Ric}}(X, Y) & =\sum_{a=1}^{m} \epsilon_{a} \widetilde{g}\left(\widetilde{R}\left(W_{a}, X\right) Y, W_{a}\right)+\widetilde{g}(\widetilde{R}(\xi, X) Y, N) \tag{2.2}\\
& +\epsilon \widetilde{g}(\widetilde{R}(L, X) Y, L)+\widetilde{g}(\widetilde{R}(N, X) Y, \xi) . \\
R^{(0,2)}(X, Y) & =\sum_{a=1}^{m} \epsilon_{a} g\left(R\left(W_{a}, X\right) Y, W_{a}\right)+\widetilde{g}(R(\xi, X) Y, N) . \tag{2.3}
\end{align*}
$$

Substituting (1.17) and (1.19) in (2.2) and using (1.13)~(1.15) and (2.3), for any $X, Y \in \Gamma(T M)$, we obtain

$$
\begin{align*}
R^{(0,2)}(& X, Y)=\widetilde{\operatorname{Ric}}(X, Y)+B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{L} \tag{2.4}\\
& -g\left(A_{N} X, A_{\xi}^{*} Y\right)-\epsilon g\left(A_{L} X, A_{L} Y\right)+\rho(X) \phi(Y) \\
& -\widetilde{g}(\widetilde{R}(\xi, Y) X, N)-\epsilon \widetilde{g}(\widetilde{R}(L, Y) X, L) .
\end{align*}
$$

This shows that $R^{(0,2)}$ is not symmetric. $R^{(0,2)}$ is called the induced Ricci tensor, denoted by Ric, of M if it is symmetric.

Using (1.21), (2.4) and the first Bianchi's identity, we obtain

$$
R^{(0,2)}(X, Y)-R^{(0,2)}(Y, X)=2 d \tau(X, Y) .
$$

Theorem 3.1. [5]. Let M be a half lightlike submanifold of a semiRiemannian manifold \widetilde{M} admitting a semi-symmetric metric connection. Then the Ricci type tensor $R^{(0,2)}$ is symmetric if and only if the 1 -form τ is closed, i.e., $d \tau=0$, on any $\mathcal{U} \subset M$.

If \widetilde{M} is a semi-Riemannian space form $\widetilde{M}(c)$, then we have

$$
\widetilde{R}(\xi, Y) X=c \widetilde{g}(X, Y) \xi, \quad \widetilde{R}(L, X) Y=c \widetilde{g}(X, Y) L
$$

and $\widetilde{\operatorname{Ric}}(X, Y)=(m+2) c \widetilde{g}(X, Y)$. Thus we obtain

$$
\begin{align*}
R^{(0,2)}(X, Y) & =m c g(X, Y)+B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{L} \tag{2.5}\\
& -g\left(A_{N} X, A_{\xi}^{*} Y\right)-\epsilon g\left(A_{L} X, A_{L} Y\right)+\rho(X) \phi(Y) .
\end{align*}
$$

A vector field X on \widetilde{M} is said to be a conformal Killing vector field [5] if $\widetilde{\mathcal{L}}_{X} \widetilde{g}=2 \alpha \widetilde{g}$ for any smooth function α, where $\widetilde{\mathcal{L}}_{X}$ denotes the Lie derivative with respect to X, that is,

$$
\left(\widetilde{\mathcal{L}}_{X} \widetilde{g}\right)(Y, Z)=X(\widetilde{g}(Y, Z))-\widetilde{g}([X, Y], Z)-\widetilde{g}(Y,[X, Z]),
$$

for all $X, Y, Z \in \Gamma(T \widetilde{M})$. In particular, if $\alpha=0$, then X is called a Killing vector field. A distribution \mathcal{G} on \widetilde{M} is called a conformal Killing (or Killing) distribution if each vector field belonging to \mathcal{G} is a conformal Killing (or Killing) vector field.

Theorem 3.2. [5]. Let M be a half lightlike submanifold of a semiRiemannian manifold \widetilde{M} admitting a semi-symmetric metric connection. If $S\left(T M^{\perp}\right)$ is a conformal Killing distribution, then there exists a smooth function $\delta=-\{\alpha+\pi(L)\}$ such that

$$
\begin{equation*}
D(X, Y)=\epsilon \delta g(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{2.6}
\end{equation*}
$$

Moreover, if $S\left(T M^{\perp}\right)$ is a Killing distribution, then the equation (2.6) holds and the function δ is given by $\delta=-\pi(L)$.

Definition 3.3. We say that the screen distribution $S(T M)$ of M is totally umbilical[2] in M if, on any coordinate neighborhood $\mathcal{U} \subset M$, there is a smooth function γ such that

$$
\begin{equation*}
C(X, P Y)=\gamma g(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{2.7}
\end{equation*}
$$

In case $\gamma=0$ on \mathcal{U}, we say that $S(T M)$ is totally geodesic in M.
For the rest of this paper, by M is screen totally umbilical we shall mean the screen distribution $S(T M)$ is totally umbilical in M.

Theorem 3.4. Let M be a screen totally umbilical half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semisymmetric metric connection and a conformal Killing co-screen distribution. Then $R^{(0,2)}$ is a symmetric Ricci tensor of M.

Proof. Assume that $S\left(T M^{\perp}\right)$ is a conformal Killing distribution. From $(1.12)_{2}$ and (2.6), we show that $\phi=0$. From this result, (2.5) and the facts $A_{N} X=\gamma P X$ and A_{ξ}^{*} is self-adjoint, we deduce that $R^{(0,2)}$ is a symmetric Ricci tensor of M.
Assume that $S(T M)$ is totally umbilical in M and $S\left(T M^{\perp}\right)$ is conformal Killing on \widetilde{M}. Then (1.18) and (1.20) reduce to

$$
\begin{align*}
\left(\nabla_{X} B\right)(Y, Z) & -\left(\nabla_{Y} B\right)(X, Z)=B(X, Z)\{\tau(Y)-\pi(Y)\} \tag{2.8}\\
& -B(Y, Z)\{\tau(X)-\pi(X)\} \\
\left(\nabla_{X} D\right)(Y, Z) & -\left(\nabla_{Y} D\right)(X, Z)=\rho(Y) B(X, Z)-\rho(X) B(Y, Z) \tag{2.9}\\
& -\pi(Y) D(X, Z)+\pi(X) D(Y, Z)
\end{align*}
$$

Applying ∇_{Z} to (2.7) and using (1.9), we have

$$
\left(\nabla_{X} C\right)(Y, P Z)=X[\gamma] g(Y, P Z)+\gamma B(X, P Z) \eta(Y)
$$

Substituting this equation into (1.23) and using (2.7), we get

$$
\begin{gathered}
\widetilde{g}(R(X, Y) P Z, N)=\gamma\{B(X, P Z) \eta(Y)-B(Y, P Z) \eta(X)\} \\
+\{X[\gamma]-\gamma \tau(X)-\gamma \pi(X)\} g(Y, P Z) \\
-\{Y[\gamma]-\gamma \tau(Y)-\gamma \pi(Y)\} g(X, P Z)
\end{gathered}
$$

Substituting this result, (1.25) and (2.6) into (1.19), we obtain

$$
\begin{aligned}
& \{X[\gamma]-\gamma \tau(X)-\gamma \pi(X)-\delta \rho(X)-c \eta(X)\} g(Y, P Z) \\
& \quad-\{Y[\gamma]-\gamma \tau(Y)-\gamma \pi(Y)-\delta \rho(Y)-c \eta(Y)\} g(X, P Z) \\
& =\gamma\{B(Y, P Z) \eta(X)-B(X, P Z) \eta(Y)\}, \quad \forall X, Y, Z \in \Gamma(T M) .
\end{aligned}
$$

Replacing Y by ξ to this equation and using $(1.12)_{1}$, we have

$$
\begin{equation*}
\gamma B(X, Y)=\{\xi[\gamma]-\gamma \tau(\xi)-\gamma \pi(\xi)-\delta \rho(\xi)-c\} g(X, Y) . \tag{2.10}
\end{equation*}
$$

Theorem 3.5. Let M be a screen totally umbilical half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c), m>2$, admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution. If the torsion vector field ζ of \widetilde{M} is tangent to M, then the local second fundamental forms B and C of M and $S(T M)$ respectively satisfy either $B=0$ or $C=0$ on any $\mathcal{U} \subset M$. Moreover we show that
(1) $C=0$ on any $\mathcal{U} \subset M$ implies that $S(T M)$ is a totally geodesical distribution,
(2) $B=0$ on any $\mathcal{U} \subset M$ implies that M is totally umbilical immersed in $\widetilde{M}(c)$ and the induced connection ∇ on M is a semi-symmetric metric connection.

Proof. Assume that $\gamma \neq 0$: As ζ is tangent to M, (2.10) reduce to

$$
\begin{equation*}
B(X, Y)=\beta g(X, Y), \forall X, Y \in \Gamma(T M), \tag{2.11}
\end{equation*}
$$

where $\beta=\gamma^{-1}(\xi[\gamma]-\gamma \tau(\xi)-\delta \rho(\xi)-c)$. Since $S(T M)$ is totally umbilical in M, by Theorem $2.1 S(T M)$ is integrable. Let M^{*} be a leaf of $S(T M)$ and Ric* be the symmetric Ricci tensor of M^{*}. From (1.17), (1.22), (1.25), (2.6), (2.7) and (2.11), we have

$$
\begin{gathered}
R^{*}(X, Y) Z=\left(c+2 \beta \gamma+\epsilon \delta^{2}\right)\{g(Y, Z) X-g(X, Z) Y\} \\
\operatorname{Ric}^{*}(X, Y)=\left(c+2 \beta \gamma+\epsilon \delta^{2}\right)(m-1) g(X, Y) .
\end{gathered}
$$

Thus M^{*} is an Einstein semi-Riemannian manifold of constant curvature $\left(c+2 \beta \gamma+\epsilon \delta^{2}\right)$ as $m>2$. Differentiating (2.6) and (2.11) and using (2.8) and (2.9), for any $X, Y, Z \in \Gamma(S(T M))$, we have

$$
\begin{aligned}
& \left\{X[\beta]+\beta \tau(X)-\beta \pi(X)-\beta^{2} \eta(X)\right\} g(Y, Z) \\
& \quad=\left\{Y[\beta]+\beta \tau(Y)-\beta \pi(Y)-\beta^{2} \eta(Y)\right\} g(X, Z),
\end{aligned}
$$

$$
\begin{aligned}
& \{X[\delta]+\epsilon \beta \rho(X)-\delta \pi(X)-\beta \delta \eta(X)\} g(Y, Z) \\
& \quad=\{Y[\delta]+\epsilon \beta \rho(Y)-\delta \pi(Y)-\beta \delta \eta(Y)\} g(X, Z) .
\end{aligned}
$$

From (2.11) and the last two equations, we have
$\xi[\beta]=\beta^{2}-\beta \tau(\xi), \quad \xi[\delta]=\beta \delta-\epsilon \beta \rho(\xi), \quad \xi[\gamma]=\beta \gamma+\gamma \tau(\xi)+\delta \rho(\xi)+c$, due to $\pi(\xi)=0$. Since $\left(c+2 \beta \gamma+\epsilon \delta^{2}\right)$ is a constant, we get

$$
0=\xi\left[c+2 \beta \gamma+\epsilon \delta^{2}\right]=2 \beta\left(c+2 \beta \gamma+\epsilon \delta^{2}\right) .
$$

As $\left(c+2 \beta \gamma+\epsilon \delta^{2}\right)$ is a constant, we have $\beta=0$ or $c+2 \beta \gamma+\epsilon \delta^{2}=0$. If $c+2 \beta \gamma+\epsilon \delta^{2}=0$, then M^{*} is a semi-Euclidean space. As the second fundamental form C of the totally umbilical semi-Euclidean space M^{*} as a submanifold of the semi-Riemannian space form $\widetilde{M}(c)$ vanishes $[1$, Section 2.3], we get $\gamma=0$. It is a contradiction to $\gamma \neq 0$. Thus $\beta=0$, i.e., $B=0$. In this case, from (2.6) and (2.11), the second fundamental tensor h of M is given by $h=\mathcal{H} g$, where $\mathcal{H}=\beta N+\epsilon \delta L=\epsilon \delta L$ is the curvature vector field on M. Thus M is totally umbilical. As $B=0$, we have $\nabla_{x} g=0$ by (1.9). From this result and (1.11), we see that the induced connection ∇ on M is a semi-symmetric metric connection.

4. Totally geodesic screen distributions

Theorem 4.1. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semisymmetric metric connection and a conformal Killing co-screen distribution. Then $c+\delta \rho(\xi)=0$ and M is an Einstein manifold. Moreover if $m>1$, then the function δ, given by (2.6), is a constant.

Proof. As $C=0$, we have $\widetilde{g}(R(X, Y) P Z, N)=0$ due to (1.23). Using this, (1.19) and (2.6), we have

$$
\widetilde{g}(\widetilde{R}(X, Y) P Z, N)=\delta\{g(X, P Z) \rho(Y)-g(Y, P Z) \rho(X)\}
$$

By Theorem 3.1 and Theorem 3.3, we get $d \tau=0$ on $T M$. Thus we have $\widetilde{g}(\widetilde{R}(X, Y) \xi, N)=0$ due to (1.21). From the above results, we deduce the following equation

$$
\begin{equation*}
\widetilde{g}(\widetilde{R}(X, Y) Z, N)=\delta\{g(X, Z) \rho(Y)-g(Y, Z) \rho(X)\} . \tag{3.1}
\end{equation*}
$$

Replacing X by ξ and Z by X to (3.1) and using (1.25), we have

$$
\{c+\delta \rho(\xi)\} g(X, Y)=0, \quad \forall X, Y \in \Gamma(T M) .
$$

Thus we have $c+\delta \rho(\xi)=0$. Substituting the relations $\phi=A_{N}=0$, $\operatorname{tr} A_{L}=m \delta+\epsilon \rho(\xi)$ and $A_{L} X=\delta P X+\epsilon \rho(X) \xi$ into (2.5) and using $c+\delta \rho(\xi)=0$, we obtain

$$
R^{(0,2)}(X, Y)=(m-1)\left(c+\epsilon \delta^{2}\right) g(X, Y), \quad \forall X, Y \in \Gamma(T M) .
$$

Thus M is Einstein manifold and δ is constant as $\operatorname{dim} M=m+1>$ 2.

Theorem 4.2. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semisymmetric metric connection and a Killing co-screen distribution. If the torsion vector field ζ of \widetilde{M} is tangent to M, then $c=0$, and M is a space of constant curvature 0 , i.e., M is a flat manifold.

Proof. Assume that ζ is tangent to M. Then we have $\pi(L)=0$. Thus the conformal factor α is equal to $-\delta$. As $S\left(T M^{\perp}\right)$ is a Killing distribution, we have $\alpha=0$. Thus $\delta=0$ and $c=0$ due to $c+\delta \rho(\xi)=0$. From (1.17), (1.19) and the fact $C=D=0$, we have

$$
g(R(X, Y) Z, W)=0, \quad \widetilde{g}(R(X, Y) Z, N)=0 .
$$

The Riemannian curvature tensor R of M is given by

$$
R(X, Y) Z=\sum_{a=1}^{m} \epsilon_{a} g\left(R(X, Y) Z, W_{a}\right) W_{a}+\widetilde{g}(R(X, Y) Z, N) \xi=0 .
$$

Therefore M is a space of constant curvature 0 , i.e., M is flat.
Theorem 4.3. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c), m>1$, admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution. If $\delta \neq 0$, then the torsion vector field ζ belongs to $S(T M)^{\perp}$ and the 1 -form π satisfies $\pi(X)=\pi(\xi) \eta(X)$ for all $X \in \Gamma(T M)$.

Proof. As $m>1, \delta$ is constant. Comparing (1.25) and (3.1), we get

$$
\{c \eta(X)+\delta \rho(X)\} g(Y, Z)=\{c \eta(Y)+\delta \rho(Y)\} g(X, Z),
$$

for all $X, Y, Z \in \Gamma(T M)$. Taking $X=P X, Y=P Y$ and $Z=P Z$ in this equation and using the fact $S(T M)$ is non-degenerate, we have

$$
\delta \rho(P X) P Y=\delta \rho(P Y) P X, \quad \forall X, Y \in \Gamma(T M) .
$$

Suppose there exists a vector field $X_{o} \in \Gamma\left(T M_{\mid \mathcal{u}}\right)$ such that $\delta \rho\left(P X_{o}\right) \neq 0$ at a point $p \in M$. It follows that all vectors from the fibre $S(T M)_{p}$ are
collinear with $\left(P X_{o}\right)_{p}$. It is a contradiction as $m>1$. Thus we have $\delta \rho(P X)=0$ for any $X \in \Gamma(T M)$ and

$$
\begin{equation*}
\delta \rho(X)=\delta \rho(P X+\eta(X) \xi)=\delta \rho(\xi) \eta(X)=-c \tag{3.2}
\end{equation*}
$$

Assume that δ does not vanishes. Then we have $\rho(P X)=0$ and

$$
\rho(X)=-(c / \delta) \eta(X), \quad \forall X \in \Gamma(T M)
$$

Substituting (2.6) into (2.9) and using the fact δ is a constant, we have

$$
\begin{align*}
& \{\delta \eta(Y)-\epsilon \rho(Y)\} B(X, Z)-\{\delta \eta(X)-\epsilon \rho(X)\} B(Y, Z) \tag{3.3}\\
& =\delta\{\pi(X) g(Y, Z)-\pi(Y) g(X, Z)\}, \quad \forall X, Y, Z \in \Gamma(T M)
\end{align*}
$$

Taking $X=P X, Y=P Y$ and $Z=P Z$ in this equation and using the facts $\rho(P X)=0, \delta \neq 0$ and $S(T M)$ is non-degenerate, we have

$$
\pi(P X) P Y=\pi(P Y) P X, \quad \forall X, Y \in \Gamma(T M)
$$

As $m>1, \pi(P X)=0$ and $\pi(X)=\pi(P X+\eta(X) \xi)=\pi(\xi) \eta(X)$ for any $X \in \Gamma(T M)$. From the decomposition (1.3), the torsion vector field ζ is decomposed by

$$
\zeta=\omega+\pi(N) \xi+\pi(\xi) N+\epsilon \pi(L) L
$$

where ω is a smooth vector field on $S(T M)$ and $\pi(N) \xi+\pi(\xi) N+$ $\epsilon \pi(L) L \in \Gamma\left(S(T M)^{\perp}\right)$. Taking the scalar product with X to the last equation and using $\pi(X)=\pi(\xi) \eta(X)$, we get $g(\omega, X)=0$ for all $X \in \Gamma(T M)$. As $S(T M)$ is non-degenerate, we have $\omega=0$. This implies that ζ belongs to $S(T M)^{\perp}$.

Corollary 4.4. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c), m>1$, admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution with non-vanishing conformal factor. If the torsion vector field ζ is tangent to M, then the 1-form π vanishes identically on $T M$.

Proof. If ζ is tangent to M, then we have $\pi(\xi)=g(\zeta, \xi)=0$. Thus $\pi(X)=0$ for all $X \in \Gamma(T M)$ due to $\pi(X)=\pi(\xi) \eta(X)$. In case ζ is tangent to M, we know that $\alpha=-\delta$. Thus if the conformal factor α does not vanishes, then we have $\delta \neq 0$.

The type number $t^{*}(x)$ of M at any point x is the rank of A_{ξ}^{*}.
Theorem 4.5. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c), m>1$, admitting a semi-symmetric metric connection and a conformal Killing co-screen
distribution. If the torsion vector field ζ is tangent to M and the type number t^{*} satisfies $t^{*}(x) \geq 1$ for any $x \in M$, then M is a flat manifold.

Proof. Under the assumption of this theorem, we have

$$
\begin{gather*}
g(R(X, Y) Z, P W)=\left(c+\epsilon \delta^{2}\right)\{g(Y, Z) g(X, P W) \tag{3.4}\\
-g(X, Z) g(Y, P W)\} \\
\widetilde{g}(R(X, Y) Z, N)=\{c \eta(X)+\delta \rho(X)\} g(Y, Z) \tag{3.5}\\
-\{c \eta(Y)+\delta \rho(Y)\} g(X, Z)
\end{gather*}
$$

for all $X, Y, Z, W \in \Gamma(T M)$. Due to (3.2), we have $\widetilde{g}(R(X, Y) Z, N)=0$. Replacing Y by ξ to (3.3), we obtain

$$
\{\delta-\epsilon \rho(\xi)\} B(X, Y)=0, \quad \forall X, Y \in \Gamma(T M)
$$

As δ is a constant and $c+\delta \rho(\xi)=0, \rho(\xi)$ and $\delta-\epsilon \rho(\xi)$ are constants. Assume that $t^{*}(x) \geq 1$ for any $x \in M$. Then we have $\delta-\epsilon \rho(\xi)=0$. This implies $c+\epsilon \delta^{2}=0$ due to $c+\delta \rho(\xi)=0$. From this and (3.4). we get $g(R(X, Y) Z, P W)=0$. Thus M is a flat manifold.

DEFINITION 4.6. M is said to be irrotational [6] if $\widetilde{\nabla}_{X} \xi \in \Gamma(T M)$ for any $X \in \Gamma(T M)$, i.e., $D(X, \xi)=0=\phi(X)$ for all $X \in \Gamma(T M)$.

Remark 4.7. Instead of the condition $S\left(T M^{\perp}\right)$ is conformal Killing distribution of Theorem $4.1 \sim 4.4$, even though we use the condition M is irrotational of Definition 4.6 given above, it is easy to find that we can establish the same results Theorem $4.1 \sim 4.4$ except Theorem 4.2.

References

[1] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
[2] K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121-161.
[3] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
[4] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection, Tensor, N. S., 23, 1972, 300-306.
[5] D. H. Jin and J. W. Lee, Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric metric connection, to appear Mediterranean J. of Mathematics.
[6] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[7] Z. Nakao, Submanifolds of a Riemannian manifold with semi-symmetric metric connection, Proc. Amer. Math. Soc. 54 (1976), 261-266.
[8] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.

Department of Mathematics Dongguk University
Gyeongju 780-714, Republic of Korea
E-mail: jindh@dongguk.ac.kr

[^0]: Received August 03, 2011; Accepted November 18, 2011.
 2010 Mathematics Subject Classification: Primary 53C25, 53C40, 53C50.
 Key words and phrases: totally umbilical, conformal Killing distribution, semiRiemannian space form with semi-symmetric metric connection.

