HALF LIGHTLIKE SUBMANIFOLDS WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho (DEPARTMENT OF MATHEMATICS, DONGGUK UNIVERSITY)
  • Published : 2010.02.28

Abstract

We study the geometry of half light like submanifold M of a semi-Riemannian space form $\bar{M}$(c) subject to the conditions : (a) the screen distribution on M is totally umbilic in M and the coscreen distribution on M is conformal Killing on $\bar{M}$ or (b) the screen distribution is totally geodesic in M and M is irrotational.

Keywords

References

  1. Duggal, K.L. & Bejancu, A.: Lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 15 (1992), 59-82.
  2. Duggal, K.L. & Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht, 1996.
  3. Duggal, K.L. & Jin, D.H.: Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 22 (1999), 121-161.
  4. Harris, S.G.: A triangle comparison theorem for Lorentz manifolds. Indiana Math. J. 31, (1982a), 289-308. https://doi.org/10.1512/iumj.1982.31.31026
  5. Jin, D.H.: Einstein half lightlike submanifolds with a Killing co-screen distribution. Honam Math. J. 30 (2008), no. 3, 487-504. https://doi.org/10.5831/HMJ.2008.30.3.487
  6. Jin, D.H.: A characterization of screen conformal half lightlike submanifolds. Honam Math. J. 31 (2009), no. 1, 17-23. https://doi.org/10.5831/HMJ.2009.31.1.017
  7. Kupeli, D.N.: Singular Semi-Riemannian Geometry. Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  8. Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. The Macmillan Company, 1965.