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ON LIGHTLIKE HYPERSURFACES OF

COSYMPLECTIC SPACE FORM

Ejaz Sabir Lone and Pankaj Pandey

Abstract. The main purpose of this paper is to study the lightlike hy-

persurface (M, ḡ) of cosymplectic space form M̄(c). In this paper, we com-
puted the Gauss and Codazzi formulae of (M, ḡ) of cosymplectic manifold

(M̄, g). We showed that we can’t obtain screen semi-invariant lightlike

hypersurface (SCI-LH) of M̄(c) with parallel second fundamental form h,
parallel screen distribution and c 6= 0. We showed that if second funda-

mental form h and local second fundamental form B are parallel, then
(M, ḡ) is totally geodesic. Finally we showed that if (M, ḡ) is umbilical,

then cosymplectic manifold (M̄, g) is flat.

1. Introduction

In differential geometry, the concept of lightlike hypersurface theory of psedo-
Riemannian manifolds is a very important and interesting topic for researchers
to study. There are different types of sub-manifolds of psedo-Riemannian man-
ifolds like lightlike, timelike and spacelike submanifolds, that depends on the
structure of an induced metric on (TP M̄).

In lightlike hypersurfaces as an induced metric is degenerate, the study be-
comes quite contrasting and more complicated from non-degenerate concept of
semi-Riemannian manifolds. One of the main difference or contrast between
lightlike hypersurfaces and non-degenerate is that, in case of lightlike hypersur-
face, the normal vector and tangent vector bundles has non-trivial intersections.

Moreover in case of degenerate metric on hypersurfaces the tangent vector
bundle contains normal vector bundle. In mathematical physics and general
relativity the extensive theory of lightlike submanifolds has been studied from
time to time and had found its applications in black horizons, the Kruskal and
Kerr black holes.
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In (1996), Duggal and Bejancu [7] introduced the concept of degenerate par-
ticularly lightlike-geometry of semi-Riemannian manifolds, and they gave ex-
trinsic approach in the field of differential geometry. This created widespread
interest among researchers to study lightlike geometry of semi-Riemannian
manifolds. With the passage of time several authors studied lightlike hypersur-
faces of psedo-Riemannian manifolds. See also [3,8,9] and many more references
there in.

N. Aktan [2] investigated lightlike hypersurfaces of indefinite Sasakian space
form and [1] indefinite Kenmotsu space form, and proved non-existence of light-
like hypersurfaces of these manifolds. Recent years have witnessed a surge in
interest in the fields of contact and almost contact geometry, as well as related
topics such as super gravity and M. theory. An odd dimensional cosymplec-
tic manifold has been proved to be a very valuable kind of almost contact
manifold. In (1958), [10] Libermann proposed the concept of cosymplectic
manifold, which, according to [13], means smooth odd-dimensional manifolds
endowed with closed 1-form η and 2-form ω.

The odd dimensional equivalent of a Kaehlar manifold is a cosymplectic
manifold and is locally the product of a line or a circle with a Kaehlar manifold.
In fact, a cosymplectic structure on an odd dimensional smooth manifold is a
normal almost contact metric structure such that the 1-form and fundamental
2-form are closed [13] and many more references therein.

2. Preliminaries

This section is devoted to give brief introduction of cosymplectic manifolds of
constant φ-sectional curvature c and lightlike hypersurfaces of semi-Riemannian
manifolds. A complete discussion on the contents used in this section can be
found in [4, 5, 8, 11,13].

2.1. Cosymplectic manifolds

Let (M̄, g) be an n-dimensional almost contact metric manifold endowed
with (φ, ξ, η, ḡ) as an almost contact metric structure, where φ, ξ, η and g rep-
resent a (1, 1)-tensor field, an associated vector field, a 1-form and the Rie-
mannian metric, respectively, satisfying

(1) φ2 = −I + η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0,

(2) g(φF, φJ) = g(F, J) + η(F )η(J); η(F ) = g(F, ξ),

where I represents identity tensor field and F , J ∈ χ(M). A normal contact
metric manifold (M̄, g) is said to be a cosymplectic manifold if it satisfies [13].

(3) (D̄Fφ)(J) = 0,

and

D̄F ξ = 0.

For any F , J on M , D̄ represents Levi-Civita connection on M .
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It is a well known fact that (φ, ξ, η, ḡ) is cosymplectic if and only if D̄η =
0 and D̄Φ vanishes, where D̄ represents covariant derivative with respect to
Riemannian metric g. The fundamental 2-form is given by

g(φF, J) = g(F, φJ) = Φ(F, J).

The plane section σ̄ in tangent space TPM is called a φ-section if spanned by
F and φF , where F is a unit vector field and is orthogonal to ξ. φ-sectional
curvature is the sectional curvature of a φ-section σ̄. If a cosymplectic manifold
(M̄, g) has constant φ-sectional curvature c at a point, then (M̄, g) is said to
be a cosymplectic space form and is denoted as M̄(c). The curvature tensor
R1 of cosymplectic space form is given [12,13]:

R1(F, J)L =
c

4
{g(φJ, φL)F − g(φF, φL)J

+ η(J)g(F,L)ξ − η(F )g(J, L)ξ + g(φJ, L)φF

− g(φF,L)φJ + 2g(F, φJ)φL}

(4)

for any F, J, L ∈ Γ(TM).

2.2. Light-like hypersurfaces

Let (M̄, g) be a semi-Riemannian manifold with index (g) = q ≥ 1 and let
(M, ḡ) be the hypersurface of (M̄, g) such that g = ḡ|M . If an induced metric
ḡ on hypersurface (M, ḡ) is degenerate, then the hypersurface (M, ḡ) is said
to be a lightlike hypersurface (see [6–8, 11]). On lightlike hypersurfaces there
exists null vector field ξ 6= 0 such that

ḡ(ξ, F ) = 0, ∀F ∈ Γ(TM̄).

In the field of degenerate geometry of manifolds RadTxM is a radical space or
null space of a tangent space TxM and is a subspace at each point F ∈ (M, ḡ)
and is defined by [7]

(5) RadTFM = {ξ ∈ TFM | gF (ξ, F ) = 0, ∀F ∈ Γ(TM)}.

The nullity degree of an induced metric ḡ is the dimension of RadTFM and it
is well known that for light-like hypersurface (M, ḡ) the nullity degree of ḡ is
1. RadTM is called radical distribution and is spanned by null vector field ξ.
S(TM) is a complementary vector bundle of RadTM in tangent bundle TM

called screen bundle of lightlike hypersurface (M). We note any S(TM) is non
degenerate and S(TM)⊥ is the complementary vector bundle of S(TM) in TM
of rank 2 is called screen transversal bundle. Since radical distribution RadTM
is null bundle of screen bundle S(TM)⊥ there exists X as a unique local section
of S(TM)⊥ [8] such that

g(X,W ) = g(X,X) = 0, g(X,Z) = 1.

The pair (X,Z) is a local frame field of S(TM)⊥ and note that X is transversal
to hypersurface M . Then there exists a line bundle ltrTM of tangent bundle of
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a manifold called as lightlike transversal bundle locally spanned by X. Hence
we have

TM̄ = TM ⊕ ltr(TM) = S(TM) ⊥ RadTM ⊕ ltr(TM),

where ⊕ represents direct sum but not orthogonal [7, 8]. In view of (6) the
Gauss and Weingarten formulas are given respectively by

D̄FJ = DFJ + h(F, J),

D̄FX = −AXF +Dt
FX.

If we set

(6) B(F, J) = g(h(F, J), Z),

τ(F ) = g(Dt
FX,Z),

then the above equations become

(7) D̄FJ = DFJ +B(F, J)X,

(8) D̄FX = −AXF + τ(F )X

for any F, J ∈ Γ(TM). Here X ∈ Γltr(TM), DFJ,−AXF ∈ Γ(TM) and
h(F, J), Dt

FX ∈ Γ(ltr(TM)). Here AX , B, D and Dt represent shape op-
erator, second fundamental form, torsion free linear connection on lightlike
hypersurface M and linear connection on ltr(TM), respectively [7]. From (5),
we can state that an induced connection on lightlike hypersurface M satisfies
the following condition

(DF g)(J, L) = B(F, J)θ(L) +B(F,L)θ(J).

For any F , J , L ∈ Γ(TM) and θ is a differential 1-form on M̄ locally defined
by θ(F ) = g(X,F ) and D is an induced non-metric connection on smooth
manifold M . It may be noted that B of M̄ is independent of the choice of
S(TM̄) and may be represented as B(−, Z) = 0.

With respect to projection P local Gauss and Weingarten formulas is as

∇FPJ = ∇∗FPJ + C(F, PJ)Z,

DFZ = −A∗ZF + τ(F )Z,

where ∇FPJ and A∗ζF ∈ S(TM), and A∗, C and ∇∗ represent local shape
operator, local second fundamental form and induced connection on screen
bundle S(TM), respectively. On lightlike hypersurface shape operators B and
C are related as

ḡ(AXF, PJ) = C(F, PJ), ḡ(AXF,X) = 0,

ḡ(A∗ξF, PJ) = B(F, PJ), ḡ(A∗ξF, ξ) = 0
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for all F, J ∈ Γ(TM). With respect to Livi-Civita connection D̄ let R1 be a
curvature tensor. Then we have (see [7])

R1(F, J)L = R(F, J)L+Ah(F,L)J −Ah(J,L)F
+ (DFh)(J, L)− (DJh)(F,L).

Let R,R1 and R∗ represent curvature tensors with respect D, D̄ and ∇, respec-
tively. For lightlike hypersurface M̄ and screen bundle S(TM) using Gauss
formula and Weingarten formulae we have [8]

g(R1(F, J)L,PO) = ḡ(R(F, J)L,PO) +B(F,L)C(J, PO)

−B(J, L)C(F, PO),

g(R1(F, J)L,Z) = (∇FB)(J, L)− (∇JB)(F,L)

+ τ(F )B(J, L)− τ(J)B(F,L),
(9)

ḡ(R(F, J)PL,X) = (∇FC)(J, PL)− (∇JC)(F, PL)

+ τ(J)C(F, PL)− τ(F )B(J, PL),

(10) g(R1(F, J)L,X) = ḡ(R(F, J)L,X),

R1(F, J)L = R(F, J)L+B(F,L)AXJ −B(J, L)AXF

+ {(∇FB)(J, L)− (∇JB)(F,L)

+ τ(F )B(J, L)− τ(J)B(F,L)}X
for any F, J, L ∈ Γ(TM̄).

3. Lightlike hypersurfaces of cosymplectic space form

Tangent to the structure vector field ξ, i.e., ξ ∈ Γ(TM), let (M, ḡ) be
a hypersurface of a cosymplectic space form M̄(c). Then (M, ḡ) is called a
lightlike hypersurface, if the induced metric ḡ is degenerate. The manifold
M̄ having ind(g) = 1 and ind(g) > 1 is said to be a spacelike and timelike
cosymplectic manifold. If Z is the local section of radical distribution, i.e., Z ∈
Rad(TM), then φZ is tangent to M and g(φZ,Z) = 0. Therefore φ(Rad(TM))
is 1-dimensional distribution on a lightlike hypersurface M .

Definition. Let (M̄, φ, ξ, η, g) be a (2n+ 1) dimensional cosyplectic manifold
and (M, ḡ) be the lightlike hypersurface of (M̄, φ, ξ, η, g). Then the hypersur-
face (M, ḡ) is a screen semi invariant lightlike hypersurface, if the following
conditions are satisfied

φ(Rad(TM)) ⊂ S(TM) and φ(ltr(TM)) ⊂ S(TM).

From equations (1) and (2), we have

g(φX,Z) = −g(X,φZ) = 0, g(φX,X) = 0,

(11) g(φX, φZ) = 1.
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Therefore φ(Rad(TM)) ⊕ φ(ltr(TM)) is non degenerate vector sub-bundle
of S(TM) having rank 2. If a lightlike hypersurface M is tangent to ξ, then
ξ ∈ S(TM). Since g(φZ, ξ) = g(φX, ξ) = 0, there exists non degenerate
distribution D0 on a lightlike hypersurface M of rank 2n− 4 such that

(12) S(TM) = {φ(TM⊥)⊕ φ(X(TM))} ⊥ D0 ⊥ 〈ξ〉,
where 〈ξ〉 = spanξ.

The second fundamental form B is independent on screen distribution so we
have the following equation.

B(·, Z) = 0.

From the 1st equation of (2), we see that φZ and φX are degenerate vector
fields and

φ2Z = −Z and φ2X = −X.
Let us assume the local degenerate vector fields Y = φX ∈ φ(ltr(TM)) and
V = φZ ∈ D. Suppose P is the projection of screen bundle S(TM) on a
lightlike hypersurface M . Any F ∈ Γ(TM) can be written as

F = SF +QF, QF = u(F )Y.

Applying φ to the above equation we get

φF = φ(SF ) + u(F )φY,

where Q and S are the projection morphisms of tangent bundle into distri-
butions G and G1, respectively, and u(F ) = g(V, F ) is the differential 1-form
locally defined on a lightlike hypersurface. By putting φ̄F = φ(Sx) for any
F ∈ Γ(TM) in the last equation we get

(13) φF = φ̄F − u(F )X,

where φ and φ̄ are 1-1 tensor fields on a cosymplectic manifold M̄ and a lightlike
hypersurface M , respectively. We note that u(Y ) = −1 for all J ∈ Γ(TM)
u(J) = 0. Applying φ again we get

φ2F = φφ̄F − u(F )φX,

−F + η(F )ξ = φφ̄F − u(F )Y.

In the above equations we note that if for any F ∈ Γ(TM), SF ∈ D, φF =
φ̄(SF ) ∈ D, then S(φ̄F ) = φ̄F . Which gives φφ̄F = φ̄2F and we can write

φ2F = −F + η(F )ξ + u(F )Y.

By using (7), (8) and (11) we get

(DF φ̄)J = −u(J)ANF −B(F, J)Y,

and

(D̄Fu)J = −B(F, φ̄J)− u(J)τ(F ).

Also for a lightlike hypersurface of a cosymplectic manifold we have

v(F ) = g(X,F ).
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Theorem 3.1. Let (M, ḡ) be an invariant lightlike hypersurface of a cosym-
plectic manifold (M̄, φ, ξ, η, g) tangent to the structural vector field ξ. Then
(M, ḡ, ξ, η, φ̄) defines an almost para-contact metric manifold.

Proof. Assuming (M, ḡ) is an invariant lightlike hypersurface of a cosymplectic
manifold (M̄, g). Then from equation (13) for any F, J ∈ Γ(TM) we get

(14) φ̄F = φF.

Using the 1st equation of (2) and (14), we get

(15) φ̄2F = −F + η(F )ξ.

From equation (14), we get

(16) φ̄ξ = 0.

From equations (15) and (17), we get

η ◦ φ̄ = 0, η(ξ) = 1.

From above equation and (14), (15), (16) and (2), we get

(17) ḡ(φ̄F, φ̄J) = ḡ(F, J)− η(F )η(J).

As a result of equations (14), (15), (16) and (17), (M, ḡ, ξ, η, φ̄) defines an
almost para-contact metric manifold. �

Theorem 3.2. Let (M, ḡ) be an invariant lightlike hypersurface of a cosym-
plectic manifold (M̄, φ, ξ, η, g) tangent to the structural vector field ξ. Then for
all F, J and L ∈ Γ(TM) we obtain

(18) (DF φ̄)J = 0, B(F, φJ)X = B(F, φJ)φX, φ̄(AXF ) = AφXF.

Proof. We know that

(D̄Fφ)J = D̄FφJ − φ(D̄FJ)(DFφ)J +B(F, φ̄J)X −B(F, J)φX.(19)

using equation (3) in (19) we get

(20) (DFφ)J +B(F, φ̄J)X −B(F, J)φX = 0.

By equating tangential and transversal components of above equation we get
the 1st two equations of (18).

(21) (D̄Fφ)X = D̄FφX − φ(D̄FX).

By virtue of equations (3) and (8), we obtain the 3rd equation of (18). �

Proposition 3.3. Let (M, ḡ) be a lightlike hypersurface of a cosymplectic man-
ifold (M̄, φ, ξ, η, g) tangent to the structural vector field ξ. Then

(22) φ̄2F = −F + η(F )ξ + u(φ̄F )X + u(F )φX,

(23) B(F, ξ) = −u(F ), C(F, ξ) = −v(F )

for any F ∈ Γ(TM).
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Proof. From the 1st equation of (1) and (13), we get (18), and by using (3),
(7), (13) and then comparing tangential and transversal parts we get (19). �

Definition. A lightlike hypersurface (M, ḡ, ξ, η, φ̄) of a cosymplectic manifold
is D0 totally geodesic if B(F, J) = 0 for any F, J ∈ D0.

Theorem 3.4. Let (M, ḡ, ξ, η, φ̄) be a lightlike hypersurface of (M̄, φ, ξ, η, g)
tangent to the structural vector field ξ. Then for any F, J ∈ Γ(TM), a lightlike
hypersurface (M, ḡ, ξ, η, φ̄) is totally geodesic if h is parallel, where h is the
second fundamental form.

Proof. Let’s pretend h is parallel.

(D̄Fh)(J, ξ) = DFh(J, ξ)− h(DFJ, ξ)− h(J,DF ξ).

Using equation (3) in (20), we get our desired result. �

Theorem 3.5. Let (M, ḡ, ξ, η, φ̄) be a screen semi-invariant lightlike hypersur-
face of a cosymplectic space form M̄(c) that is tangent to the structural vector
field ξ and the local second fundamental form B is parallel. If τ(Z) 6= 0, then
c=0 if and only if it is totally geodesic.

Proof. By putting J = Z in (9) and (4) we obtain

g(R1(F,Z)L,Z) = (∇FB)(Z,L)− (∇ZB)(F,L)

+ τ(F )B(Z,L)− τ(Z)B(F,L),

and

g(R1(F,Z)L,Z)) =
c

4
{g(φZ, φL)g(F,Z)− g(φF, φL)g(Z,Z)

+ η(Z)g(F,L)g(ξ, Z)− η(F )g(Z,L)g(ξ, Z)

+ g(φZ,L)g(φF,Z)− g(φF,L)g(φZ,Z)

+ 2g(F, φZ)g(φL,Z)},

(24)

respectively. Since B is parallel, then from equations (21) and (22) we obtain

c

4
u(F )u(L) = τ(Z)B(F,L).

By replacing F and L by Y in (23) we get

c

4
= τ(Z)B(Y, Y ).

If τ(Z) 6= 0 we get our required result. �

Definition. If the lightlike hypersurface (M, ḡ, ξ, η, φ̄) of a cosymplectic man-
ifold satisfies

B(F, J) = λḡ(F, J),

then (M, ḡ, ξ, η, φ̄) is called a totally umbilical lightlike hypersurface, where λ
represents a smooth function.



ON LIGHTLIKE HYPERSURFACES OF COSYMPLECTIC SPACE FORM 231

Theorem 3.6. Let (M, ḡ, ξ, η, φ̄) be a screen semi-invariant lightlike hyper-
surface (SCI-LH) of a cosymplectic space form M̄(c) tangent to the structural
vector field ξ. Then the lightlike hypersurface (M, ḡ, ξ, η, φ̄) is flat if M is totally
umbilical.

Proof. From equation (4) we get

g(R1(F, J)L,Z) =
c

4
{g(φJ, φL)g(F,Z)− g(φF, φL)g(J, Z)

+ η(J)g(F,L)g(ξ, Z)− η(F )g(J, L)g(ξ, Z)

+ g(φJ, L)g(φF,Z)− g(φF,L)g(φJ, Z)

+ 2g(F, φJ)g(φL,Z)}.

By putting φZ = V , φX = Y and g(F,Z) = 0 in last equation, we obtain

g(R1(F, J)L,Z) =
c

4
{g(φF,L)g(J, V )− g(φJ, L)g(F, V )

− 2g(φF, J)g(L, V )}
(25)

for all F, J, L ∈ Γ(TM).
By replacing F , J and L by PF , Z and PL, respectively, in (25) and (4) we

get

g(R1(PF,Z)PL,Z) =
c

4
{g(φZ, PL)g(Z, V )− g(φZ, PL)g(PF, V )

− 2g(φPF,Z)g(PL, V )},

(26) g(R1(PF,Z)PL,Z) =
−3c

4
{u(PF )u(PL)},

and

g(R1(PF,Z)PL,Z) = −B(DPFZ,PL)− ZB(PF, PL)

+B(DZPF, PL) +B(PF,DZPL)

− τ(Z)B(PF, PL).

(27)

From equations (26) and (27), and then using equation (18), the Gauss and
Weingarten formulas in the resulting equation we have

(28)
−3c

4
{u(PF )u(PL) = {λ2 − Z(λ)− λ(τZ)}ḡ(φF, PL).

By setting F = L = Y ∈ S(TM), we get PF = PL = Y, u(Y ) = 1 and
g(Y, Y ) = 0.

From (28) we obtain

c = 0.

So (M, ḡ, ξ, η, φ̄) is flat. �
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Lemma 3.7. Let (M, ḡ, ξ, η, φ̄) be a SCI-LH of cosymplectic space form M̄(c)
tangent to the structural vector field ξ. Then

R(F, J)L =
c

4
{g(φJ, φL)F − g(φF, φL)J

+ η(J)g(F,L)ξ − η(F )g(J, L)ξ + g(φJ, L)φ̄F

− g(φF,L)φ̄J + 2g(F, φJ)φ̄L}
−B(F,L)AXJ +B(J, L)AXF,

(29)

and

(DFh)(J, L)− (DJh)(F,L) =
c

4
{g(φF,L)u(J)− g(φJ, L)u(F )

− 2g(F, φJ)u(L)}X
(30)

are the Gauss and Codazzi formulas, respectively, for any F, J, L ∈ Γ(TM).

Proof. Since (M, ḡ, ξ, η, φ̄) is a SCI-LH of M̄(c), using (4) and (24), we derive

R(F, J)L =
c

4
{g(φJ, φL)F − g(φF, φL)J

+ η(J)g(F,L)ξ − η(F )g(J, L)ξ + g(φJ, L)φF

− g(φF,L)φJ + 2g(F, φJ)φL} −Ah(F,L)J +Ah(J,L)F

− (DFh)(J, L) + (DJh)(F,L).

(31)

Using equation (13) in (31) we obtain

R(F, J)L =
c

4
{g(φJ, φL)F − g(φF, φL)J + η(J)g(F,L)ξ

− η(F )g(J, L)ξ + g(φJ, L)φ̄F − g(φJ, L)u(F )X

− g(φF,L)φ̄J + g(φF,L)u(J)X + 2g(F, φJ)φ̄L

− 2g(F, φJ)u(L)X} −Ah(F,L)J +Ah(J,L)F

− (DFh)(J, L) + (DJh)(F,L).

(32)

Hence we derive (29) and (30) correspondingly by comparing the tangential
and transversal vector bundle components of equation (32). �

Lemma 3.8. Let (M, ḡ, ξ, η, φ̄) be a SCI-LH of cosymplectic space form M̄(c),
tangent to the structural vector field ξ. Then for any F,J,L ∈ Γ(TM)

g(R1(F,Z)L,X) =
−c
4
{g(φF, φL)− u(L)θ(φF )− 2u(F )θ(φL)}.

Proof. By putting Z for J in equation (12) and then taking inner product of
resulting equation with X we obtain our result. �

Theorem 3.9. There does not exist any SCI-LH (M, ḡ, ξ, η, φ̄) of cosymplectic
space form M̄(c) if h is parallel and c 6= 0.
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Proof. Suppose there exists a SCI-LH (M, ḡ, ξ, η, φ̄) of cosymplectic space form
M̄(c) with c 6= 0 and h to be parallel. By putting J = Z and L = φX in (30)
we get

c

4
u(F )X = 0.

By replacing F by φX we get

c = 0,

which is contradicting our supposition. �

Theorem 3.10. In a SCI-LH (M, ḡ, ξ, η, φ̄) if (c 6= 0) and screen distribution
is parallel, then there does not exist any SCI-LH (M, ḡ, ξ, η, φ̄) of M̄(c).

Proof. Assume c 6= 0 and screen distribution is parallel, then from equation
(4), by replacing F, J , and L by Z, φX and φZ we get

(33) g(R1(Z, φX)φZ,X) =
c

4
.

From equation (10) we get

g(R1(Z, φX)φZ,X) = (DEC)(φX,PφZ)− (DφXC)(φZ, PφZ)

+ τ(φX)C(Z,PφZ)− τ(Z)C(φX,PφZ).

As assumed S(TM) is parallel we get

(34) g(R1(Z, φX)φZ,X) = 0. �

From equations (33) and (34), we obtain c = 0. Which is a contradiction,
hence there does not any SCI-LH (M, ḡ, ξ, η, φ̄) of M̄(c) with c 6= 0 and parallel
screen distribution.
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