Honam Mathematical J. **46** (2024), No. 3, pp. 452–472 https://doi.org/10.5831/HMJ.2024.46.3.452

SEMI-SLANT LIGHTLIKE SUBMERSIONS WITH TOTALLY UMBILICAL FIBRES

GAURAV SHARMA, SANGEET KUMAR*, AND DINESH KUMAR SHARMA

Abstract. We introduce the study of a semi-slant lightlike submersion from an indefinite Kaehler manifold onto an r-lightlike manifold. After giving the definition of a semi-slant lightlike submersion, we establish the existence Theorems for this class of lightlike submersions. Then, we derive the integrability conditions for the distributions D_1, D_2 and Δ associated with a semi-slant lightlike submersion. Consequently, we find some necessary and sufficient conditions for the foliations determined by the distributions D_1, D_2 and Δ . Subsequently, we examine the geometry of totally umbilical fibres of a semi-slant lightlike submersion.

1. Introduction

The concept of a lightlike submersion is one of the most fruitful area of research in semi-Riemannian geometry. Theoretically, a lightlike submersion is a smooth map that preserves the causal structure of the manifolds. In other words, a lightlike submersion is a map that preserves the light cones in two manifolds so that any two points in the domain, which are connected by a lightlike curve are mapped to two points in the co-domain, which are also connected by a lightlike curve. The theory of lightlike submersions is known to have extensive uses in mathematical physics, particularly, in the general theory of relativity. For instance, in physics, a lightlike submersion is used to describe the propagation of gravitational waves through spacetime, as these waves travel along null geodesics (paths that are tangent to the light cone) [2]-[1]. In addition, a lightlike submersion can also be used to construct non-locality conditions in quantum field theory, which are important for understanding the nature of entanglement and other quantum phenomena [4]. In string theory, lightlike submersions are used to describe the dynamics of strings moving in curved spacetimes. Moreover, a lightlike submersion has been used to map

Received January 15, 2024. Accepted May 14, 2024.

²⁰²⁰ Mathematics Subject Classification. 53C15.

Key words and phrases. lightlike submersion; indefinite Kaehler manifold, totally geodesic foliation, totally geodesic fibres.

^{*}Corresponding author

the worldsheet of the string onto the target spacetime [5]. Furthermore, lightlike submersions have been employed to describe the dynamics of particles and fields near the event horizon of a black hole, where the effect of gravity becomes extreme [10]. Comprehensively, a lightlike submersion is a valuable geometric tool for understanding various aspects of physics.

Initially, the concept of a Riemannian submersion was developed by Hermann [11] and O'Neill [15]. In [11], Hermann proved a sufficient condition for a mapping of a Riemannian manifold to be a fibre bundle. This motivated O'Neill to introduce the general notion of a Riemannian submersion [15]. Afterwards, various new generalizations of Riemannian submersions namely, invariant submersions, anti-invariant submersions, CR-submersions, generic submersions, semislant submersions, complex-contact and contact-complex submersions came into sight (for details, see [8]-[26], [18]). Further, with the development of semi-Riemannian geometry, O'Neill [17], introduced the notion of a semi-Riemannian submersion. It may be noted that for a Reimannian submersion $\phi: M \to B$, where M and B are Riemannian manifolds, the fibres of the Riemannian submersion ϕ are always Riemannian. However, when M and B are semi-Riemannian manifolds, the fibres of ϕ may not be semi-Riemannian. In this context, Sahin [22] studied the existence of a lightlike submersion defined from a semi-Riemannian manifold onto a lightlike manifold and illustrated how this idea differs from Riemannian and semi-Riemannian submersions. Further, in [21], Sahin used a semi-Riemannian manifold as the base and a Kaehler manifold as the total manifold to define a new type of lightlike submersion. Park and Prasad [18], introduced the notion of a semi-slant submersion from an almost indefinite Hermitian manifold onto a Riemannian manifold. Literature suggests that till date very few studies are available on the geometry of lightlike submersions. In view of wide variety of applications of a lightlike submersion, we define a new class of lightlike submersions, namely, semi-slant lightlike submersions following the similar approach as developed and used by Sahin in [22].

The paper is structured as follows: At first we give the general definition for a semi-slant lightlike submersion ϕ from an indefinite Kaehler manifold M_1 onto an *r*-lightlike manifold M_2 and present some Theorems for the existence of this class of lightlike submersions. Then we establish some conditions for the integrability of the distributions Δ , D_1 and D_2 arising in case of a semi-slant lightlike submersion. Further, we obtain some necessary and sufficient conditions for the leaves determined by the distributions on a semi-slant lightlike submersion to be totally geodesic foliations. We also discuss the requisite for a semi-slant lightlike submersion ϕ to be a totally geodesic map. Finally, we investigate the geometry of totally umbilical fibres of semi-slant submersion and give some geometric characterisation results.

2. Preliminaries

In this section, we refer to [22] for the basic notations and fundamental equations related to a lightlike submersion.

Assume that (M_1, g_1, J) be an indefinite almost Hermitian manifold. This indicates that a tensor field J of type (1, 1) on M_1 is admissible, such that

(1)
$$J^2 = -I, \ g_1(JX, JY) = g_1(X, Y),$$

for $X, Y \in \Gamma(TM_1)$. An indefinite almost Hermitian manifold M_1 is said to be an indefinite Kaehler manifold if

(2)
$$(\nabla_X J)Y = 0,$$

for any
$$X, Y \in \Gamma(TM_1)$$
.
On the other hand, the radical space Rad T_pM_1 of T_pM_1 is defined as

$$RadT_{p}M_{1} = \{\xi \in T_{p}M_{1} : g_{1}(\xi, X) = 0, \forall X \in T_{p}M_{1}\}.$$

Let (M_1, g_1, J) be a semi-Riemannian manifold and (M_2, g_2) be an r-lightlike manifold. Consider a smooth submersion $\phi : M_1 \to M_2$, then for $p \in M_2$, $\phi^{-1}(p)$ is a submanifold of M_1 of dimension dim M_1 - dim M_2 . For any point $p \in M_1$, the kernel of ϕ_* , denoted as $\ker \phi_*$ and is given by

$$ker \ \phi_* = \{ Z \in T_p M_1 : \phi_*(Z) = 0 \}.$$

Now we define $(ker \ \phi_*)^{\perp}$ as

$$(ker \ \phi_*)^{\perp} = \{Y \in T_p M_1 : g_1(X, Y) = 0, \forall X \in ker \ \phi_*\}.$$

 $(\ker \phi_*)^\perp$ may not be complementary to $\ker \phi_*$ as T_pM_1 is a semi-Riemannian vector space. Hence

$$\Delta = ker \ \phi_* \cap (ker \ \phi_*)^{\perp} \neq \{0\}.$$

For a lightlike submersion, there are four possible cases, which are discussed below:

Case (i). $0 < \dim \Delta < \min\{\dim(\ker \phi_*), \dim(\ker \phi_*)^{\perp}\}$: In this case Δ is the radical subspace of T_pM_1 . Therefore we can find a quasi-orthonormal basis of M_1 along $\ker \phi_*$. Assume that $S(\ker \phi_*)$ is a complementary non-degenerate subspace to Δ in $\ker \phi_*$. Then we have

$$ker \ \phi_* = \Delta \perp S(ker \ \phi_*).$$

In a similar way, we have

$$(ker \ \phi_*)^{\perp} = \Delta \perp S(ker \ \phi_*)^{\perp},$$

where $S(\ker \phi_*)^{\perp}$ is a complementary subspace of Δ in $(\ker \phi_*)^{\perp}$. Moreover, $S(\ker \phi_*)$ being non-degenerate in $T_p M_1$ gives

$$T_p M_1 = S(ker \ \phi_*) \perp (S(ker \ \phi_*))^{\perp},$$

where $(S(\ker \phi_*))^{\perp}$ is the complementary subspace of $S(\ker \phi_*)$ in $T_p M_1$. As $S(\ker \phi_*)$ and $(S(\ker \phi_*))^{\perp}$ are non-degenerate in $T_p M_1$, therefore we get

$$(S(ker \ \phi_*))^{\perp} = S(ker \ \phi_*)^{\perp} \perp (S(ker \ \phi_*)^{\perp})^{\perp}.$$

Now from ([6]), in view of proposition 2.4, we conclude that there exist a quasi-orthonormal basis of $T_p M_1$ along ker ϕ_* , then we have

$$g_{1}(\xi_{i},\xi_{j}) = g_{1}(N_{i},N_{j}) = 0, \quad g_{1}(\xi_{i},N_{j}) = \delta_{ij}, g_{1}(W_{\alpha},\xi_{j}) = g_{1}(W_{\alpha},N_{j}) = 0, \quad g_{1}(W_{\alpha},W_{\beta}) = \epsilon_{\alpha}\delta_{\alpha\beta},$$

for any $i, j \in \{1, ..., r\}$ and $\alpha, \beta \in \{1, ..., t\}$, where $\{N_i\}$ are smooth null vector fields of $(S(\ker \phi_*)^{\perp})^{\perp}, \{W_{\alpha}\}$ is a basis of $S(\ker \phi_*)^{\perp}$ and $\{\xi_i\}$ is a basis of Δ . Let the set of vector fields $\{N_i\}$ be denoted by $ltr(\ker \phi_*)$, then consider the subspace as follows.

$$tr(ker \ \phi_*) = ltr(ker \ \phi_*) \perp S(ker \ \phi_*)^{\perp}.$$

Since $ltr(ker \ \phi_*)$ and $ker \ \phi_*$ are not orthogonal to each other, so we denote the vertical space of $T_p M_1$ as $\mathcal{V} = ker \ \phi_*$ and the horizontal space as $\mathcal{H} = tr(ker \ \phi_*)$. Thus we have

$$T_p M_1 = \mathcal{V}_p \oplus \mathcal{H}_p.$$

It is pertinent to highlight again that \mathcal{V} and \mathcal{H} are not orthogonal to each other. We are now equipped to define a lightlike submersion.

Definition 2.1. [22] Consider a submersion $\phi : M_1 \to M_2$ defined from semi-Riemannian manifold (M_1, g_1) onto an r-lightlike manifold (M_2, g_2) such that

- (1) for $0 < r < \min\{\dim(\ker \phi_*), \dim(\ker \phi_*)^{\perp}\}, \dim \Delta = \dim\{(\ker \phi_*) \cap (\ker \phi_*)^{\perp}\} = r,$
- (2) the length of horizontal vectors is preserved under ϕ_* , i.e., $g_1(Z, W) = g_2(\phi_*(Z), \phi_*(W))$ for $Z, W \in \Gamma(\mathcal{H})$.

Then ϕ is called an r-lightlike submersion.

- **Case (ii).** dim $\Delta = \dim(\ker \phi_*) < \dim(\ker \phi_*)^{\perp}$. In this case $\mathcal{V} = \Delta$ and $\mathcal{H} = S(\ker \phi_* \perp ltr(\ker \phi_*))$ and ϕ is said to be an isotropic lightlike submersion.
- **Case (iii).** dim $\Delta = \dim(\ker \phi_*)^{\perp} < \dim(\ker \phi_*)$. Here $\mathcal{V} = S(\ker \phi_*) \perp \Delta$ and $\mathcal{H} = ltr(\ker \phi_*)$ and ϕ is said to be a co-isotropic lightlike submersion.
- **Case (iv).** dim $\Delta = \dim(\ker \phi_*)^{\perp} = \dim(\ker \phi_*)$. In this case $\mathcal{V} = \Delta$ and $\mathcal{H} = ltr(\ker \phi_*)$ and ϕ is said to be a totally lightlike submersion.

Before proceeding further, at first we prove an essential lemma required to define the concept of a semi-slant lightlike submersion from an indefinite Kaehler manifold onto a lightlike manifold.

Lemma 2.2. Consider a r-lightlike submersion $\phi : M_1 \to M_2$ from an indefinite Kaehler manifold (M_1, g_1, J) (where g_1 is a semi-Riemannian metric

of index 2r) onto an r-lightlike manifold (M_2, g_2) . If $J\Delta$ is a distribution on M_1 such that $\Delta \cap J\Delta = 0$, then any distribution complementary to $J\Delta \oplus Jltr(ker \phi_*)$ in $S(ker \phi_*)$ is Riemannian.

Proof. If possible, assume that $J(ltr(ker \phi_*))$ is invariant with respect to J, then for $Z \in \Gamma(\Delta), N \in \Gamma(ltr(ker \phi_*))$, we have $g_1(Z, N) = 1$, which gives $g_1(JZ, JN) = 1$, this further gives 0 = 1, which is a contradiction. Hence $J(ltr(ker \phi_*))$ is not invariant with respect to J. Furthermore, on contrary suppose that $J(ltr(ker \phi_*))$ is contained in $S(ker \phi_*)$, then we have 0 = $g_1(JZ, JN) = g_1(Z, N) = 1$, which is also a contradiction. Thus, $J(ltr(ker \phi_*))$ is a distribution on M_1 . Moreover, $J(ltr(ker \phi_*))$ is not contained in Δ . Because if so, then for $JN \in \Gamma(\Delta)$, we have $J^2N = -N \in \Gamma(J\Delta)$, which is again a contradiction. In a similar way, we can prove that $J(ltr(ker \phi_*))$ is not contained in $J\Delta$. Hence, $J(ltr(ker \phi_*) \subset S(ker \phi_*))$ such that $J\Delta \cap$ $J(ltr(ker \phi_*) = 0$. Let D denotes a distribution which is complementary to $J\Delta \oplus J(ltr(ker \phi_*))$ in $S(ker \phi_*)$. Then, for the local quasi-orthonormal frames on $M_1, \xi_1, ..., \xi_r, J\xi_1, ..., J\xi_r, N_1, ..., N_r, JN_1..., JN_r$ forms an orthonormal basis of $\Delta \oplus J\Delta \oplus ltr(ker \phi_*) \oplus Jltr(ker \phi_*)$. Next we define $U_1, ..., U_{2r}, V_1, ..., V_{2r}$ as

$$U_{1} = \frac{1}{\sqrt{2}}(\xi_{1} + N_{1}), U_{2} = \frac{1}{\sqrt{2}}(\xi_{1} - N_{1}), U_{3} = \frac{1}{\sqrt{2}}(\xi_{2} + N_{2}),$$

$$U_{4} = \frac{1}{\sqrt{2}}(\xi_{2} + N_{2}), \dots, U_{2r-1} = \frac{1}{\sqrt{2}}(\xi_{r} + N_{r}), U_{2r} = \frac{1}{\sqrt{2}}(\xi_{r} + N_{r}),$$

$$V_{1} = \frac{1}{\sqrt{2}}(J\xi_{1} + JN_{1}), V_{2} = \frac{1}{\sqrt{2}}(J\xi_{1} - JN_{1}), V_{3} = \frac{1}{\sqrt{2}}(J\xi_{2} + JN_{2}),$$

$$V_{4} = \frac{1}{\sqrt{2}}(J\xi_{2} - JN_{1}), \dots, V_{2r-1} = \frac{1}{\sqrt{2}}(J\xi_{r} + JN_{r}), V_{2r}$$

$$= \frac{1}{\sqrt{2}}(J\xi_{r} - JN_{r}).$$

Hence, Span $\{\xi_i, N_i, J\xi_i, JN_i\}$ is a non-degenerate space of constant index 2r, that is $\Delta \oplus J\Delta \oplus ltr(ker \ \phi_*) \oplus Jltr(ker \ \phi_*)$ is non-degenerate and has a constant index 2r on M_1 . Since $index(TM_1) = index(\Delta \oplus ltr(ker \ \phi_*)) + index(J\Delta \oplus Jltr(ker \ \phi_*) + index(D \perp S(ker \ \phi_*)^{\perp}))$, we obtain, $2r = 2r + index(J\Delta \oplus Jltr(ker \ \phi_*) + index(D \perp S(ker \ \phi_*)^{\perp}))$. This implies that $(D \perp S(ker \ \phi_*)^{\perp}))$ is Reimannian and, therefore, D is Riemannian.

3. Semi-Slant Lightlike Submersions

In this section, at first, we define the concept of a semi-slant lightlike submersion from an indefinite Kaehler manifold onto an r-lightlike manifold.

Definition 3.1. Consider an r-lightlike submersion $\phi : M_1 \to M_2$ defined from an indefinite Kaehler manifold (M_1, g_1, J) , where g_1 is a semi-Riemannian metric of index 2r, where $2r < \dim(M_1)$, onto an r-lightlike manifold (M_2, g_2) . Then ϕ is said to be a semi-slant lightlike submersion if the following conditions hold:

- (1) $J\Delta$ is a distribution on ker ϕ_* such that $\Delta \cap J\Delta = 0$.
- (2) There exist two non-degenerate distributions D_1 and D_2 on M_1 , such that

$$ker \ \phi_* = \Delta \perp \{ J\Delta \oplus Jltr(ker \ \phi_*) \} \oplus_{ortho} D_1 \oplus_{ortho} D_2,$$

where $JD_1 = D_1$.

(3) For any non-zero vector field X tangent to D_2 , the angle $\theta_p(X)$ between JX and the vector space $(D_2)_p$ is constant for any given point $p \in U \subset M_1$, where D_2 is the complementary distribution to $J\Delta \oplus$ $Jltr(ker \phi_*) \oplus_{orth} D_1$ in $S(ker \phi_*)$. This implies that angle $\theta_p(X)$ does not depend on the choice of X.

Here the angle θ on M_1 is known as a semi-slant angle. If $\phi: M_1 \to M_2$ is a semi-slant lightlike submersion, then the decomposition of $\ker \phi_*$ is as follows:

(3)
$$\ker \phi_* = \Delta \perp \{ J\Delta \oplus Jltr(\ker \phi_*) \} \oplus_{ortho} D_1 \oplus_{ortho} D_2.$$

Hence we get

$$T_p M_1 = \mathcal{V}_p \oplus \mathcal{H}_p$$

= {\Delta \pm \lefta \pm Jltr(ker \phi_*)} \overline ortho D_1 \overline ortho D_2} \overline \{\phi(D_2) \pm \lefta \le

where η is the orthogonal subbundle complementary to $\phi(D_2)$ in $(ker \ \phi_*)^{\perp}$.

Example 3.2. Let (R^{18}, g_1, J) and (R^8, g_2) be an indefinite Kaehler manifold and a lightlike manifold, endowed with semi-reimannian metric g_1 with signature (-, +, -, +, +, +, +, +, +, +) and degenerate metric g_2 with signature (+, +, +, +, +, +, +, +).

Define a map ϕ from $R^{18} \xrightarrow{\cdot} R^8$ as

$$\phi(x_1, \dots, x_8) = (x_1, -x_2, x_3, x_2 + x_4, x_1 + x_4, x_2 + x_3, x_5, x_6, x_6, x_5x_6)$$
$$\frac{(x_5)^2}{2} + \frac{(x_6)^2}{2}, x_7, x_7, x_8, x_8, x_7, x_8, x_7x_8, \frac{x_7^2}{2} + \frac{x_8^2}{2}).$$

Then we can easily see that ϕ is a 2-lightlike submersion with

$$\Delta = \ker \phi_* \cap (\ker \phi_*)^{\perp} = Span\{Z_1 = -\frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_5}, Z_2 = -\frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_6}\},$$
$$J\Delta = Span\{Z_2 = -\frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_6}, Z_4 = -\frac{\partial}{\partial x_4} + \frac{\partial}{\partial x_5}\},$$
$$Jltr(\ker \phi_*) = Span\{Z_4 = -\frac{\partial}{\partial x_4} + \frac{\partial}{\partial x_5}\},$$

$$D_1 = Span\{Z_5 = \frac{\partial}{\partial x_5}, Z_8 = \frac{\partial}{\partial x_8}\},$$
$$D_2 = Span\{Z_7 = \frac{1}{\sqrt{2}}(\frac{\partial}{\partial x_9} + \frac{\partial}{\partial x_{12}}), Z_8 = \frac{\partial}{\partial x_8}\}$$

Since $JZ_1 = Z_2, JZ_3 = Z_4$, therefore $\Delta \cap J\Delta = 0$. By easy calculation, we can see that D_1 is invariant w.r.t. J and D_2 is a slant distribution with the slant angle $\theta = \frac{\pi}{4}$. Thus, ϕ is a proper semi-slant lightlike submersion.

For any vector field $X \in \mathcal{V}_p$, we may write

(5)
$$X = Q_1 X + Q_2 X + Q_3 X + Q_4 X + Q_5 X,$$

where Q_1, Q_2, Q_3, Q_4 and Q_5 denote the projections of X onto the distributions $\Delta, J\Delta, J(ltr(ker \phi_*), D_1, \text{ and } D_2 \text{ respectively. Applying } J \text{ to Eq. } (5), \text{ we get}$

$$(6) JX = fX + \omega X,$$

where fX and ωX are the tangential and transversal components of JX, respectively. This further gives

(7)
$$JX = JQ_1X + JQ_2X + JQ_3X + JQ_4X + JQ_5X = fQ_1X + fQ_2X + \omega Q_3X + fQ_4X + fQ_5X + \omega Q_5X,$$

then clearly, we have $fQ_1X \in \Gamma(J\Delta)$, $fQ_2X \in \Gamma(\Delta)$, $\omega Q_3X \in \Gamma(ltr(ker \ \phi_*))$, $fQ_4X \in \Gamma(D_1)$, $fQ_5X \in \Gamma(D_2)$, $\omega Q_5X \in \Gamma(\phi(D_2))$. Further for $X \in \Gamma(ker \ \phi_*)$, Therefore in view of Eqs. (6) and (7), we have

$$fX = fQ_1X + fQ_2X + fQ_4X + fQ_5X, \quad \omega X = \omega Q_3X + \omega Q_5X.$$

In a similar way, we call P_1 and P_2 as the projections of $ltr(ker \ \phi_*)$ and $S(ker \ \phi_*)^{\perp}$ respectively. Therefore for $Z \in \Gamma((ker \ \phi_*)^{\perp})$, we have

$$(8) Z = P_1 Z + P_2 Z_2$$

then on applying J, the above equation reduces to

(9)
$$JZ = JP_1Z + JP_2Z = JP_1Z + BP_2Z + CP_2Z,$$

where BP_2Z and CP_2Z represent the tangential and transversal components of JP_2Z . Thus we get, $JP_1Z \in \Gamma(Jltr(ker \phi_*)), BP_2Z \in \Gamma(D_2)$ and $CP_2Z \in \Gamma(\eta)$. Now we define O'Neill [15] tensors \mathcal{T} and \mathcal{A} as

(10)
$$\mathcal{T}_E F = \mathcal{H} \nabla_{\mathcal{V} E} \mathcal{V} F + \mathcal{V} \nabla_{\mathcal{V} E} \mathcal{H} F,$$

(11)
$$\mathcal{A}_E F = \mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F + \mathcal{V} \nabla_{\mathcal{H} E} \mathcal{H} F,$$

where E and F are the vector fields on M_1 and ∇ is the Levi-Civita connection of g_1 . It may be observed that \mathcal{T} and \mathcal{A} are skew symmetric tensors in Riemannian submersions, but this is not true for a lightlike submersion since the horizontal and vertical subspaces are not orthogonal to each other. The horizontal and vertical subspaces are reversed by both the tensors \mathcal{T} and \mathcal{A} and moreover, \mathcal{T} is symmetric, that is, for each $U, V \in \Gamma(\ker \phi_*)$, we have $\mathcal{T}_U V = \mathcal{T}_V U$.

Lemma 3.3. Let ϕ be a semi-slant lightlike submersion from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold (M_2, g_2) , then for $X, Y \in \Gamma(\ker \phi_*)$ and $U, V \in \Gamma(\ker \phi_*)^{\perp}$, we have

(12)
$$\nabla_X Y = \mathcal{T}_X Y + \nabla_X Y,$$

(13)
$$\nabla_X V = \mathcal{H} \nabla_X V + \mathcal{T}_X V,$$

(14)
$$\nabla_U X = \mathcal{A}_U X + \hat{\nabla}_U X,$$

(15)
$$\nabla_U V = \mathcal{H} \nabla_U V + \mathcal{A}_U V,$$

where $\hat{\nabla}_X Y = \mathcal{V} \nabla_X Y$.

Then we have the following lemma:

Lemma 3.4. Suppose that $\phi : (M_1, g_1, J) \to (M_2, g_2)$ be a semi-slant lightlike submersion from an indefinite Kaehler manifold M_1 onto an r-lightlike manifold M_2 , then

$$\begin{array}{ll} Q_{1}(\hat{\nabla}_{X}fQ_{1}Y + \hat{\nabla}_{X}fQ_{2}Y + \mathcal{T}_{X}\omega Q_{3}Y + \hat{\nabla}fQ_{4}Y + \nabla fQ_{5}Y + \\ (16) & \mathcal{T}_{X}\omega Q_{5}Y) = fQ_{2}(\hat{\nabla}_{X}Q_{1}Y + \hat{\nabla}_{X}Q_{2}Y + \hat{\nabla}_{X}Q_{4}Y + \hat{\nabla}_{X}Q_{5}Y), \\ & Q_{2}(\hat{\nabla}_{X}fQ_{1}Y + \hat{\nabla}_{X}fQ_{2}Y + \mathcal{T}_{X}\omega Q_{3}Y + \hat{\nabla}fQ_{4}Y + \nabla fQ_{5}Y + \\ (17) & \mathcal{T}_{X}\omega Q_{5}Y) = fQ_{1}(\hat{\nabla}_{X}Q_{1}Y + \hat{\nabla}_{X}Q_{2}Y + \hat{\nabla}_{X}Q_{4}Y + \hat{\nabla}_{X}Q_{5}Y), \\ & Q_{3}(\hat{\nabla}_{X}fQ_{1}Y + \hat{\nabla}_{X}fQ_{2}Y + \mathcal{T}_{X}\omega Q_{3}Y + \hat{\nabla}fQ_{4}Y + \nabla fQ_{5}Y + \\ & \mathcal{T}_{X}\omega Q_{5}Y) = JP_{1}(\mathcal{T}_{X}Q_{1}Y + \mathcal{T}_{X}Q_{2}Y + \mathcal{T}_{X}Q_{3}Y + \\ (18) & \mathcal{T}_{X}Q_{4}y + \mathcal{T}_{X}Q_{5}Y), \\ & Q_{4}(\hat{\nabla}_{X}fQ_{1}Y + \hat{\nabla}_{X}fQ_{2}Y + \mathcal{T}_{X}\omega Q_{3}Y + \hat{\nabla}fQ_{4}Y + \nabla fQ_{5}Y + \\ & \mathcal{T}_{X}\omega Q_{5}Y) = fQ_{4}(\hat{\nabla}_{X}Q_{1}Y + \hat{\nabla}_{X}Q_{2}Y + \hat{\nabla}_{X}Q_{4}Y + \hat{\nabla}_{X}Q_{5}Y), \\ & Q_{5}(\hat{\nabla}_{X}fQ_{1}Y + \hat{\nabla}_{X}fQ_{2}Y + \mathcal{T}_{X}\omega Q_{3}Y + \hat{\nabla}fQ_{4}Y + \nabla fQ_{5}Y + \\ & \mathcal{T}_{X}\omega Q_{5}Y) = fQ_{5}(\hat{\nabla}_{X}Q_{1}Y + \hat{\nabla}_{X}Q_{2}Y + \hat{\nabla}_{X}Q_{4}Y + \hat{\nabla}_{X}Q_{5}Y) + \\ (20) & + BP_{2}(\mathcal{T}_{X}Q_{1}Y + \mathcal{T}_{X}Q_{2}Y + \mathcal{T}_{X}Q_{3}Y + \mathcal{T}_{X}fQ_{4}y + \mathcal{T}_{X}fQ_{5}Y + \\ & \mathcal{H}\nabla_{X}\omega Q_{5}Y) = \omega Q_{3}(\hat{\nabla}_{X}Q_{1}Y + \hat{\nabla}_{X}Q_{2}Y + \hat{\nabla}_{X}Q_{4}Y + \hat{\nabla}_{X}Q_{5}Y), \\ & P_{2}(\mathcal{T}_{X}Q_{1}Y + \mathcal{T}_{X}Q_{2}Y + \mathcal{T}_{X}Q_{3}Y + \mathcal{T}_{X}Q_{4}Y + \mathcal{T}_{X}Q_{5}Y), \\ & P_{2}(\mathcal{T}_{X}Q_{1}Y + \mathcal{T}_{X}Q_{2}Y + \mathcal{T}_{X}Q_{3}Y + \mathcal{T}_{X}Q_{4}Y + \mathcal{T}_{X}Q_{5}Y), \\ (22) & + \omega Q_{5}(\hat{\nabla}_{X}Q_{1}Y + \hat{\nabla}_{X}Q_{2}Y + \hat{\nabla}_{X}Q_{4}Y + \hat{\nabla}_{X}Q_{5}Y), \\ & where X Y \in \Gamma(krr, \phi) \ and U V \in \Gamma(krr, \phi)^{\perp} \end{array}$$

where $X, Y \in \Gamma(\ker \phi_*)$ and $U, V \in \Gamma(\ker \phi_*)^{\perp}$.

Proof. In view of Eqs. (2), (5), (7) and Lemma (3.3), the result follows. \Box

Theorem 3.5. (Existence Theorem) The necessary and sufficient condition for a lightlike submersion $\phi : M_1 \to M_2$ from an indefinite Kaehler manifold M_1 onto an r-lightlike manifold M_2 to be a semi-slant lightlike submersion is as follows:

- (i) $J\Delta$ is a distribution on M_1 such that $\Delta \cap J\Delta = \{0\}$,
- (ii) the screen distribution $S(\ker \phi_*)$ can be decomposed as a direct sum as

$$S(ker \ \phi_*) = (J\Delta \oplus Jltr(ker \ \phi_*)) \oplus_{ortho} D_1 \oplus_{ortho} D_2,$$

(iii) there exists a constant $\lambda \in [0,1)$ such that $f^2(Z) = -\lambda Z$, for all $Z \in \Gamma(D_2)$. Here $\lambda = \cos^2\theta$, where θ is known as a semi-slant angle of D_2 .

Proof. Let ϕ be a semi-slant lightlike submersion from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold (M_2, g_2) . Then by virtue of Definition (2.1) and Lemma (2.2), the distribution D_1 is invariant with respect to J and $J\Delta$ is a distribution on M_1 such that $\Delta \cap J\Delta = \{0\}$. This proves (i) and (ii).

Now for any $Z \in \Gamma(D_2)$, we have

(23)
$$\cos\theta = \frac{|fZ|}{|JZ|}$$

which gives

$$\cos^2\theta = \frac{|fZ|^2}{|JZ|^2} = \frac{g_1(fZ, fZ)}{g_1(JZ, JZ)} = \frac{g_1(Z, f^2Z)}{g_1(Z, J^2Z)}.$$

this further implies

(24)
$$g_1(Z, f^2 Z) = \cos^2 \theta g_1(Z, J^2 Z).$$

Since ϕ is a semi-slant lightlike submersion, therefore $\cos^2\theta = \lambda(\text{constant}) \in [0, 1)$ and then from Eq. (24), we get

$$g_1(Z, f^2Z) = \lambda g_1(Z, J^2Z) = g_1(Z, \lambda J^2Z),$$

for all $Z \in \Gamma(D_2)$ which further yields that

(25)
$$g_1(Z, (f^2 - \lambda J^2)Z) = 0.$$

Since $(f^2 - \lambda J^2)Z \in \Gamma(D_2)$ and D_2 is a non-degenerate distribution of $S(\ker \phi_*)$, therefore from Eq. (25), we have $(f^2 - \lambda J^2)Z = 0$, that is $f^2Z = \lambda J^2Z = -\lambda Z$ for all $Z \in \Gamma(D_2)$, which proves (iii).

Conversely, let ϕ be a lightlike submersion satisfying the conditions (i), (ii) and (iii). Then from (iii) we obtain

$$f^2 Z = \lambda J^2 Z,$$

for all $Z \in \Gamma(D_2)$, where $\lambda \in [0, 1)$. Now

$$cos\theta = \frac{g_1(JZ, fZ)}{|JZ||fZ|} = \frac{-g_1(Z, f^2Z)}{|JZ||fZ|} = \frac{-\lambda g_1(Z, J^2Z)}{|JZ||fZ|} = \lambda \frac{g_1(JZ, JZ)}{|JZ||fZ|}$$

$$(26) = \lambda \frac{|fZ|}{|JZ|}.$$

Thus using Eq. (23) in Eq. (26), we get $\cos^2\theta = \lambda$ (constant).

Theorem 3.6. (Existence Theorem) The necessary and sufficient condition for a lightlike submersion $\phi : M_1 \to M_2$ from an indefinite Kaehler manifold M_1 onto an r-lightlike manifold M_2 to be a semi-slant lightlike submersion is as follows:

- (i) $J\Delta$ is a distribution on M_1 such that $\Delta \cap J\Delta = \{0\}$,
- (ii) the screen distribution $S(\ker \phi_*)$ can be decomposed as a direct sum $S(\ker \phi_*) = (J\Delta \oplus Jltr(\ker \phi_*)) \oplus_{ortho} D_1 \oplus_{ortho} D_2,$
- (iii) there exists a constant $\gamma \in (0,1]$ such that $B\omega Z = -\gamma Z$, for all $Z \in \Gamma(D_2)$. In this case, $\gamma = \sin^2 \theta$, where θ is the semi-slant angle of D_2 .

Proof. Assume that ϕ be a semi-slant lightlike submersion, therefore by virtue of its Definition (2.1) and Lemma (2.2), the distribution D_1 is invariant with respect to J and $J\Delta$ is a distribution on M_1 such that $\Delta \cap J\Delta = \{0\}$. As for any vector $Z \in \Gamma(D_2)$, we have

$$(27) JZ = fZ + \omega Z,$$

where fZ and ωZ are tangential and transversal components of JZ respectively. Applying J to Eq. (27) and comparing the tangential components, we get

$$(28) -Z = f^2 Z + B\omega Z,$$

for all $Z \in \Gamma(D_2)$. As ϕ is a semi-slant submersion, so using Theorem (3.5), we have

$$f^2 Z = -\lambda Z,$$

for all $Z \in \Gamma(D_2)$, where $\lambda \in [0, 1)$ and therefore from Eq. (28), we obtain

$$B\omega Z = -\gamma Z.$$

for all $Z \in \Gamma(D_2)$, where $\gamma = 1 - \lambda \in (0, 1]$. This proves (iii). Conversely, let ϕ be a lightlike submersion such that the three conditions (i), (ii) and (iii) hold. Then from Eq. (28), we acquire

$$-Z = f^2 Z - \gamma Z,$$

for all $Z \in \Gamma(D_2)$, which further implies

$$f^2 Z = -\lambda Z,$$

for all $Z \in \Gamma(D_2)$. Further the proof follows directly from Theorem (3.5). \Box

Corollary 3.7. Suppose that $\phi : M_1 \to M_2$ be a semi-slant lightlike submersion with a semi-slant angle θ , then for any $X, Y \in \Gamma(\ker \phi_*)$, we have

(29)
$$g_1(fX, fY) = \cos^2\theta g_1(X, Y)$$

(30) $g_1(\omega X, \omega Y) = \sin^2 \theta g_1(X, Y).$

Lemma 3.8. Consider a semi-slant lightlike submersion $\phi : M_1 \to M_2$ with a semi-slant angle θ from an indefinite Kaehler manifold M_1 onto an r-lightlike manifold M_2 . Then for any unit tangent vector $Z \in \Gamma(D_2)$, we have

(31)
$$fZ = \cos\theta Z^*,$$

where Z^* is a unit tangent vector orthogonal to Z such that $Z^* \in \Gamma(D_2)$.

Proof. For a unit tangent vector $Z \in \Gamma(D_2)$, we have

$$|fZ| = \cos\theta(Z)|Z|.$$

Consider another unit tangent vector $Z^* = \frac{fZ}{|fZ|}$ in the direction of fZ, then we have

$$fZ = Z^* . |fZ| = Z^* . cos\theta(Z).$$

Also $g_1(JZ, Z) = 0$, then $g_1(fZ, Z) = 0$ and this further gives $g_1(Z^*, Z) = \frac{1}{|fZ|} g_1(fZ, Z) = 0$.

Now, we will investigate some conditions for the integrability of distributions of $ker(\phi_*)$.

Theorem 3.9. Let $\phi: M_1 \to M_2$ be a semi-slant lightlike submersion from an indefinite Kaehler manifold M_1 onto an r-lightlike manifold M_2 . Then Δ is integrable if and only if

(i) $Q_1(\hat{\nabla}_Z f W) = Q_1(\hat{\nabla}_W f Z),$ (ii) $Q_4(\hat{\nabla}_Z f W) = Q_4(\hat{\nabla}_W f Z),$ (iii) $Q_5(\hat{\nabla}_Z f W) = Q_5(\hat{\nabla}_W f Z),$

for any $Z, W \in \Gamma(\Delta)$

Proof. Let $Z, W \in \Gamma(\Delta)$, then from Eq. (16), we get

(32)
$$Q_1 \hat{\nabla}_Z f W = f Q_2 \hat{\nabla}_Z W.$$

On interchanging Z and W in the preceding equation, we obtain

(33)
$$Q_1 \hat{\nabla}_W f Z = f Q_2 \hat{\nabla}_W Z$$

Subtracting Eq. (33) from Eq. (32), we get

(34)
$$Q_1 \hat{\nabla}_Z f W - Q_1 \hat{\nabla}_W f Z = f Q_2 \mathcal{V}[Z, W].$$

Also for $Z, W \in \Gamma(\Delta)$, Eq. (19) gives

On reversing the role of Z and W in the above equation, then we have

(36)
$$Q_4 \hat{\nabla}_W f Z = f Q_4 \hat{\nabla}_W Z.$$

Subtracting Eq. (36) from Eq. (35), we acquire

(37)
$$Q_4 \hat{\nabla}_Z f W - Q_4 \hat{\nabla}_W f Z = f Q_4 \mathcal{V}[Z, W].$$

From Eq. (20), we have

(38)
$$Q_5(\hat{\nabla}_Z fW) = Q_5(\hat{\nabla}_W fZ) + BP_2(\mathcal{T}_Z W)$$

If Z and W are interchanged in the above equation, then we get

(39)
$$Q_5(\nabla_W fZ) = Q_5(\nabla_Z fW) + BP_2(\mathcal{T}_W Z).$$

Then from Eqs. (38) and (39), we further obtain

$$Q_5(\hat{\nabla}_Z fW) - Q_5(\hat{\nabla}_W fZ) = fQ_5(\mathcal{V}[Z,W]) + BP_2(\mathcal{T}_Z W - \mathcal{T}_W Z).$$

Since the tensor \mathcal{T} is symmetric, therefore $\mathcal{T}_Z W = \mathcal{T}_W Z$, hence we get

(40)
$$Q_5(\nabla_Z fW) - Q_5(\nabla_W fZ) = fQ_5(\mathcal{V}[Z,W]).$$

Thus the proof follows from Eqs. (34), (37) and (40).

Theorem 3.10. Consider a semi-slant lightlike submersion $\phi : M_1 \to M_2$ from an indefinite Kaehler manifold M_1 onto an r-lightlike manifold M_2 . Then D_1 is integrable if and only if

(i)
$$Q_1(\hat{\nabla}_Z fW) = Q_1(\hat{\nabla}_W fZ),$$

(i)
$$Q_1(\hat{\nabla}_Z fW) = Q_1(\hat{\nabla}_W fZ),$$

(ii) $Q_2(\hat{\nabla}_Z fW) = Q_2(\hat{\nabla}_W fZ),$

(iii)
$$Q_5(\nabla_Z fW) = Q_5(\nabla_W fZ),$$

for any $Z, W \in \Gamma(D_1)$

Proof. Let ϕ be a semi-slant submersion, then for $Z, W \in \Gamma(D_1)$, Eq. (16) gives

(41)
$$Q_1 \hat{\nabla}_Z f W = f Q_2 \hat{\nabla}_Z W,$$

then reversing the role of Z and W, we get

(42)
$$Q_1 \hat{\nabla}_W f Z = f Q_2 \hat{\nabla}_W Z.$$

Further subtracting Eqs. (41) and (42), we obtain

(43)
$$Q_1 \hat{\nabla}_Z f W - Q_1 \hat{\nabla}_W f Z = f Q_2 \mathcal{V}[Z, W].$$

Again for $Z, W \in \Gamma(D_1)$ and from Eq. (17), we have

$$Q_2(\hat{\nabla}_Z fW) = fQ_1(\hat{\nabla}_Z W) + BP_2(\mathcal{T}_Z W).$$

Similarly, we acquire

$$Q_2(\hat{\nabla}_W fZ) = fQ_1(\hat{\nabla}_W Z) + BP_2(\mathcal{T}_W Z).$$

Then subtracting last two Eqs., we obtain

$$Q_2(\hat{\nabla}_Z fW) - Q_2(\hat{\nabla}_W fZ) = fQ_1(\mathcal{V}[Z, W] - BP_2(\mathcal{T}_Z W - \mathcal{T}_W Z),$$

then using the symmetry of \mathcal{T} , the above equation reduces to

(44)
$$Q_2(\hat{\nabla}_Z fW) - Q_2(\hat{\nabla}_W fZ) = fQ_1(\mathcal{V}[Z,W].$$

Next from Eq. (20), we obtain

$$Q_5(\hat{\nabla}_Z fW) = fQ_5(\hat{\nabla}_Z W).$$

463

If we interchange the role of Z and W in last equation, then we get

$$Q_5(\hat{\nabla}_W fZ) = fQ_5(\hat{\nabla}_W Z),$$

this further gives

(45)
$$Q_5(\hat{\nabla}_Z fW) - Q_5(\hat{\nabla}_W fZ) = fQ_5(\mathcal{V}[Z,W])$$

Thus the proof follows from the Eqs. (43), (44) and (45).

Theorem 3.11. If $\phi : M_1 \to M_2$ is a semi-slant lightlike submersion from an indefinite Kaehler manifold M_1 onto an r-lightlike manifold M_2 , then D_2 is integrable if and only if

(i) $Q_1(\hat{\nabla}_Z fW - \hat{\nabla}_W fZ) = Q_1(\mathcal{T}_W \omega Z - \mathcal{T}_Z \omega W),$ (ii) $Q_2(\hat{\nabla}_Z fW - \hat{\nabla}_W fZ) = Q_2(\mathcal{T}_W \omega Z - \mathcal{T}_Z \omega W),$ (iii) $Q_4(\hat{\nabla}_Z fW - \hat{\nabla}_W fZ) = Q_4(\mathcal{T}_W \omega Z - \mathcal{T}_Z \omega W),$ (iv) $P_1(\mathcal{T}_Z fW - \mathcal{T}_W fZ) = P_1(\mathcal{H} \nabla_W \omega Z - \mathcal{H} \nabla_Z \omega W),$ for any $Z, W \in \Gamma(D_2).$

Proof. Let ϕ be a semi-slant submersion and $Z, W \in \Gamma(D_2)$, then from Eq. (16), we obtain

$$Q_1(\hat{\nabla}_Z fW) + Q_1(\mathcal{T}_Z \omega W) = fQ_2(\hat{\nabla}_Z W)$$

If we interchange Z and W in the above equation, then we get

$$Q_1(\hat{\nabla}_W fZ) + Q_1(\mathcal{T}_W \omega Z) = f Q_2(\hat{\nabla}_W Z),$$

this further gives

(46)
$$Q_1(\hat{\nabla}_Z fW - \hat{\nabla}_W fZ) + Q_1(\mathcal{T}_Z \omega W - \mathcal{T}_W \omega Z) = fQ_2(\mathcal{V}[Z, W]).$$

For $Z, W \in \Gamma(D_2)$, Eq. (17) reduces to

$$Q_2(\hat{\nabla}_Z fW) + Q_2(\mathcal{T}_Z \omega W) = fQ_1(\hat{\nabla}_Z W)$$

If we interchange Z and W in the above equation, then we get

$$Q_2(\hat{\nabla}_W fZ) + Q_2(\mathcal{T}_W \omega Z) = fQ_1(\hat{\nabla}_W Z),$$

which yields that

(47)
$$Q_2(\hat{\nabla}_Z fW - \hat{\nabla}_W fZ) + Q_2(\mathcal{T}_Z \omega W - \mathcal{T}_W \omega Z) = fQ_1(\mathcal{V}[Z, W]).$$

For $Z, W \in \Gamma(D_2)$, Eq. (19) gives

$$Q_4(\hat{\nabla}_Z fW) + Q_4(\mathcal{T}_Z \omega W) = fQ_4(\hat{\nabla}_Z W).$$

On reversing the role of Z and W in the above equation, we get

$$Q_4(\hat{\nabla}_W fZ) + Q_4(\mathcal{T}_W \omega Z) = fQ_4(\hat{\nabla}_W Z),$$

above equation further becomes

(48)
$$Q_4(\hat{\nabla}_Z fW - \hat{\nabla}_W fZ) + Q_4(\mathcal{T}_Z \omega W - \mathcal{T}_W \omega Z) = fQ_4(\mathcal{V}[Z, W]).$$

464

For $Z, W \in \Gamma(D_2)$ and from Eq. (21), we obtain

 $P_1(\mathcal{T}_Z f W) + P_1(\mathcal{H} \nabla_Z \omega W) = \omega Q_3(\hat{\nabla}_Z W).$

On interchanging the role of Z and W in the above equation, we obtain

$$P_1(\mathcal{T}_W fZ) + P_1(\mathcal{H}\nabla_W \omega Z) = \omega Q_3(\hat{\nabla}_W Z),$$

above equation further implies that

(49) $P_1(\mathcal{T}_Z fW - \mathcal{T}_W fZ) + P_1(\mathcal{H}\nabla_Z \omega W - \mathcal{H}\nabla_W \omega Z) = \omega Q_3(\mathcal{V}[Z, W]).$ Thus the result follows from Eqs. (46), (47), (48) and (49).

4. Foliations Determined By Distributions

In this section, we will establish some necessary and sufficient conditions for the totally geodesic foliations determined by distributions on a semi-slant lightlike submersions.

Theorem 4.1. Let $\phi : M_1 \to M_2$ be a semi-slant lightlike submersion from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold M_2 . Then Δ defines a totally geodesic foliation if and only if

 $g_1(\hat{\nabla}_W JQ_2 Z + \hat{\nabla}_W JQ_4 Z + \hat{\nabla}_W JQ_5 Z, JY) = -g_1(\mathcal{T}_W \omega Q_3 Z + \mathcal{T}_W \omega Q_5 Z, JY),$ for all $W, Y \in \Gamma(\Delta)$ and $Z \in \Gamma(S(ker \phi_*)).$

Proof. Let $\phi : M_1 \to M_2$ be a semi-slant lightlike submersion from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold M_2 . To prove that Δ defines a totally geodesic foliation, it is sufficient to prove that $\hat{\nabla}_W Y \in \Gamma(\Delta)$, for all $W, Y \in \Gamma(\Delta)$. Since ∇ is a metric connection on M_1 , therefore for any $W, Y \in \Gamma(\Delta)$ and $Z \in \Gamma(S(\ker \phi_*))$, we have

$$g_1(\nabla_W Y, Z) = g_1(\nabla_W Y - \mathcal{T}_W Y, Z) = g_1(\nabla_W Y, Z) = -g_1(Y, \nabla_W Z)$$

$$= -g_1(JY, J\nabla_W Z) = -g_1(\nabla_W JZ, JY)$$

$$= -g_1(\nabla_W (JQ_2 Z + \omega Q_3 Z + JQ_4 Z + fQ_5 Z + \omega Q_5 Z), JY)$$

$$= -g_1(\nabla_W JQ_2 Z + \nabla_W JQ_4 Z + \nabla_W fQ_5 Z, JY)$$

$$-g_1(\nabla_W \omega Q_3 Z + \nabla_W \omega Q_5 Z, JY),$$

further using Eq. (12), we get

(50)
$$g_1(\nabla_W Y, Z) = -g_1(\nabla_W JQ_2 Z + \nabla_W JQ_4 Z + \nabla_W fQ_5 Z, JY) - g_1(\mathcal{T}_W \omega Q_3 Z + \mathcal{T}_W \omega Q_5 Z, JY).$$

Then from Eq. (50), we conclude that the distribution Δ determines a totally geodesic foliation if and only if $g_1(\hat{\nabla}_W Y, Z) = 0$, that is, if and only if

(51)
$$g_1(\nabla_W JQ_2 Z + \nabla_W JQ_4 Z + \nabla_W JQ_5 Z, JY) = -g_1(\mathcal{T}_W \omega Q_3 Z + \mathcal{T}_W \omega Q_5 Z, JY),$$

which completes the proof.

Theorem 4.2. Consider a semi-slant lightlike submersion $\phi : M_1 \to M_2$ from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold M_2 . Then D_1 defines a totally geodesic foliation if and only if

(i)
$$g_1(\nabla_W fZ, JY) = -g_1(\mathcal{T}_W \omega Z, JY),$$

(ii) $\nabla_W JN$ and $\mathcal{T}_W JX$ have no components in D_1 ,

for all $W, Y \in \Gamma(D_1), Z \in \Gamma(D_2), X \in \Gamma(Jltr(ker \ \phi_*)), N \in \Gamma(ltr(ker \ \phi_*)).$

Proof. Since ∇ is a metric connection on M_1 , therefore for any $W, Y \in \Gamma(D_1)$ and $Z \in \Gamma(D_2)$, we have

$$g_1(\hat{\nabla}_W Y, Z) = g_1(\nabla_W Y - \mathcal{T}_W Y, Z) = g_1(\nabla_W Y, Z) = -g_1(Y, \nabla_W Z)$$

$$= -g_1(JY, J\nabla_W Z) = -g_1(\nabla_W JZ, JY)$$

$$= -g_1(\nabla_W fZ, JY) - g_1(\nabla_W \omega Z, JY)$$

(52)
$$= -g_1(\hat{\nabla}_W fZ, JY) - g_1(\mathcal{T}_W \omega Z, JY).$$

Now for $W, Y \in \Gamma(D_1)$ and $N \in \Gamma(ltr(ker \phi_*))$, we have

$$g_1(\nabla_W Y, N) = g_1(\nabla_W Y, N) = -g_1(Y, \nabla_W N) = -g_1(JY, J\nabla_W Y)$$

$$= -g_1(JY, \nabla_W JN) = -g_1(JY, \hat{\nabla}_W JN + \mathcal{T}_W JN)$$

$$(53) = -g_1(JY, \hat{\nabla}_W JN).$$

For $W, Y \in \Gamma(D_1)$ and $X \in \Gamma(Jltr(ker \phi_*))$, we have

$$g_1(\nabla_W Y, X) = g_1(\nabla_W Y - \mathcal{T}_W Y, X) = g_1(\nabla_W Y, X) = -g_1(Y, \nabla_W X)$$

$$= -g_1(JY, J\nabla_W X) = -g_1(JY, \nabla_W JX)$$

(54)
$$= -g_1(JY, \mathcal{T}_W JX)$$

Thus the proof follows from Eqs. (52), (53) and (54).

Theorem 4.3. If $\phi: M_1 \to M_2$ is a semi-slant lightlike submersion from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold M_2 , then D_2 defines a totally geodesic foliation if and only if

(i) $g_1(\hat{\nabla}_X JZ, fY) = -g_1(P_2 T_X JZ, \omega Y),$ (ii) $g_1(fY, \hat{\nabla}_X JK) = -g_1(\omega Y, P_2 \mathcal{T}_X JN),$ (iii) $g_1(fY, \mathcal{T}_X JW) = -g_1(\omega Y, \mathcal{H}(\nabla_X JW)),$

for all $X, Y \in \Gamma(D_2), Z \in \Gamma(D_1), N \in \Gamma(ltr(ker \ \phi_*))$ and

$$W \in \Gamma(Jltr(ker \phi_*)).$$

466

Proof. As ∇ is a metric connection on M_1 , therefore for any $X, Y \in \Gamma(D_2)$ and $Z \in \Gamma(D_1)$, we have

$$g_{1}(\hat{\nabla}_{X}Y,Z) = g_{1}(\nabla_{X}Y - \mathcal{T}_{X}Y,Z) = g_{1}(\nabla_{X}Y,Z) = -g_{1}(Y,\nabla_{X}Z)$$

$$= -g_{1}(JY,J\nabla_{X}Z) = -g_{1}(\nabla_{X}JZ,JY)$$

$$= -g_{1}(\hat{\nabla}_{X}JZ + \mathcal{T}_{X}JZ,fY + \omega Y)$$

$$= -g_{1}(\hat{\nabla}_{X}JZ,fY) - g_{1}(\mathcal{T}_{X}JZ,\omega Y)$$

$$(55) = -g_{1}(\hat{\nabla}_{X}JZ,fY) - g_{1}(P_{2}\mathcal{T}_{X}JZ,\omega Y).$$

For $X, Y \in \Gamma(D_2)$ and $N \in \Gamma(ltr(ker \phi_*))$, we have

$$g_1(\hat{\nabla}_X Y, N) = -g_1(Y, \nabla_X N) = -g_1(JY, J\nabla_X Y)$$

$$= -g_1(JY, \nabla_X JN) = -g_1(fY + \omega Y, \hat{\nabla}_X JN + \mathcal{T}_X JN)$$

$$= -g_1(fY, \hat{\nabla}_X JN) - g_1(\omega Y, \mathcal{T}_X JN)$$

(56)
$$= -g_1(fY, \hat{\nabla}_X JN) - g_1(\omega Y, P_2 \mathcal{T}_X JN)$$

Also for any $X, Y \in \Gamma(D_2)$ and $W \in \Gamma(Jltr(ker \phi_*))$, we have

$$g_{1}(\hat{\nabla}_{X}Y,W) = g_{1}(\nabla_{X}Y - \mathcal{T}_{X}Y,W) = g_{1}(\nabla_{X}Y,W) = -g_{1}(Y,\nabla_{X}W)$$
$$= -g_{1}(JY,J\nabla_{X}W) = -g_{1}(JY,\nabla_{X}JW)$$
$$= -g_{1}(fY + \omega X,\mathcal{H}\nabla_{X}JW + \mathcal{T}_{X}JW)$$
$$(57) = -g_{1}(fY,\mathcal{T}_{X}JW) - g_{1}(\omega Y,\mathcal{H}(\nabla_{X}JW)).$$

Hence the proof follows from Eqs. (55), (56) and (57).

Theorem 4.4. Let $\phi : M_1 \to M_2$ be a semi-slant lightlike submersion from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold M_2 . Then ϕ is a totally geodesic map if and only if

- (i) $\omega(\hat{\nabla}_W fy + \mathcal{T}_W \omega Y) + C(P_2 T_W fY + P_2 \mathcal{H}(\nabla_W \omega Y) = 0,$
- (ii) $\omega(\hat{\nabla}_W J P_1 U + \hat{\nabla}_W B P_2 U + \mathcal{T}_W C P_2 U) + C(P_2 \mathcal{T}_W J P_1 U + P_2 \mathcal{T}_W B P_2 U + P_2 \mathcal{H}(\nabla_W C P_2 U)) = 0,$

for each $W, Y \in \Gamma(ker \ \phi_*)$ and $U \in \Gamma(ker \ \phi_*)^{\perp}$.

Proof. Since ϕ is a semi-slant lightlike submersion, we have

(58)
$$(\nabla \phi_*)(U_1, U_2) = \nabla^{\phi}_{U_1} \phi_*(U_2) - \phi_*(\nabla_{U_1} U_2) = 0$$

for all $U_1, U_2 \in \Gamma(\ker \phi_*)^{\perp}$. Now for $W, Y \in \Gamma(\ker \phi_*)$, we have

$$\begin{aligned} (\nabla\phi_*)(W,Y) &= -\phi_*(\nabla_W Y) = \phi_*(\nabla_W J^2 Y) = \phi_*(J\nabla_W JY) \\ &= \phi_*(J\nabla_W (fY + \omega Y)) = \phi_*(J\nabla_W fY + J\nabla_W \omega Y) \\ &= \phi_*(J(\mathcal{T}_W fY + \hat{\nabla}_W fY) + J(\mathcal{H}(\nabla_W \omega Y) + \mathcal{T}_W \omega Y)) \\ &= \phi_*(J(P_1 \mathcal{T}_W fY + P_2 \mathcal{T}_W fY) + f\hat{\nabla}_W fY + \omega \hat{\nabla}_W fY \\ &\quad + JP_1 \mathcal{H}(\nabla_W \omega Y) + JP_2 \mathcal{H}(\nabla_W \omega Y) + fT_W \omega Y + \omega \mathcal{T}_W \omega Y) \\ &= \phi_*(JP_1 \mathcal{T}_W fY + BP_2 \mathcal{T}_W fY + CP_2 \mathcal{T}_W fY + \omega \hat{\nabla}_W fY \\ &\quad + f\hat{\nabla}_W fY + JP_1 \mathcal{H}(\nabla_W \omega Y) + BP_2 \mathcal{H}(\nabla_W \omega Y) \\ &+ CP_2 \mathcal{H}(\nabla_W \omega Y) + f\mathcal{T}_W \omega Y + \omega \mathcal{T}_W \omega Y)). \end{aligned}$$

Now for $W \in \Gamma(\ker \phi_*)$ and $U \in \Gamma((\ker \phi_*)^{\perp})$, since $(\nabla \phi_*)(W, U) = (\nabla \phi_*)(U, W)$, therefore we have

$$(\nabla \phi_*)(W,U) = -\phi_*(\nabla_W U) = \phi_*(J\nabla_W JU)$$

$$= \phi_*(J\nabla_W (JP_1U + BP_2U + CP_2U))$$

$$= \phi_*(J(\mathcal{T}_W JP_1U + \hat{\nabla}_W JP_1U + \mathcal{T}_W BP_2U + \hat{\nabla}_W BP_2U + \mathcal{H}(\nabla_W CP_2U) + \mathcal{T}_W CP_2U))$$

$$= \phi_*(JP_1\mathcal{T}_W JP_1U + BP_2\mathcal{T}_W JP_1U + CP_2\mathcal{T}_W JP_1U + f\hat{\nabla}_W JP_1U + \omega\hat{\nabla}_W JP_1U + JP_1\mathcal{T}_W BP_2U + BP_2\mathcal{T}_W BP_2U + CP_2\mathcal{T}_W BP_2U + f\hat{\nabla}_W BP_2U + \omega\hat{\nabla}_W BP_2U + JP_1\mathcal{H}(\nabla_W CP_2U) + BP_2\mathcal{H}(\nabla_W CP_2U) + CP_2\mathcal{H}(\nabla_W CP_2U) + f\mathcal{T}_W CP_2U + \omega\mathcal{T}_W CP_2U).$$
(60)

Thus the proof follows from Eqs. (58), (59) and (60).

5. Semi-Slant Lightlike Submersions with Totally Umbilical Fibres

Let ϕ be a Riemannian submersion from a Riemannian manifold (M_1, g_1) onto a Riemannian manifold (M_2, g_2) . Then ϕ is said to be a Riemannian submersion with totally umbilical fibres if there exists a mean curvature vector field H of the fibres such that $\mathcal{T}_X Y = g_1(X, Y)H$, for all $X, Y \in \Gamma(\ker \phi_*)$. Since, we know that P_1 and P_2 respectively, denote the projections of $tr(\ker \phi_*)$ on $ltr(\ker \phi_*)$ and $S(\ker \phi_*)^{\perp}$, then taking into account the decomposition of $tr(\ker \phi_*)$ as $tr(\ker \phi_*) = ltr(\ker \phi_*) \perp S(\ker \phi_*)^{\perp}$, we have

(61)
$$\mathcal{T}_X Y = P_1 \mathcal{T}_X Y + P_2 \mathcal{T}_X Y,$$

where $P_1\mathcal{T}_X Y \in \Gamma(ltr(ker \ \phi_*))$ and $P_2\mathcal{T}_X Y \in \Gamma(S(ker \ \phi_*)^{\perp})$. Let ϕ be a lightlike submersion defined from an indefinite Kaehler manifold (M_1, g_1, J) on to an r-lightlike manifold (M_2, g_2) . Then ϕ is said to be lightlike submersion with totally umbilical fibres if and only if on each coordinate neighbourhood U there exist smooth vector field $H^{P_1} \in \Gamma(ltr(ker \ \phi_*))$ and $H^{P_2} \in \Gamma(S(ker \ \phi_*)^{\perp})$, such that

(62)
$$P_1 \mathcal{T}_X Y = g_1(X, Y) H^{P_1}, P_2 \mathcal{T}_X Y = g_1(X, Y) H^{P_2},$$

for all $X, Y \in \Gamma(ker \phi_*)$.

Theorem 5.1. Consider a semi-slant lightlike submersion $\phi : M_1 \to M_2$ with totally umbilical fibres from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold (M_2, g_2) . Then we have $H^{P_2} \in \Gamma(\phi(D_2))$.

Proof. For $X, Y \in \Gamma(D_1)$ and $W \in \Gamma(\eta)$, from Eqs. (2), (7), (6), (9) and (12)-(15), we obtain

(63)
$$\begin{aligned} \mathcal{T}_X JY + \dot{\nabla}_X Y &= JP_1 \mathcal{T}_X Y + BP_2 \mathcal{T}_X Y + CP_2 \mathcal{T}_X Y \\ &+ f \dot{\nabla}_X Y + \omega \dot{\nabla}_X Y, \end{aligned}$$

On comparing the horizontal and transversal components in Eq. (63), we get

(64)
$$\mathcal{T}_X JY = CP_2 \mathcal{T}_X Y + \omega \hat{\nabla}_X Y$$

and

(65)
$$\hat{\nabla}_X Y = J P_1 \mathcal{T}_X Y + B P_2 \mathcal{T}_X Y + f \hat{\nabla}_X Y.$$

Now for $X, Y \in \Gamma(D_1), W \in \Gamma(\eta)$ and using Eq. (64), we have

(66)
$$g_1(\mathcal{T}_X JY, W) = g_1(CP_2\mathcal{T}_X Y, W) = -g_1(P_2\mathcal{T}_X Y, JW).$$

Also from Eq. (61), we have

(67)
$$g_1(\mathcal{T}_X JY, W) = g_1(P_1 \mathcal{T}_X JY + P_2 \mathcal{T}_X JY, W) = g_1(P_2 \mathcal{T}_X JY, W).$$

Now from Eqs. (66) and (67), we get

(68)
$$-g_1(P_2\mathcal{T}_XY,JW) = g_1(P_2\mathcal{T}_XJY,W).$$

Next using Eq. (62) in Eq. (68), we obtain

(69)
$$-g_1(X, JY).g_1(H^{P_2}, W) = g_1(X, Y).g_1(H^{P_2}, JW).$$

On interchanging the role of X and Y in the above equation, we get

$$-g_1(Y,JX).g_1(H^{P_2},W) = g_1(Y,X).g_1(H^{P_2},JW),$$

which further gives

(70) $g_1(X, JY).g_1(H^{P_2}, W) = g_1(X, Y).g_1(H^{P_2}, JW).$

Now adding Eqs. (68) and (70), we get

$$g_1(X,Y).g_1(H^{P_2},JW) = 0,$$

this further gives

$$g_1(H^{P_2}, JW) = 0.$$

As $J\eta = \eta$, thus we conclude that $H^{P_2} \in \Gamma(\phi(D_2))$.

Corollary 5.2. Let ϕ be a semi-slant lightlike submersion with totally umbilical fibres from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold (M_2, g_2) . If $H^{P_2} \in \Gamma(\eta)$. Then $H^{P_2} = 0$.

Theorem 5.3. Suppose that $\phi: M_1 \to M_2$ is a proper semi-slant lightlike submersion with totally umbilical fibres from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold (M_2, g_2) . Then $H^{P_1} = 0$.

Proof. For $Z \in \Gamma(D_2)$ and using Eqs. (2), (7), (6), (12)-(15) and Lemma (3.8), we get

$$cos heta(Z) (\mathcal{T}_Z Z^* + \hat{
abla}_Z Z^*) + \mathcal{H}
abla_Z \omega Z + \mathcal{T}_Z \omega Z$$

(71)
$$= CP_2\mathcal{T}_ZZ + \omega\hat{\nabla}_ZZ + JP_1\mathcal{T}_ZZ + BP_2\mathcal{T}_ZZ + f\hat{\nabla}_ZZ.$$

On comparing the transversal components on both sides of Eq. (71), we get

$$\cos\theta(Z)\hat{\nabla}_Z Z^* + \mathcal{T}_Z \omega Z = JP_1 \mathcal{T}_Z Z + BP_2 \mathcal{T}_Z Z + f\hat{\nabla}_Z Z Z$$

Further taking an inner product of the above equation with $J\xi \in \Gamma(J\Delta)$, we get

(72)
$$\cos\theta(Z)g_1(\nabla_Z Z^*, J\xi) + g_1(\mathcal{T}_z \omega Z, J\xi) = g_1(JP_1\mathcal{T}_Z Z, J\xi),$$

using Eq. (12-(15) and (2)), we have

$$g_1(\hat{\nabla}_Z Z^*, J\xi) = g_1(\nabla_Z Z^*, J\xi) = -g_1(J\nabla_Z Z^*, \xi) = -g_1(\nabla_Z J Z^*, \xi)$$

= $g_1(JZ^*, \nabla_Z \xi) = g_1(\omega Z^*, \mathcal{T}_Z \xi),$

since fibres are totally umbilical, therefore the above equation reduces to

(73)
$$g_1(\hat{\nabla}_Z Z^*, J\xi) = g_1(\omega Z^*, H)g_1(Z, \xi) = 0$$

Also using Eqs. (12-(15) together with the totally umbilical property of fibres, we have

(74)

$$g_1(\mathcal{T}_z \omega Z, J\xi) = g_1(\nabla_Z \omega Z, J\xi) = -g_1(\omega Z, \nabla_Z J\xi)$$

$$= -g_1(\omega Z, \mathcal{T}_z J\xi) = g_1(Z, J\xi)g_1(\omega Z, H^{P_2})$$

$$= 0.$$

From Eqs. (73) and (74) in (72), we obtain

$$g_1(JP_1\mathcal{T}_Z Z, J\xi) = 0,$$

which further yields

$$g_1(P_1\mathcal{T}_Z Z,\xi) = 0.$$

In view of Eq. (62), the above equation reduces to

$$g_1(Z,Z)g_1(H^{P_1},Z) = 0$$

By non-degeneracy of D_2 , we conclude that $H^{P_1} = 0$. This completes the proof.

Theorem 5.4. Assume that

 $\phi: M_1 \to M_2$

is a proper semi-slant lightlike submersion with totally umbilical fibres from an indefinite Kaehler manifold (M_1, g_1, J) onto an r-lightlike manifold (M_2, g_2) such that

$$H^{P_2} \in \Gamma(\eta).$$

Then the fibres are always totally geodesics.

Proof. On using the Corollary (5.2) and Theorem (5.3), the result follows.

References

- J. L. Anderson and J. W. York, Quantum stress tensor in curved spacetime, PRD 29 (1984), 615–623.
- [2] A. Ashtekar, C. Beetle, and S. Fairhurst, *Mechanics of isolated horizons*, Class. Quantum Gravity 17 (2000), L1–L7.
- [3] J. P. Bourguinon and H. B. Lowson, Stability and isolation phenomena for yang mills fields, Commun. Math. Phys. 79 (1981), 189–230.
- [4] P. T. Chruściel and J. Isenberg, On uniqueness in the large of solutions of Einstein's equations, Commun. Math. Phys. 163 (1994), 561–583.
- [5] L. Cornalba and M. S. Costa, Lightlike submersions in string theory, Adv. Theor. Math. Phys. 11 (2007), no. 2, 359–387.
- [6] K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Vol. 364 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.DJ.
- [7] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003), 49–68.
- [8] M. Falcitelli, A. M. Pastore, and S. Ianus, *Riemannian Submersions and Related Topics*, World Scientific, Singapore, 2004.
- [9] A. Gray, Pseudo-Riemannian almost product manifolds and submersion, Mich. Math. J. 16 (1967), 715–735.
- [10] B. C. Hall and K. Vagenas, Dispersion relation in a curved spacetime background, PRL 100 (2008), 141301.
- [11] R Hermann, A sufficient condition that a mapping of Riemanian manifolds be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960), 236–242.
- [12] S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Class. Quantum Gravity 4 (1987), 1317–1325.
- [13] S. Kumar, Geometry warped product lightlike submanifolds of indefinite nearly Kaehler manifolds, J. Geom. 109 (2018), no .1, 21.
- [14] J. W. Lee and B. Sahin, Pointwise slant submersions, Bull. Korean Math. Soc. 51 (2014), 1115–1126.
- [15] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966), 459– 469.
- [16] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York-London, 1983.

- [17] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, Cambridge, 1983.
- [18] K. S. Park and R Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), 951–962.
- [19] M. Pruthi and S. Kumar, Warped product lightlike submanifolds with a slant factor, Rev. Un. Mat. Argentina, accepted for publication in 2023.
- [20] R. Sachdeva, R. Kumar, and S. S. Bhatia, Slant lightlike submersion from an indefinite almost Hermitian manifold in to a lightlike manifold, Ukr. Math. J. 68 (2016), 1097– 1107.
- [21] B. Sahin, On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds, Mediterr. J. math. 5 (2008), 273–284.
- [22] B. Sahin and Yilmaz Gündüzalp, Submersion from semi-Riemannian manifolds onto lightlike manifolds, Hacet. J. Math. Stat. 39 (2010), 41–53.
- [23] B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie. Tome. 54 (2011), no. 102, 93–105.
- [24] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central European J. Math. 8(2010), no. 3, 437–447.
- [25] B. Sahin, Riemannian submersion from almost Hermitian manifold, Taiwan. J. Math. 17 (2013), no .2, 629–659.
- [26] B. Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Academic Press, Cambridge, 2017.
- [27] S. S. Shukla and A. Yadav, Semi-slant lightlike submanifold of an indefinite Kaehler manifold, Rev. Un. Mat. Argent. 56 (2015), 21–37.

Gaurav Sharma SDWG Government College Beetan, Una-176601, Himachal pradesh, India. E-mail: g.gauravsh@gmail.com

Sangeet Kumar Department of Mathematics, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib-140118, Punjab, India. E-mail: sp7maths@gmail.com

Dinesh Kumar Sharma Department of Mathematics, Maharaja Agrasen University, Baddi-174103, Himachal Pradesh, India. E-mail: dksharma200513@gmail.com