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SEMI-SLANT LIGHTLIKE SUBMERSIONS WITH TOTALLY

UMBILICAL FIBRES

Gaurav Sharma, Sangeet Kumar∗, and Dinesh Kumar Sharma

Abstract. We introduce the study of a semi-slant lightlike submersion

from an indefinite Kaehler manifold onto an r-lightlike manifold. After

giving the definition of a semi-slant lightlike submersion, we establish
the existence Theorems for this class of lightlike submersions. Then, we

derive the integrability conditions for the distributions D1, D2 and ∆

associated with a semi-slant lightlike submersion. Consequently, we find
some necessary and sufficient conditions for the foliations determined by

the distributions D1, D2 and ∆. Subsequently, we examine the geometry

of totally umbilical fibres of a semi-slant lightlike submersion.

1. Introduction

The concept of a lightlike submersion is one of the most fruitful area of
research in semi-Riemannian geometry. Theoretically, a lightlike submersion is
a smooth map that preserves the causal structure of the manifolds. In other
words, a lightlike submersion is a map that preserves the light cones in two
manifolds so that any two points in the domain, which are connected by a
lightlike curve are mapped to two points in the co-domain, which are also con-
nected by a lightlike curve. The theory of lightlike submersions is known to
have extensive uses in mathematical physics, particularly, in the general the-
ory of relativity. For instance, in physics, a lightlike submersion is used to
describe the propagation of gravitational waves through spacetime, as these
waves travel along null geodesics (paths that are tangent to the light cone) [2]-
[1]. In addition, a lightlike submersion can also be used to construct non-locality
conditions in quantum field theory, which are important for understanding the
nature of entanglement and other quantum phenomena [4]. In string theory,
lightlike submersions are used to describe the dynamics of strings moving in
curved spacetimes. Moreover, a lightlike submersion has been used to map
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the worldsheet of the string onto the target spacetime [5]. Furthermore, light-
like submersions have been employed to describe the dynamics of particles and
fields near the event horizon of a black hole, where the effect of gravity becomes
extreme [10]. Comprehensively, a lightlike submersion is a valuable geometric
tool for understanding various aspects of physics.

Initially, the concept of a Riemannian submersion was developed by Her-
mann [11] and O’Neill [15]. In [11], Hermann proved a sufficient condition for
a mapping of a Riemannian manifold to be a fibre bundle. This motivated
O’Neill to introduce the general notion of a Riemannian submersion [15]. Af-
terwards, various new generalizations of Riemannian submersions namely, in-
variant submersions, anti-invariant submersions, CR-submersions, generic sub-
mersions, semislant submersions, complex-contact and contact-complex sub-
mersions came into sight (for details, see [8]-[26], [18]). Further, with the
development of semi-Riemannian geometry, O’Neill [17], introduced the notion
of a semi-Riemannian submersion. It may be noted that for a Reimannian
submersion ϕ : M → B, where M and B are Riemannian manifolds, the fi-
bres of the Riemannian submersion ϕ are always Riemannian. However, when
M and B are semi-Riemannian manifolds, the fibres of ϕ may not be semi-
Riemannian. In this context, Sahin [22] studied the existence of a lightlike
submersion defined from a semi-Riemannian manifold onto a lightlike manifold
and illustrated how this idea differs from Riemannian and semi-Riemannian
submersions. Further, in [21], Sahin used a semi-Riemannian manifold as the
base and a Kaehler manifold as the total manifold to define a new type of light-
like submersion. Park and Prasad [18], introduced the notion of a semi-slant
submersion from an almost indefinite Hermitian manifold onto a Riemannian
manifold. Literature suggests that till date very few studies are available on
the geometry of lightlike submersions. In view of wide variety of applications of
a lightlike submersion, we define a new class of lightlike submersions, namely,
semi-slant lightlike submersions following the similar approach as developed
and used by Sahin in [22].
The paper is structured as follows: At first we give the general definition for a
semi-slant lightlike submersion ϕ from an indefinite Kaehler manifold M1 onto
an r-lightlike manifold M2 and present some Theorems for the existence of
this class of lightlike submersions. Then we establish some conditions for the
integrability of the distributions ∆, D1 and D2 arising in case of a semi-slant
lightlike submersion. Further, we obtain some necessary and sufficient condi-
tions for the leaves determined by the distributions on a semi-slant lightlike
submersion to be totally geodesic foliations. We also discuss the requisite for
a semi-slant lightlike submersion ϕ to be a totally geodesic map. Finally, we
investigate the geometry of totally umbilical fibres of semi-slant submersion
and give some geometric characterisation results.
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2. Preliminaries

In this section, we refer to [22] for the basic notations and fundamental
equations related to a lightlike submersion.
Assume that“(M1, g1, J) be an indefinite almost Hermitian manifold. This
indicates that a tensor field J of type (1, 1) on M1 is admissible, such that

(1) J2 = −I, g1(JX, JY ) = g1(X,Y ),

for X,Y ∈ Γ(TM1). An indefinite almost Hermitian manifold M1 is said to be
an indefinite Kaehler manifold if

(2) (∇XJ)Y = 0,

for any X,Y ∈ Γ(TM1).
On the other hand, the radical space Rad TpM1 of TpM1 is defined as

RadTpM1 = {ξ ∈ TpM1 : g1(ξ,X) = 0,∀X ∈ TpM1}.

Let (M1, g1, J) be a semi-Riemannian manifold and (M2, g2) be an r-lightlike
manifold. Consider a smooth submersion ϕ : M1 → M2, then for p ∈ M2,
ϕ−1(p) is a submanifold of M1 of dimension dim M1 - dim M2 . For any point
p ∈ M1, the kernel of ϕ∗, denoted as ker ϕ∗ and is given by

ker ϕ∗ = {Z ∈ TpM1 : ϕ∗(Z) = 0}.

Now we define (ker ϕ∗)
⊥ as

(ker ϕ∗)
⊥ = {Y ∈ TpM1 : g1(X,Y ) = 0,∀X ∈ ker ϕ∗}.

(ker ϕ∗)
⊥ may not be complementary to ker ϕ∗ as TpM1 is a semi-Riemannian

vector space. Hence

∆ = ker ϕ∗ ∩ (ker ϕ∗)
⊥ ̸= {0}.

For a lightlike submersion, there are four possible cases, which are discussed
below:

Case (i). 0 < dim ∆ < min{dim(ker ϕ∗), dim(ker ϕ∗)
⊥}: In this case ∆ is the

radical subspace of TpM1. Therefore we can find a quasi-orthonormal
basis of M1 along ker ϕ∗. Assume that S(ker ϕ∗) is a complementary
non-degenerate subspace to ∆ in ker ϕ∗. Then we have

ker ϕ∗ = ∆ ⊥ S(ker ϕ∗).

In a similar way, we have

(ker ϕ∗)
⊥ = ∆ ⊥ S(ker ϕ∗)

⊥,

where S(ker ϕ∗)
⊥ is a complementary subspace of ∆ in (ker ϕ∗)

⊥. More-
over, S(ker ϕ∗) being non-degenerate in TpM1 gives

TpM1 = S(ker ϕ∗) ⊥ (S(ker ϕ∗))
⊥,
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where (S(ker ϕ∗))
⊥ is the complementary subspace of S(ker ϕ∗) in TpM1.

As S(ker ϕ∗) and (S(ker ϕ∗))
⊥ are non-degenerate in TpM1, therefore

we get

(S(ker ϕ∗))
⊥ = S(ker ϕ∗)

⊥ ⊥ (S(ker ϕ∗)
⊥)⊥.

Now from ([6]), in view of proposition 2.4, we conclude that there exist
a quasi-orthonormal basis of TpM1 along ker ϕ∗, then we have

g1(ξi, ξj) = g1(Ni, Nj) = 0, g1(ξi, Nj) = δij ,

g1(Wα, ξj) = g1(Wα, Nj) = 0, g1(Wα,Wβ) = ϵαδαβ ,

for any i, j ∈ {1, .....r} and α, β ∈ {1, ...t}, where {Ni} are smooth null
vector fields of (S(ker ϕ∗)

⊥)⊥, {Wα} is a basis of S(ker ϕ∗)
⊥ and {ξi} is

a basis of ∆. Let the set of vector fields {Ni} be denoted by ltr(ker ϕ∗),
then consider the subspace as follows.

tr(ker ϕ∗) = ltr(ker ϕ∗) ⊥ S(ker ϕ∗)
⊥.

Since ltr(ker ϕ∗) and ker ϕ∗ are not orthogonal to each other, so we
denote the vertical space of TpM1 as V = ker ϕ∗ and the horizontal
space as H = tr(ker ϕ∗). Thus we have

TpM1 = Vp ⊕Hp.

It is pertinent to highlight again that V and H are not orthogonal to
each other. We are now equipped to define a lightlike submersion.

Definition 2.1. [22] Consider a submersion ϕ : M1 → M2 defined
from semi-Riemannian manifold (M1, g1) onto an r-lightlike manifold
(M2, g2) such that
(1) for 0 < r <min{dim(ker ϕ∗), dim(ker ϕ∗)

⊥}, dim∆= dim{(ker ϕ∗)∩
(ker ϕ∗)

⊥} = r,
(2) the length of horizontal vectors is preserved under ϕ∗, i.e., g1(Z,W ) =

g2(ϕ∗(Z), ϕ∗(W )) for Z,W ∈ Γ(H).
Then ϕ is called an r-lightlike submersion.

Case (ii). dim ∆ = dim(ker ϕ∗) < dim(ker ϕ∗)
⊥. In this case V = ∆ and

H = S(ker ϕ∗ ⊥ ltr(ker ϕ∗) and ϕ is said to be an isotropic lightlike
submersion.

Case (iii). dim ∆ = dim(ker ϕ∗)
⊥ < dim(ker ϕ∗). Here V = S(ker ϕ∗) ⊥ ∆ and

H = ltr(ker ϕ∗) and ϕ is said to be a co-isotropic lightlike submersion.
Case (iv). dim ∆ = dim(ker ϕ∗)

⊥ = dim(ker ϕ∗). In this case V = ∆ and H =
ltr(ker ϕ∗) and ϕ is said to be a totally lightlike submersion.

Before”proceeding further, at first we prove an essential lemma required to de-
fine the concept of a semi-slant lightlike submersion from an indefinite Kaehler
manifold onto a lightlike manifold.

Lemma 2.2. Consider a r-lightlike submersion ϕ : M1 → M2 from an
indefinite Kaehler manifold (M1, g1, J) (where g1 is a semi-Riemannian metric
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of index 2r) onto an r-lightlike manifold (M2, g2). If J∆ is a distribution on
M1 such that ∆ ∩ J∆ = 0, then any distribution complementary to J∆ ⊕
Jltr(ker ϕ∗) in S(ker ϕ∗) is Riemannian.

Proof. If possible,assume that J(ltr(ker ϕ∗) is invariant with respect to J ,
then for Z ∈ Γ(∆), N ∈ Γ(ltr(ker ϕ∗)), we have g1(Z,N) = 1, which gives
g1(JZ, JN) = 1, this further gives 0 = 1, which is a contradiction. Hence
J(ltr(ker ϕ∗) is not invariant with respect to J . Furthermore, on contrary
suppose that J(ltr(ker ϕ∗)) is contained in S(ker ϕ∗), then we have 0 =
g1(JZ, JN) = g1(Z,N) = 1, which is also a contradiction. Thus, J(ltr(ker ϕ∗))
is a distribution on M1. Moreover, J(ltr(ker ϕ∗) is not contained in ∆. Be-
cause if so, then for JN ∈ Γ(∆), we have J2N = −N ∈ Γ(J∆), which is
again a contradiction. In a similar way, we can prove that J(ltr(ker ϕ∗) is
not contained in J∆. Hence, J(ltr(ker ϕ∗) ⊂ S(ker ϕ∗) such that J∆ ∩
J(ltr(ker ϕ∗) = 0. Let D denotes a distribution which is complementary to
J∆⊕J(ltr(ker ϕ∗) in S(ker ϕ∗). Then, for the local quasi-orthonormal frames
on M1, ξ1, ..., ξr, Jξ1, ..., Jξr, N1, ..., Nr, JN1..., JNr forms an orthonormal ba-
sis of ∆⊕J∆⊕ ltr(ker ϕ∗)⊕Jltr(ker ϕ∗). Next we define U1, ..., U2r, V1, ..., V2r

as

U1 =
1√
2
(ξ1 +N1), U2 =

1√
2
(ξ1 −N1), U3 =

1√
2
(ξ2 +N2),

U4 =
1√
2
(ξ2 +N2), . . ., U2r−1 =

1√
2
(ξr +Nr), U2r =

1√
2
(ξr +Nr),

V1 =
1√
2
(Jξ1 + JN1), V2 =

1√
2
(Jξ1 − JN1), V3 =

1√
2
(Jξ2 + JN2),

V4 =
1√
2
(Jξ2 − JN1), . . ., V2r−1 =

1√
2
(Jξr + JNr), V2r

=
1√
2
(Jξr − JNr).

Hence, Span {ξi, Ni, Jξi, JNi} is a non-degenerate space of constant index
2r, that is ∆ ⊕ J∆ ⊕ ltr(ker ϕ∗) ⊕ Jltr(ker ϕ∗) is non-degenerate and has
a constant index 2r on M1. Since index(TM1) = index(∆ ⊕ ltr(ker ϕ∗)) +
index(J∆ ⊕ Jltr(ker ϕ∗) + index(D ⊥ S(ker ϕ∗)

⊥), we obtain, 2r = 2r +
index(J∆ ⊕ Jltr(ker ϕ∗) + index(D ⊥ S(ker ϕ∗)

⊥). This implies that (D ⊥
S(ker ϕ∗)

⊥)) is Reimannian and, therefore, D is Riemannian.

3. Semi-Slant Lightlike Submersions

In this section, at first, we define the concept of a semi-slant lightlike sub-
mersion from an indefinite Kaehler manifold onto an r-lightlike manifold.
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Definition 3.1. Consider an r-lightlike submersion ϕ : M1 → M2 defined
from an indefinite Kaehler manifold (M1, g1, J), where g1 is a semi-Riemannian
metric of index 2r, where 2r < dim(M1), onto an r-lightlike manifold (M2, g2).
Then ϕ is said to be a semi-slant lightlike submersion if the following conditions
hold:

(1) J∆ is a distribution on ker ϕ∗ such that ∆ ∩ J∆ = 0.
(2) There exist two non-degenerate distributions D1 and D2 on M1, such

that

ker ϕ∗ = ∆ ⊥ {J∆⊕ Jltr(ker ϕ∗)} ⊕ortho D1 ⊕ortho D2,

where JD1 = D1.
(3) For any non-zero vector field X tangent to D2, the angle θp(X) be-

tween JX and the vector space (D2)p is constant for any given point
p ∈ U ⊂ M1, where D2 is the complementary distribution to J∆ ⊕
Jltr(ker ϕ∗)⊕orth D1 in S(ker ϕ∗). This implies that angle θp(X) does
not depend on the choice of X.

Here the angle θ on M1 is known as a semi-slant angle. If ϕ : M1 → M2 is a
semi-slant lightlike submersion, then the decomposition of ker ϕ∗ is as follows:

(3) ker ϕ∗ = ∆ ⊥ {J∆⊕ Jltr(ker ϕ∗)} ⊕ortho D1 ⊕ortho D2.

Hence we get

TpM1 = Vp ⊕Hp

= {∆ ⊥ {J∆⊕ Jltr(ker ϕ∗)} ⊕ortho D1 ⊕ortho D2} ⊕ {ϕ(D2) ⊥
η ⊥ ltr(ker ϕ∗)},(4)

where η is the orthogonal subbundle complimentary to ϕ(D2) in (ker ϕ∗)
⊥.

Example 3.2. Let (R18, g1, J) and (R8, g2) be an indefinite Kaehler man-
ifold and a lightlike manifold, endowed with semi-reimannian metric g1 with
signature (−,+,−,+,+,+,+,+,+,+,+,+) and degenerate metric g2 with sig-
nature (+,+,+,+,+,+,+,+).

Define a map ϕ from R18 → R8 as

ϕ(x1, ........, x8) = (x1,−x2, x3, x2 + x4, x1 + x4, x2 + x3, x5, x6, x6, x5x6,

(x5)
2

2
+

(x6)
2

2
, x7, x7, x8, x8, x7, x8, x7x8,

x2
7

2
+

x2
8

2
).

Then we can easily see that ϕ is a 2-lightlike submersion with

∆ = kerϕ∗ ∩ (kerϕ∗)
⊥ = Span{Z1 = − ∂

∂x1
+

∂

∂x5
, Z2 = − ∂

∂x2
+

∂

∂x6
},

J∆ = Span{Z2 = − ∂

∂x2
+

∂

∂x6
, Z4 = − ∂

∂x4
+

∂

∂x5
},

Jltr(kerϕ∗) = Span{Z4 = − ∂

∂x4
+

∂

∂x5
},
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D1 = Span{Z5 =
∂

∂x5
, Z8 =

∂

∂x8
},

D2 = Span{Z7 =
1√
2
(

∂

∂x9
+

∂

∂x12
), Z8 =

∂

∂x8
}.

Since JZ1 = Z2, JZ3 = Z4, therefore ∆∩ J∆ = 0. By easy calculation, we can
see that D1 is invariant w.r.t. J and D2 is a slant distribution with the slant
angle θ = π

4 . Thus, ϕ is a proper semi-slant lightlike submersion.

For any vector field X ∈ Vp, we may write

(5) X = Q1X +Q2X +Q3X +Q4X +Q5X,

where Q1, Q2, Q3, Q4 and Q5 denote the projections of X onto the distributions
∆, J∆, J(ltr(ker ϕ∗), D1, and D2 respectively. Applying J to Eq. (5), we get

(6) JX = fX + ωX,

where fX and ωX are the tangential and transversal components of JX, re-
spectively. This further gives

JX = JQ1X + JQ2X + JQ3X + JQ4X + JQ5X

= fQ1X + fQ2X + ωQ3X + fQ4X + fQ5X + ωQ5X,(7)

then clearly, we have fQ1X ∈ Γ(J∆), fQ2X ∈ Γ(∆), ωQ3X ∈ Γ(ltr(ker ϕ∗)),
fQ4X ∈ Γ(D1), fQ5X ∈ Γ(D2), ωQ5X ∈ Γ(ϕ(D2)). Further for X ∈
Γ(ker ϕ∗), Therefore in view of Eqs. (6) and (7), we have

fX = fQ1X + fQ2X + fQ4X + fQ5X, ωX = ωQ3X + ωQ5X.

In a similar way, we call P1 and P2 as the projections of ltr(ker ϕ∗) and
S(ker ϕ∗)

⊥ respectively. Therefore for Z ∈ Γ((ker ϕ∗)
⊥), we have

(8) Z = P1Z + P2Z,

then on applying J , the above equation reduces to

(9) JZ = JP1Z + JP2Z = JP1Z +BP2Z + CP2Z,

where BP2Z and CP2Z represent the tangential and transversal components
of JP2Z. Thus we get, JP1Z ∈ Γ(Jltr(ker ϕ∗)), BP2Z ∈ Γ(D2) and CP2Z ∈
Γ(η). Now we define O’Neill [15] tensors“T and A as

TEF = H∇VEVF + V∇VEHF,(10)

AEF = H∇HEVF + V∇HEHF,(11)

where E and F are the vector fields on M1 and ∇ is the Levi-Civita connec-
tion of g1. It may be observed that T and A are skew symmetric tensors in
Riemannian submersions, but this is not true for a lightlike submersion since
the horizontal and vertical subspaces are not orthogonal to each other. The
horizontal and vertical subspaces are reversed by both the tensors T and A
and moreover, T is symmetric, that is, for each U, V ∈ Γ(ker ϕ∗), we have
TUV = TV U .”
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Lemma 3.3. Let ϕ be a semi-slant lightlike submersion from an indefinite
Kaehler manifold (M1, g1, J) onto an r-lightlike manifold (M2, g2), then for
X,Y ∈ Γ(ker ϕ∗) and U, V ∈ Γ(ker ϕ∗)

⊥, we have

(12) ∇XY = TXY + ∇̂XY,

(13) ∇XV = H∇XV + TXV,

(14) ∇UX = AUX + ∇̂UX,

(15) ∇UV = H∇UV +AUV,

where ∇̂XY = V∇XY .

Then we have the following lemma:

Lemma 3.4. Suppose that ϕ : (M1, g1, J) → (M2, g2) be a semi-slant
lightlike submersion from an indefinite Kaehler manifold M1 onto an r-lightlike
manifold M2, then

Q1(∇̂XfQ1Y + ∇̂XfQ2Y + TXωQ3Y + ∇̂fQ4Y +∇fQ5Y +

TXωQ5Y ) = fQ2(∇̂XQ1Y + ∇̂XQ2Y + ∇̂XQ4Y + ∇̂XQ5Y ),(16)

Q2(∇̂XfQ1Y + ∇̂XfQ2Y + TXωQ3Y + ∇̂fQ4Y +∇fQ5Y +

TXωQ5Y ) = fQ1(∇̂XQ1Y + ∇̂XQ2Y + ∇̂XQ4Y + ∇̂XQ5Y ),(17)

Q3(∇̂XfQ1Y + ∇̂XfQ2Y + TXωQ3Y + ∇̂fQ4Y +∇fQ5Y +

TXωQ5Y ) = JP1(TXQ1Y + TXQ2Y + TXQ3Y +

TXQ4y + TXQ5Y ),(18)

Q4(∇̂XfQ1Y + ∇̂XfQ2Y + TXωQ3Y + ∇̂fQ4Y +∇fQ5Y +

TXωQ5Y ) = fQ4(∇̂XQ1Y + ∇̂XQ2Y + ∇̂XQ4Y + ∇̂XQ5Y ),(19)

Q5(∇̂XfQ1Y + ∇̂XfQ2Y + TXωQ3Y + ∇̂fQ4Y +∇fQ5Y +

TXωQ5Y ) = fQ5(∇̂XQ1Y + ∇̂XQ2Y + ∇̂XQ4Y + ∇̂XQ5Y ) +

+BP2(TXQ1Y + TXQ2Y + TXQ3Y + TXQ4y + TXQ5Y ),(20)

P1(TXfQ1Y + T XfQ2Y +H∇XωQ3Y + TXfQ4y + TXfQ5Y +

H∇XωQ5Y ) = ωQ3(∇̂XQ1Y + ∇̂XQ2Y + ∇̂XQ4Y + ∇̂XQ5Y ),(21)

P2(TXQ1Y + TXQ2Y + TXQ3Y + TXQ4y + TXQ5Y )

= CP2(TXQ1Y + TXQ2Y + TXQ3Y + TXQ4y + TXQ5Y )

+ωQ5(∇̂XQ1Y + ∇̂XQ2Y + ∇̂XQ4Y + ∇̂XQ5Y ),(22)

where X,Y ∈ Γ(ker ϕ∗) and U, V ∈ Γ(ker ϕ∗)
⊥.

Proof. In view of Eqs. (2), (5), (7) and Lemma (3.3), the result follows.
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Theorem 3.5. (Existence Theorem) The necessary and sufficient condition
for a lightlike submersion ϕ : M1 → M2 from an indefinite Kaehler manifold
M1 onto an r-lightlike manifold M2 to be a semi-slant lightlike submersion is
as follows:

(i) J∆ is a distribution on M1 such that ∆ ∩ J∆ = {0},
(ii) the screen distribution S(ker ϕ∗) can be decomposed as a direct sum as

S(ker ϕ∗) = (J∆⊕ Jltr(ker ϕ∗))⊕ortho D1 ⊕ortho D2,

(iii) there exists a constant λ ∈ [0, 1) such that f2(Z) = −λZ, for all Z ∈
Γ(D2). Here λ = cos2θ, where θ is known as a semi-slant angle of D2.

Proof. Let ϕ be a semi-slant lightlike submersion from an indefinite Kaehler
manifold (M1, g1, J) onto an r-lightlike manifold (M2, g2). Then by virtue of
Definition (2.1) and Lemma (2.2), the distribution D1 is invariant with respect
to J and J∆ is a distribution on M1 such that ∆ ∩ J∆ = {0}. This proves (i)
and (ii).
Now for any Z ∈ Γ(D2), we have

cosθ =
|fZ|
|JZ|

(23)

which gives

cos2θ =
|fZ|2

|JZ|2
=

g1(fZ, fZ)

g1(JZ, JZ)
=

g1(Z, f
2Z)

g1(Z, J2Z)
.

this further implies

(24) g1(Z, f
2Z) = cos2θg1(Z, J

2Z).

Since ϕ is a semi-slant lightlike submersion, therefore cos2θ = λ(constant)
∈ [0, 1) and then from Eq. (24), we get

g1(Z, f
2Z) = λg1(Z, J

2Z) = g1(Z, λJ
2Z),

for all Z ∈ Γ(D2) which further yields that

(25) g1(Z, (f
2 − λJ2)Z) = 0.

Since (f2−λJ2)Z ∈ Γ(D2) andD2 is a non-degenerate distribution of S(ker ϕ∗),
therefore from Eq. (25), we have (f2−λJ2)Z = 0, that is f2Z = λJ2Z = −λZ
for all Z ∈ Γ(D2), which proves (iii).
Conversely, let ϕ be a lightlike submersion satisfying the conditions (i), (ii) and
(iii). Then from (iii) we obtain

f2Z = λJ2Z,

for all Z ∈ Γ(D2), where λ ∈ [0, 1). Now

cosθ =
g1(JZ, fZ)

|JZ||fZ|
=

−g1(Z, f
2Z)

|JZ||fZ|
=

−λg1(Z, J
2Z)

|JZ||fZ|
= λ

g1(JZ, JZ)

|JZ||fZ|

= λ
|fZ|
|JZ|

.(26)
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Thus using Eq. (23) in Eq. (26), we get cos2θ = λ (constant).

Theorem 3.6. (Existence Theorem) The necessary and sufficient condition
for a lightlike submersion ϕ : M1 → M2 from an indefinite Kaehler manifold
M1 onto an r-lightlike manifold M2 to be a semi-slant lightlike submersion is
as follows:

(i) J∆ is a distribution on M1 such that ∆ ∩ J∆ = {0},
(ii) the screen distribution S(ker ϕ∗) can be decomposed as a direct sum

S(ker ϕ∗) = (J∆⊕ Jltr(ker ϕ∗))⊕ortho D1 ⊕ortho D2,
(iii) there exists a constant γ ∈ (0, 1] such that BωZ = −γZ, for all Z ∈

Γ(D2). In this case, γ = sin2θ, where θ is the semi-slant angle of D2.

Proof. Assume that ϕ be a semi-slant lightlike submersion, therefore by
virtue of its Definition (2.1) and Lemma (2.2), the distribution D1 is invariant
with respect to J and J∆ is a distribution on M1 such that ∆∩J∆ = {0}. As
for any vector Z ∈ Γ(D2), we have

(27) JZ = fZ + ωZ,

where fZ and ωZ are tangential and transversal components of JZ respectively.
Applying J to Eq. (27) and comparing the tangential components, we get

(28) −Z = f2Z +BωZ,

for all Z ∈ Γ(D2). As ϕ is a semi-slant submersion, so using Theorem (3.5),
we have

f2Z = −λZ,

for all Z ∈ Γ(D2), where λ ∈ [0, 1) and therefore from Eq. (28), we obtain

BωZ = −γZ,

for all Z ∈ Γ(D2), where γ = 1− λ ∈ (0, 1]. This proves (iii).
Conversely, let ϕ be a lightlike submersion such that the three conditions (i),
(ii) and (iii) hold. Then from Eq. (28), we acquire

−Z = f2Z − γZ,

for all Z ∈ Γ(D2), which further implies

f2Z = −λZ,

for all Z ∈ Γ(D2). Further the proof follows directly from Theorem (3.5).

Corollary 3.7. Suppose that ϕ : M1 → M2 be a semi-slant lightlike sub-
mersion with a semi-slant angle θ, then for any X,Y ∈ Γ(ker ϕ∗), we have

g1(fX, fY ) = cos2θg1(X,Y ),(29)

g1(ωX,ωY ) = sin2θg1(X,Y ).(30)
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Lemma 3.8. Consider a semi-slant lightlike submersion ϕ : M1 → M2 with
a semi-slant angle θ from an indefinite Kaehler manifold M1 onto an r-lightlike
manifold M2. Then for any unit tangent vector Z ∈ Γ(D2), we have

(31) fZ = cosθ.Z∗,

where Z∗ is a unit tangent vector orthogonal to Z such that Z∗ ∈ Γ(D2).

Proof. For a unit tangent vector Z ∈ Γ(D2), we have

|fZ| = cosθ(Z)|Z|.

Consider another unit tangent vector Z∗ = fZ
|fZ| in the direction of fZ, then

we have

fZ = Z∗.|fZ| = Z∗.cosθ(Z).

Also g1(JZ,Z) = 0, then g1(fZ,Z) = 0 and this further gives g1(Z
∗, Z) =

1
|fZ| .g1(fZ,Z) = 0.

Now, we will investigate some conditions for the integrability of distributions
of ker(ϕ∗).

Theorem 3.9. Let ϕ : M1 → M2 be a semi-slant lightlike submersion from
an indefinite Kaehler manifold M1 onto an r-lightlike manifold M2. Then ∆ is
integrable if and only if

(i) Q1(∇̂ZfW ) = Q1(∇̂W fZ),

(ii) Q4(∇̂ZfW ) = Q4(∇̂W fZ),

(iii) Q5(∇̂ZfW ) = Q5(∇̂W fZ),

for any Z,W ∈ Γ(∆)

Proof. Let Z,W ∈ Γ(∆), then from Eq. (16), we get

(32) Q1∇̂ZfW = fQ2∇̂ZW.

On interchanging Z and W in the preceding equation, we obtain

(33) Q1∇̂W fZ = fQ2∇̂WZ.

Subtracting Eq. (33) from Eq. (32), we get

(34) Q1∇̂ZfW −Q1∇̂W fZ = fQ2V[Z,W ].

Also for Z,W ∈ Γ(∆), Eq. (19) gives

(35) Q4∇̂W fZ = fQ4∇̂WZ.

On reversing the role of Z and W in the above equation, then we have

(36) Q4∇̂W fZ = fQ4∇̂WZ.

Subtracting Eq. (36) from Eq. (35), we acquire

(37) Q4∇̂ZfW −Q4∇̂W fZ = fQ4V[Z,W ].
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From Eq. (20), we have

(38) Q5(∇̂ZfW ) = Q5(∇̂W fZ) +BP2(TZW ).

If Z and W are interchanged in the above equation, then we get

(39) Q5(∇̂W fZ) = Q5(∇̂ZfW ) +BP2(TWZ).

Then from Eqs. (38) and (39), we further obtain

Q5(∇̂ZfW )−Q5(∇̂W fZ) = fQ5(V[Z,W ]) +BP2(TZW − TWZ).

Since the tensor T is symmetric, therefore TZW = TWZ, hence we get

(40) Q5(∇̂ZfW )−Q5(∇̂W fZ) = fQ5(V[Z,W ]).

Thus the proof follows from Eqs. (34), (37) and (40).

Theorem 3.10. Consider a semi-slant lightlike submersion ϕ : M1 → M2

from an indefinite Kaehler manifold M1 onto an r-lightlike manifold M2. Then
D1 is integrable if and only if

(i) Q1(∇̂ZfW ) = Q1(∇̂W fZ),

(ii) Q2(∇̂ZfW ) = Q2(∇̂W fZ),

(iii) Q5(∇̂ZfW ) = Q5(∇̂W fZ),

for any Z,W ∈ Γ(D1)

Proof. Let ϕ be a semi-slant submersion, then for Z,W ∈ Γ(D1), Eq. (16)
gives

(41) Q1∇̂ZfW = fQ2∇̂ZW,

then reversing the role of Z and W , we get

(42) Q1∇̂W fZ = fQ2∇̂WZ.

Further subtracting Eqs. (41) and (42), we obtain

(43) Q1∇̂ZfW −Q1∇̂W fZ = fQ2V[Z,W ].

Again for Z,W ∈ Γ(D1) and from Eq. (17), we have

Q2(∇̂ZfW ) = fQ1(∇̂ZW ) +BP2(TZW ).

Similarly, we acquire

Q2(∇̂W fZ) = fQ1(∇̂WZ) +BP2(TWZ).

Then subtracting last two Eqs., we obtain

Q2(∇̂ZfW )−Q2(∇̂W fZ) = fQ1(V[Z,W ]−BP2(TZW − TWZ),

then using the symmetry of T , the above equation reduces to

(44) Q2(∇̂ZfW )−Q2(∇̂W fZ) = fQ1(V[Z,W ].

Next from Eq. (20), we obtain

Q5(∇̂ZfW ) = fQ5(∇̂ZW ).
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If we interchange the role of Z and W in last equation, then we get

Q5(∇̂W fZ) = fQ5(∇̂WZ),

this further gives

(45) Q5(∇̂ZfW )−Q5(∇̂W fZ) = fQ5(V[Z,W ].

Thus the proof follows from the Eqs. (43), (44) and (45).

Theorem 3.11. If ϕ : M1 → M2 is a semi-slant lightlike submersion from
an indefinite Kaehler manifold M1 onto an r-lightlike manifold M2, then D2 is
integrable if and only if

(i) Q1(∇̂ZfW − ∇̂W fZ) = Q1(TWωZ − TZωW ),

(ii) Q2(∇̂ZfW − ∇̂W fZ) = Q2(TWωZ − TZωW ),

(iii) Q4(∇̂ZfW − ∇̂W fZ) = Q4(TWωZ − TZωW ),
(iv) P1(TZfW − TW fZ) = P1(H∇WωZ −H∇ZωW ),

for any Z,W ∈ Γ(D2).

Proof. Let ϕ be a semi-slant submersion and Z,W ∈ Γ(D2), then from Eq.
(16), we obtain

Q1(∇̂ZfW ) +Q1(TZωW ) = fQ2(∇̂ZW ).

If we interchange Z and W in the above equation, then we get

Q1(∇̂W fZ) +Q1(TWωZ) = fQ2(∇̂WZ),

this further gives

(46) Q1(∇̂ZfW − ∇̂W fZ) +Q1(TZωW − TWωZ) = fQ2(V[Z,W ]).

For Z,W ∈ Γ(D2), Eq. (17) reduces to

Q2(∇̂ZfW ) +Q2(TZωW ) = fQ1(∇̂ZW ).

If we interchange Z and W in the above equation, then we get

Q2(∇̂W fZ) +Q2(TWωZ) = fQ1(∇̂WZ),

which yields that

(47) Q2(∇̂ZfW − ∇̂W fZ) +Q2(TZωW − TWωZ) = fQ1(V[Z,W ]).

For Z,W ∈ Γ(D2), Eq. (19) gives

Q4(∇̂ZfW ) +Q4(TZωW ) = fQ4(∇̂ZW ).

On reversing the role of Z and W in the above equation, we get

Q4(∇̂W fZ) +Q4(TWωZ) = fQ4(∇̂WZ),

above equation further becomes

(48) Q4(∇̂ZfW − ∇̂W fZ) +Q4(TZωW − TWωZ) = fQ4(V[Z,W ]).
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For Z,W ∈ Γ(D2) and from Eq. (21), we obtain

P1(TZfW ) + P1(H∇ZωW ) = ωQ3(∇̂ZW ).

On interchanging the role of Z and W in the above equation, we obtain

P1(TW fZ) + P1(H∇WωZ) = ωQ3(∇̂WZ),

above equation further implies that

(49) P1(TZfW − TW fZ) + P1(H∇ZωW −H∇WωZ) = ωQ3(V[Z,W ]).

Thus the result follows from Eqs. (46), (47), (48) and (49).

4. Foliations Determined By Distributions

In this section, we will establish some necessary and sufficient conditions
for the totally geodesic foliations determined by distributions on a semi-slant
lightlike submersions.

Theorem 4.1. Let ϕ : M1 → M2 be a semi-slant lightlike submersion
from an indefinite Kaehler manifold (M1, g1, J) onto an r-lightlike manifold
M2. Then ∆ defines a totally geodesic foliation if and only if

g1(∇̂WJQ2Z+ ∇̂WJQ4Z+ ∇̂WJQ5Z, JY ) = −g1(TWωQ3Z+TWωQ5Z, JY ),

for all W,Y ∈ Γ(∆) and Z ∈ Γ(S(ker ϕ∗)).

Proof. Let ϕ : M1 → M2 be a semi-slant lightlike submersion from an
indefinite Kaehler manifold (M1, g1, J) onto an r-lightlike manifold M2. To
prove that ∆ defines a totally geodesic foliation, it is sufficient to prove that
∇̂WY ∈ Γ(∆), for all W,Y ∈ Γ(∆). Since ∇ is a metric connection on M1,
therefore for any W,Y ∈ Γ(∆) and Z ∈ Γ(S(ker ϕ∗)), we have

g1(∇̂WY, Z) = g1(∇WY − TWY, Z) = g1(∇WY,Z) = −g1(Y,∇WZ)

= −g1(JY, J∇WZ) = −g1(∇WJZ, JY )

= −g1(∇W (JQ2Z + ωQ3Z + JQ4Z + fQ5Z + ωQ5Z), JY )

= −g1(∇WJQ2Z +∇WJQ4Z +∇W fQ5Z, JY )

−g1(∇WωQ3Z +∇WωQ5Z, JY ),

further using Eq. (12), we get

g1(∇̂WY, Z) = −g1(∇WJQ2Z +∇WJQ4Z +∇W fQ5Z, JY )

− g1(TWωQ3Z + TWωQ5Z, JY ).
(50)

Then from Eq. (50), we conclude that the distribution ∆ determines a totally

geodesic foliation if and only if g1(∇̂WY, Z) = 0, that is, if and only if

g1(∇̂WJQ2Z + ∇̂WJQ4Z + ∇̂WJQ5Z, JY )

= −g1(TWωQ3Z + TWωQ5Z, JY ),
(51)
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which completes the proof.

Theorem 4.2. Consider a semi-slant lightlike submersion ϕ : M1 → M2

from an indefinite Kaehler manifold (M1, g1, J) onto an r-lightlike manifoldM2.
Then D1 defines a totally geodesic foliation if and only if

(i) g1(∇̂W fZ, JY ) = −g1(TWωZ, JY ),
(ii) ∇WJN and TWJX have no components in D1,

for all W,Y ∈ Γ(D1), Z ∈ Γ(D2), X ∈ Γ(Jltr(ker ϕ∗)), N ∈ Γ(ltr(ker ϕ∗)).

Proof. Since ∇ is a metric connection on M1, therefore for any W,Y ∈
Γ(D1) and Z ∈ Γ(D2), we have

g1(∇̂WY,Z) = g1(∇WY − TWY,Z) = g1(∇WY,Z) = −g1(Y,∇WZ)

= −g1(JY, J∇WZ) = −g1(∇WJZ, JY )

= −g1(∇W fZ, JY )− g1(∇WωZ, JY )

= −g1(∇̂W fZ, JY )− g1(TWωZ, JY ).(52)

Now for W,Y ∈ Γ(D1) and N ∈ Γ(ltr(ker ϕ∗)), we have

g1(∇̂WY,N) = g1(∇WY,N) = −g1(Y,∇WN) = −g1(JY, J∇WY )

= −g1(JY,∇WJN) = −g1(JY, ∇̂WJN + TWJN)

= −g1(JY, ∇̂WJN).(53)

For W,Y ∈ Γ(D1) and X ∈ Γ(Jltr(ker ϕ∗), we have

g1(∇̂WY,X) = g1(∇WY − TWY,X) = g1(∇WY,X) = −g1(Y,∇WX)

= −g1(JY, J∇WX) = −g1(JY,∇WJX)

= −g1(JY, TWJX)(54)

Thus the proof follows from Eqs. (52), (53) and (54).

Theorem 4.3. If ϕ : M1 → M2 is a semi-slant lightlike submersion from an
indefinite Kaehler manifold (M1, g1, J) onto an r-lightlike manifold M2, then
D2 defines a totally geodesic foliation if and only if

(i) g1(∇̂XJZ, fY ) = −g1(P2TXJZ, ωY ),

(ii) g1(fY, ∇̂XJK) = −g1(ωY, P2TXJN),
(iii) g1(fY, TXJW ) = −g1(ωY,H(∇XJW )),

for all X,Y ∈ Γ(D2), Z ∈ Γ(D1), N ∈ Γ(ltr(ker ϕ∗)) and

W ∈ Γ(Jltr(ker ϕ∗)).
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Proof. As ∇ is a metric connection on M1, therefore for any X,Y ∈ Γ(D2)
and Z ∈ Γ(D1), we have

g1(∇̂XY,Z) = g1(∇XY − TXY,Z) = g1(∇XY,Z) = −g1(Y,∇XZ)

= −g1(JY, J∇XZ) = −g1(∇XJZ, JY )

= −g1(∇̂XJZ + TXJZ, fY + ωY )

= −g1(∇̂XJZ, fY )− g1(TXJZ, ωY )

= −g1(∇̂XJZ, fY )− g1(P2TXJZ, ωY ).(55)

For X,Y ∈ Γ(D2) and N ∈ Γ(ltr(ker ϕ∗), we have

g1(∇̂XY,N) = −g1(Y,∇XN) = −g1(JY, J∇XY )

= −g1(JY,∇XJN) = −g1(fY + ωY, ∇̂XJN + TXJN)

= −g1(fY, ∇̂XJN)− g1(ωY, TXJN)

= −g1(fY, ∇̂XJN)− g1(ωY, P2TXJN)(56)

Also for any X,Y ∈ Γ(D2) and W ∈ Γ(Jltr(ker ϕ∗), we have

g1(∇̂XY,W ) = g1(∇XY − TXY,W ) = g1(∇XY,W ) = −g1(Y,∇XW )

= −g1(JY, J∇XW ) = −g1(JY,∇XJW )

= −g1(fY + ωX,H∇XJW + TXJW )

= −g1(fY, TXJW )− g1(ωY,H(∇XJW )).(57)

Hence the proof follows from Eqs. (55), (56) and (57).

Theorem 4.4. Let ϕ : M1 → M2 be a semi-slant lightlike submersion
from an indefinite Kaehler manifold (M1, g1, J) onto an r-lightlike manifold
M2. Then ϕ is a totally geodesic map if and only if

(i) ω(∇̂W fy + TWωY ) + C(P2TW fY + P2H(∇WωY ) = 0,

(ii) ω(∇̂WJP1U + ∇̂WBP2U + TWCP2U) + C(P2TWJP1U + P2TWBP2U
+P2H(∇WCP2U)) = 0,

for each W,Y ∈ Γ(ker ϕ∗) and U ∈ Γ(ker ϕ∗)
⊥.

Proof. Since ϕ is a semi-slant lightlike submersion, we have

(∇ϕ∗)(U1, U2) = ∇ϕ
U1
ϕ∗(U2)− ϕ∗(∇U1

U2) = 0(58)

for all U1, U2 ∈ Γ(ker ϕ∗)
⊥. Now for W,Y ∈ Γ(ker ϕ∗), we have
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(∇ϕ∗)(W,Y ) = −ϕ∗(∇WY ) = ϕ∗(∇WJ2Y ) = ϕ∗(J∇WJY )

= ϕ∗(J∇W (fY + ωY )) = ϕ∗(J∇W fY + J∇WωY )

= ϕ∗(J(TW fY + ∇̂W fY ) + J(H(∇WωY ) + TWωY ))

= ϕ∗(J(P1TW fY + P2TW fY ) + f∇̂W fY + ω∇̂W fY

+JP1H(∇WωY ) + JP2H(∇WωY ) + fTWωY + ωTWωY )

= ϕ∗(JP1TW fY +BP2TW fY + CP2TW fY + ω∇̂W fY

+f∇̂W fY + JP1H(∇WωY ) +BP2H(∇WωY )

+CP2H(∇WωY ) + fTWωY + ωTWωY )).(59)

Now forW ∈ Γ(ker ϕ∗) and U ∈ Γ((ker ϕ∗)
⊥), since (∇ϕ∗)(W,U) = (∇ϕ∗)(U,W ),

therefore we have

(∇ϕ∗)(W,U) = −ϕ∗(∇WU) = ϕ∗(J∇WJU)

= ϕ∗(J∇W (JP1U +BP2U + CP2U))

= ϕ∗(J(TWJP1U + ∇̂WJP1U + TWBP2U + ∇̂WBP2U

+H(∇WCP2U) + TWCP2U))

= ϕ∗(JP1TWJP1U +BP2TWJP1U + CP2TWJP1U

+f∇̂WJP1U + ω∇̂WJP1U + JP1TWBP2U

+BP2TWBP2U + CP2TWBP2U + f∇̂WBP2U

+ω∇̂WBP2U + JP1H(∇WCP2U)

+BP2H(∇WCP2U) + CP2H(∇WCP2U)

+fTWCP2U + ωTWCP2U).(60)

Thus the proof follows from Eqs. (58), (59) and (60).

5. Semi-Slant Lightlike Submersions with Totally Umbilical Fi-
bres

Let ϕ be a Riemannian submersion from a Riemannian manifold (M1, g1)
onto a Riemannian manifold (M2, g2). Then ϕ is said to be a Riemannian
submersion with totally umbilical fibres if there exists a mean curvature vector
field H of the fibres such that TXY = g1(X,Y )H, for all X,Y ∈ Γ(ker ϕ∗).
Since, we know that P1 and P2 respectively, denote the projections of tr(ker ϕ∗)
on ltr(ker ϕ∗) and S(ker ϕ∗)

⊥, then taking into account the decomposition of
tr(ker ϕ∗) as tr(ker ϕ∗) = ltr(ker ϕ∗) ⊥ S(ker ϕ∗)

⊥, we have

(61) TXY = P1TXY + P2TXY,
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where P1TXY ∈ Γ(ltr(ker ϕ∗)) and P2TXY ∈ Γ(S(ker ϕ∗)
⊥). Let ϕ be a

lightlike submersion defined from an indefinite Kaehler manifold (M1, g1, J) on
to an r-lightlike manifold (M2, g2). Then ϕ is said to be lightlike submersion
with totally umbilical fibres if and only if on each coordinate neighbourhood U
there exist smooth vector fieldHP1 ∈ Γ(ltr(ker ϕ∗)) andHP2 ∈ Γ(S(ker ϕ∗)

⊥),
such that

(62) P1TXY = g1(X,Y )HP1 , P2TXY = g1(X,Y )HP2 ,

for all X,Y ∈ Γ(ker ϕ∗).

Theorem 5.1. Consider a semi-slant lightlike submersion ϕ : M1 → M2

with totally umbilical fibres from an indefinite Kaehler manifold (M1, g1, J)
onto an r-lightlike manifold (M2, g2). Then we have HP2 ∈ Γ(ϕ(D2)).

Proof. For X,Y ∈ Γ(D1) and W ∈ Γ(η), from Eqs. (2), (7), (6), (9) and
(12)-(15), we obtain

TXJY + ∇̂XY = JP1TXY +BP2TXY + CP2TXY

+f∇̂XY + ω∇̂XY,(63)

On comparing the horizontal and transversal components in Eq. (63), we get

(64) TXJY = CP2TXY + ω∇̂XY

and

(65) ∇̂XY = JP1TXY +BP2TXY + f∇̂XY.

Now for X,Y ∈ Γ(D1),W ∈ Γ(η) and using Eq. (64), we have

(66) g1(TXJY,W ) = g1(CP2TXY,W ) = −g1(P2TXY, JW ).

Also from Eq. (61), we have

(67) g1(TXJY,W ) = g1(P1TXJY + P2TXJY,W ) = g1(P2TXJY,W ).

Now from Eqs. (66) and (67), we get

(68) −g1(P2TXY, JW ) = g1(P2TXJY,W ).

Next using Eq. (62) in Eq. (68), we obtain

(69) −g1(X, JY ).g1(H
P2 ,W ) = g1(X,Y ).g1(H

P2 , JW ).

On interchanging the role of X and Y in the above equation, we get

−g1(Y, JX).g1(H
P2 ,W ) = g1(Y,X).g1(H

P2 , JW ),

which further gives

(70) g1(X, JY ).g1(H
P2 ,W ) = g1(X,Y ).g1(H

P2 , JW ).

Now adding Eqs. (68) and (70), we get

g1(X,Y ).g1(H
P2 , JW ) = 0,
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this further gives

g1(H
P2 , JW ) = 0.

As Jη = η, thus we conclude that HP2 ∈ Γ(ϕ(D2)).

Corollary 5.2. Let ϕ be a semi-slant lightlike submersion with totally um-
bilical fibres from an indefinite Kaehler manifold (M1, g1, J) onto an r-lightlike
manifold (M2, g2). If H

P2 ∈ Γ(η). Then HP2 = 0.

Theorem 5.3. Suppose that ϕ : M1 → M2 is a proper semi-slant lightlike
submersion with totally umbilical fibres from an indefinite Kaehler manifold
(M1, g1, J) onto an r-lightlike manifold (M2, g2). Then HP1 = 0.

Proof. For Z ∈ Γ(D2) and using Eqs. (2), (7), (6), (12)-(15) and Lemma
(3.8), we get

cosθ(Z)(TZZ∗ + ∇̂ZZ
∗) +H∇ZωZ + TZωZ

= CP2TZZ + ω∇̂ZZ + JP1TZZ +BP2TZZ + f∇̂ZZ.(71)

On comparing the transversal components on both sides of Eq. (71), we get

cosθ(Z)∇̂ZZ
∗ + TZωZ = JP1TZZ +BP2TZZ + f∇̂ZZ.

Further taking an inner product of the above equation with Jξ ∈ Γ(J∆), we
get

(72) cosθ(Z)g1(∇̂ZZ
∗, Jξ) + g1(TzωZ, Jξ) = g1(JP1TZZ, Jξ),

using Eq. (12-(15) and (2), we have

g1(∇̂ZZ
∗, Jξ) = g1(∇ZZ

∗, Jξ) = −g1(J∇ZZ
∗, ξ) = −g1(∇ZJZ

∗, ξ)

= g1(JZ
∗,∇Zξ) = g1(ωZ

∗, TZξ),
since fibres are totally umbilical, therefore the above equation reduces to

(73) g1(∇̂ZZ
∗, Jξ) = g1(ωZ

∗, H)g1(Z, ξ) = 0.

Also using Eqs. (12-(15) together with the totally umbilical property of fibres,
we have

g1(TzωZ, Jξ) = g1(∇ZωZ, Jξ) = −g1(ωZ,∇ZJξ)

= −g1(ωZ, TzJξ) = g1(Z, Jξ)g1(ωZ,H
P2)

= 0.(74)

From Eqs. (73) and (74) in (72), we obtain

g1(JP1TZZ, Jξ) = 0,

which further yields

g1(P1TZZ, ξ) = 0.

In view of Eq. (62), the above equation reduces to

g1(Z,Z)g1(H
P1 , Z) = 0.
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By non-degeneracy of D2, we conclude that HP1 = 0. This completes the
proof.

Theorem 5.4. Assume that

ϕ : M1 → M2

is a proper semi-slant lightlike submersion with totally umbilical fibres from
an indefinite Kaehler manifold (M1, g1, J) onto an r-lightlike manifold (M2, g2)
such that

HP2 ∈ Γ(η).

Then the fibres are always totally geodesics.

Proof. On using the Corollary (5.2) and Theorem (5.3), the result follows.
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