• Title/Summary/Keyword: three-point boundary value problem

Search Result 40, Processing Time 0.023 seconds

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS

  • Ji, Dehong;Yang, Yitao;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.79-87
    • /
    • 2009
  • This paper deals with the multipoint boundary value problem for one dimensional p-Laplacian $({\phi}_p(u'))'(t)$ + f(t,u(t)) = 0, $t{\in}$ (0, 1), subject to the boundary value conditions: u'(0) - $\sum\limits^n_{i=1}{\alpha_i}u({\xi}_i)$ = 0, u'(1) + $\sum\limits^n_{i=1}{\alpha_i}u({\eta}_i)$ = 0. Using a fixed point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple (at least three) positive solutions to the above boundary value problem.

  • PDF

MULTIPLE POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Xiping;Jin, Jingfu;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.305-320
    • /
    • 2012
  • In this paper, we study a class of integral boundary value problems for fractional differential equations. By using some fixed point theorems, the results of existence of at least three positive solutions for the boundary value problems are obtained.

EXISTENCE AND ITERATION OF MONOTONE POSITIVE SOLUTIONS FOR THIRD-ORDER THREE-POINT BVPS

  • Sun, Jian-Ping;Cao, Ke;Zhao, Ya-Hong;Wang, Xian-Qiang
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.417-426
    • /
    • 2011
  • This paper is concerned with the existence of monotone positive solutions for a class of nonlinear third-order three-point boundary value problem. By applying iterative techniques, we not only obtain the existence of monotone positive solutions, but also establish iterative schemes for approximating the solutions. An example is also included to illustrate the importance of the results obtained.

EXISTENCE OF EVEN NUMBER OF POSITIVE SOLUTIONS TO SYSTEM OF FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

  • Krushna, B.M.B.;Prasad, K.R.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • We establish the existence and multiplicity of positive solutions to a coupled system of fractional order differential equations satisfying three-point boundary conditions by utilizing Avery-Henderson functional fixed point theorems and under suitable conditions.

FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM WITH SQUARE GROWTH NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.323-334
    • /
    • 2010
  • We give a theorem for the existence of at least three solutions for the fourth order elliptic boundary value problem with the square growth variable coefficient nonlinear term. We use the variational reduction method and the critical point theory for the associated functional on the finite dimensional subspace to prove our main result. We investigate the shape of the graph of the associated functional on the finite dimensional subspace, (P.S.) condition and the behavior of the associated functional in the neighborhood of the origin on the finite dimensional reduction subspace.

OPTIMAL STRATEGIES IN BIOECONOMIC DIFFERENTIAL GAMES: INSIGHTS FROM CHEBYSHEV TAU METHOD

  • Shahd H. Alkharaz;Essam El-Siedy;Eliwa M. Roushdy;Muner M. Abou Hasan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.527-543
    • /
    • 2024
  • In the realm of differential games and bioeconomic modeling, where intricate systems and multifaceted interactions abound, we explore the precision and efficiency of the Chebyshev Tau method (CTM). We begin with the Weierstrass Approximation Theorem, employing Chebyshev polynomials to pave the way for solving intricate bioeconomic differential games. Our case study revolves around a three-player bioeconomic differential game, unveiling a unique open-loop Nash equilibrium using Hamiltonians and the FilippovCesari existence theorem. We then transition to numerical implementation, employing CTM to resolve a Three-Point Boundary Value Problem (TPBVP) with varying degrees of approximation.

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.707-720
    • /
    • 2014
  • We get a theorem which shows the existence of at least three solutions for some elliptic system with Dirichlet boundary condition. We obtain this result by using the finite dimensional reduction method which reduces the infinite dimensional problem to the finite dimensional one. We also use the critical point theory on the reduced finite dimensioal subspace.

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.

EXISTENCE RESULTS FOR POSITIVE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SECOND ORDER DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yu-Ji
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.135-163
    • /
    • 2010
  • Motivated by [Science in China (Ser. A Mathematics) 36 (2006), no. 7, 721?732], this article deals with the following discrete type BVP $\LARGE\left\{{{\;{\Delta}[{\phi}({\Delta}x(n))]\;+\;f(n,\;x(n\;+\;1),{\Delta}x(n),{\Delta}x(n + 1))\;=\;0,\;n\;{\in}\;[0,N],}}\\{\;{x(0)-{\sum}^m_{i=1}{\alpha}_ix(n_i) = A,}}\\{\;{x(N+2)-\;{\sum}^m_{i=1}{\beta}_ix(n_i)\;=\;B.}}\right.$ The sufficient conditions to guarantee the existence of at least three positive solutions of the above multi-point boundary value problem are established by using a new fixed point theorem obtained in [5]. An example is presented to illustrate the main result. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multifixed-point theorems can be extended to treat nonhomogeneous BVPs. The emphasis is put on the nonlinear term f involved with the first order delta operator ${\Delta}$x(n).