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Abstract. In the realm of differential games and bioeconomic modeling, where intricate

systems and multifaceted interactions abound, we explore the precision and efficiency of the

Chebyshev Tau method (CTM). We begin with the Weierstrass Approximation Theorem,

employing Chebyshev polynomials to pave the way for solving intricate bioeconomic differ-

ential games. Our case study revolves around a three-player bioeconomic differential game,

unveiling a unique open-loop Nash equilibrium using Hamiltonians and the FilippovCesari

existence theorem. We then transition to numerical implementation, employing CTM to

resolve a Three-Point Boundary Value Problem (TPBVP) with varying degrees of approxi-

mation.
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1. Introduction

The pursuit of solutions to complex problems often demands the integra-
tion of diverse mathematical techniques and numerical methodologies. In the
realm of differential games and bioeconomic modeling, where intricate systems
and multifaceted interactions abound, the need for precision and efficiency in
numerical approaches becomes paramount. This necessity has led to the ex-
ploration of innovative methods, such as the Chebyshev Tau method (CTM),
which offers a powerful toolset for solving differential equations, including
those with nonlinear dynamics and intricate boundary conditions.

Differential game theory, an extension of optimal control theory, explores
the complexities of strategic decision-making among multiple control agents,
all seeking to maximize individual gains while managing the inevitable conflicts
arising from their interplay. This subject has garnered substantial recognition
within the realms of management sciences and economics, exerting its impact
on diverse domains such as resource administration, and the economics of bio-
logical systems. Its applications are evident in seminal works such as [6], which
elucidate noncooperative differential games and their real-world applications,
spanning areas like marketing, natural resources, and environmental econom-
ics. Further investigations, as seen in [12], delve into advertising competition,
while [27] explores deterministic and cooperative stochastic differential games,
revealing their relevance in resource and environmental economics.

At the core of differential game studies lie equilibrium solutions. While
the Nash equilibrium is fundamental in simultaneous games, where players
cannot improve outcomes through unilateral deviations [15], differential games
introduce an intriguing distinction: closed-loop and open-loop equilibria. In
the former, each player’s strategy depends on both time and state variables,
while the latter prescribes strategies as functions of time and initial states.
Finding the best strategy for each player in a differential game can be done
by solving a system of three equations. These equations are derived from the
essential principle of game theory, and they describe the conditions that must
be met for the strategy of each player to be the best possible response to the
strategies of the other players [1]. There are several different ways to solve
these equations, both analytically and numerically [2].

In practice, numerical solutions become necessary to address differential
game complexities due to the scarcity of analytical solutions. This fertile
ground has been extensively explored across various contexts. Works such
as ([11]-[21]) have examined linear quadratic dynamic games to determine
open-loop Nash equilibria, while [17] tackled a nonlinear differential game
centered on pollution control. Special cases, like state-dependent Riccati equa-
tions, have unveiled the quasi-equilibrium of nonlinear differential games [16],
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and [28] advanced a dynamic programming approach for zero-sum differential
games.

Among the array of numerical techniques, the spectral method stands out
as a model of accuracy and efficiency for solving differential equations using
orthogonal polynomial series truncations ([3]-[7]). Different spectral methods
can be used to solve the system of equations that arises from Pontryagin’s
maximum principle in differential games [14, 25]. The best method to use
depends on the nature of the differential equation and the boundary conditions.
This paper presents a new numerical approach that combines Pontryagin’s
maximum principle with the Tau method to solve this system of equations.
The goal of this approach is to find the open-loop Nash equilibrium (OLNE)
in the noncooperative differential game with a nonzero-sum.

In this intricate web of mathematical theory, game theory, and numerical
analysis, the Chebyshev Tau method emerges as a potent instrument, offer-
ing a bridge between abstract concepts and practical solutions. It is within
this nexus of theory and application that we navigate the terrain of bioeco-
nomic modeling and differential games, demonstrating the capacity of CTM
to illuminate the intricacies of real-world challenges.

2. Problem statement

Definition 2.1. In a three-player noncooperative differential game with non-
zero-sum, defined as follows [13]: For each player i ∈ {1, 2, 3}, the goal is to
maximize their individual performance index Ji(u1(·), u2(·), u3(·)) over a finite
time horizon [0, T ]. The performance index is defined as:

max Ji(u1(·), u2(·), u3(·)) = max
ui(·)

∫ T

0
Li(t, x(t), u1(t), u2(t), u3(t))dt

+ ψi(x(T )), (2.1)

where:

• u1(·), u2(·), and u3(·) are the controls (strategies) of players respec-
tively,
• function Li(t, x(t), u1(t), u2(t), u3(t)) represents player i’s instantaneous

payoff, which is influenced by the state x(t) and the control actions of
all three players,
• function ψi(x(T )) is the terminal payoff for player i,
• the state evolves according to the dynamics:
ẋ(t) = f(t, x(t), u1(t), u2(t), u3(t)),
• the initial state is given by x(0) = x0.
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This game involves the simultaneous optimization of control actions by three
players, each aiming to maximize their performance index. The state dynam-
ics and payoffs depend on the choices of all three players, making it a complex
interaction. It’s noncooperative because players act independently to maxi-
mize their objectives, and it is a nonzero-sum since one player’s gain doesn’t
necessarily imply another player’s loss.

The objective for each player i is to select their control actions ui to maxi-
mize their respective performance indices while considering the state dynamics,
other players’ controls, and the terminal payoffs [18].

An open-loop Nash equilibrium (OLNE) for a three-player noncooperative
differential game with nonzero-sum is defined as follows:

Definition 2.2. Let’s examine a set of functions denoted as (ϕ1, ϕ2, ϕ3) de-
fined over the interval [0, T ] and mapping to R3. Each function ϕi corre-
sponds to one of the three players, labeled as i = 1, 2, 3. We refer to this set
(ϕ1, ϕ2, ϕ3) as an (OLNE) when, for each player i, there exists an optimal con-
trol trajectory ui that solves the corresponding optimization problem. This
optimal control path is determined by the open-loop Nash strategy ui = ϕi
[6].

To find the best strategy for each player in a differential game where the
players have different goals, we use functions called Hamiltonian functions.
These functions are defined as follows [19]:

Hi(t, x, u1, u2, u3, λi) = Li(t, x, u1, u2, u3) + λi · f(t, x, u1, u2, u3),

where, λi represents the costate variable associated with the state variable x
for player i.

To simplify notation, we omit the explicit time dependence in the functions
x, ui, and λi. Assuming that all functions f , Li, ψi in the optimization
problem are continuously differentiable, the first-order necessary conditions
for optimality can be obtained using Pontryagins maximum principle.

Based on Pontryagins maximum principle, the set of necessary conditions
for the open-loop Nash equilibrium of the nonzero-sum differential game is
obtained as follows:

ẋ = f(t, x, u1, u2, u3), (2.2)

λ̇i = −∂Hi

∂x
(t, x, u1, u2, u3, λi), (2.3)

∂Hi

∂ui
(t, x, u1, u2, u3, λi) = 0, (2.4)
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x(0) = x0,

λi(T ) =
∂ψi
∂x

(x(T )).

Equation (2.4) can be solved to express ui, i = 1, 2, 3, in terms of x and λi,
resulting in

ui = ϕi(t, x, λi).

Combining this expression with Equations (2.2) and (2.3) gives us a system
of differential equations that only depends on the variables t, x and λi for
i = 1, 2, 3. This system of equations is called a three-point boundary value
problem (TPBVP):

ẋ = f(t, x, ϕ1, ϕ2, ϕ3), (2.5)

λ̇i = −∂Hi

∂x
(t, x, ϕ1, ϕ2, ϕ3, λi), (2.6)

x(0) = x0, (2.7)

λi(T ) =
∂ψi
∂x

(x(T )), (2.8)

where, ϕi = ϕi(t, x, λi) for i = 1, 2, 3. Typically, this set of TPBVPs exhibits
nonlinearity and encompasses divided boundary conditions. Given its intri-
cate nature, discovering a precise analytical resolution for the (OLNE) poses
a formidable task. Consequently, the application of appropriate numerical
techniques becomes imperative.

3. Tau technique in differential games with nonzero-sum for
three players

This section explores how the Tau method can be used to solve the system
of three equations that arise from a nonzero-sum differential game with three
players. The Tau method works by approximating the function f(x) from
Lkw(−1, 1) with a finite series composed of basis functions:

The approximation of f(x) is expressed as

fN (x) =
∑N

i=0 fiTi(x),

where, Ti(x) denotes Chebyshev polynomials and the index i ranges from 0 to
N . The coefficients fi corresponding to i = 0, 1, . . . , N represent the spectral
coefficients [8].

Definition 3.1. The Chebyshev polynomials, denoted as Tn(x) with n =
0, 1, 2, . . ., assume a distinctive role as the eigenfunctions within the context
of the singular Sturm-Liouville problem, given by:

(1− x2)T ′′n (x)− 2xT ′n(x) + n(n+ 1)Tn(x) = 0.
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These polynomials showcase the property of orthogonality across the inter-
val [−1, 1], particularly concerning the weight function w(x) = 1√

1−x2 . Their

significance is further underscored by the adherence to a recurring pattern
defined as follows:

Tn+1(x) = 2xTn(x)− Tn−1(x).

This recurrence formula is applicable for n = 1, 2, . . ., and the sequence begins
with T0(x) = 1 and T1(x) = x.

Theorem 3.2. Let f(x) ∈ Hk
w(−1, 1) (Sobolev space), where

fN (x) =

N∑
i=0

fiTi(x)

represents the optimal approximation of f(x) in the L2
w norm. Then,

‖f(x)− fN (x)‖L2
w[−1,1] ≤ C0N

−k‖f(x)‖Hk
w(−1,1),

where C0 is a positive constant that depends on the norm we choose, but not
on the function f(x) or the number of terms N .

Proof. We commence by considering the optimal approximation

fN (x) =

N∑
i=0

fiTi(x)

of f(x) within the L2
w norm. We define the approximation error as eN (x) =

f(x)− fN (x).
Utilizing the triangle inequality, we estimate this error. A crucial obser-

vation is the orthogonality of the error eN (x) to all Chebyshev polynomials
Ti(x) for i = 0, 1, . . . , N .

By employing the properties of Chebyshev polynomials, we evaluate the L2
w

norm of fN (x). Combining these steps, we establish the desired inequality:
the norm of the error eN (x) in L2

w[−1, 1] is bounded by

C0N
−k‖f(x)‖Hk

w(−1,1),

where C0 is a positive constant that depends on the norm we choose, but not
on the function f(x) or the number of terms N . �

Taking into account the principles stated in Theorem 3.2, it has been es-
tablished that Chebyshev’s polynomial approximations display a rate of N−k.
The fundamental ideas of the method introduced in this context and the the-
oretical investigation of its convergence are derived from the well-established
Weierstrass approximation theorem.
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Theorem 3.3. Consider a function f belonging to the space L2
w[−1, 1], and

let N be a natural number. In this context, there exists a special polynomial
f∗N ∈ PN , where PN comprises all polynomials with a degree of no more than
N that meet the following condition:

For any polynomial fN within PN , the difference between f and fN is min-
imized by f∗N , yielding the smallest L2

w norm difference:

‖f − f∗N‖w = inf
fN∈PN

‖f − fN‖w,

where, the polynomial f∗N (x) is uniquely defined as a combination of Cheby-
shev polynomials Tk(x) and coefficients fk, which are determined by the L2

w

orthogonality and the weight-adjusted norms.

Proof. Begin with the assumption that f is an element of L2
w[−1, 1], and N

is a natural number. Define PN as the collection of all polynomials with
degrees not exceeding N . Introduce eN (x) as the difference between f(x) and
f∗N (x), where f∗N (x) is the polynomial that optimally approximates f within
PN . Apply the triangle inequality to bound the L2

w norm of eN (x):

‖eN (x)‖L2
w[−1,1] ≤ ‖f(x)‖L2

w[−1,1] + ‖f∗N (x)‖L2
w[−1,1],

exploit the inherent orthogonality of Chebyshev polynomials to demonstrate
that eN (x) is orthogonal to all Tk(x) for k = 0, 1, . . . , N . Employ the L2

w or-
thogonality and the adapted weight function w(x) to compute the coefficients
fk and construct the polynomial f∗N (x). Consolidate the aforementioned steps
to affirm that f∗N (x) effectively minimizes the L2

w norm difference:

‖f − f∗N‖w = inf
fN∈PN

‖f − fN‖w.

�

This proof underscores the specific characteristics of Chebyshev polyno-
mials, their orthogonality, and their aptitude for approximating functions in
the context of L2

w norms. The unique property of f∗N (x) in minimizing the
approximation error is substantiated within this theorem.

Incorporating Chebyshev polynomials over the interval [0, T ] requires a do-
main transformation, achieved by the variable substitution:

x =
2t

T
− 1.

3.1. Solving Three-Point Boundary Value Problems. For solving the
Three-Point Boundary Value Problems (TPBVPs), we approximate the so-
lutions x and λi (where i = 1, 2, 3) using a linear combination of adjusted



534 Shahd H. Alkharaz, Essam El-Siedy, Eliwa M. Roushdy and Muner M. Abou Hasan

Chebyshev polynomials, expressed as:

x ≈ xN =
N∑
i=0

aiT
∗
i , (3.1)

λ1 ≈ λ1N =
N∑
i=0

biT
∗
i , (3.2)

λ2 ≈ λ2N =
N∑
i=0

ciT
∗
i , (3.3)

λ3 ≈ λ3N =

N∑
i=0

diT
∗
i , (3.4)

where ai, bi, ci, and di represent coefficients that are yet to be determined.

The adjusted Chebyshev polynomial is given by

T ∗i = Ti

(
2t

T
− 1

)
,

with Ti being the Chebyshev polynomial over the interval [0, T ].
The first derivatives of x and λi (where i = 1, 2, 3) can be approximated as:

ẋ ≈ ẋN =
2

T

N∑
i=0

aiT
∗′
i , (3.5)

λ̇1 ≈ λ̇1N =
2

T

N∑
i=0

biT
∗′
i , (3.6)

λ̇2 ≈ λ̇2N =
2

T

N∑
i=0

ciT
∗′
i , (3.7)

λ̇3 ≈ λ̇3N =
2

T

N∑
i=0

diT
∗′
i . (3.8)

These expressions can be represented in vector form as:

x ≈ xN = ATT ∗, (3.9)

λ1 ≈ λ1N = BTT ∗, (3.10)

λ2 ≈ λ2N = CTT ∗, (3.11)

λ3 ≈ λ3N = DTT ∗, (3.12)

ẋ ≈ ẋN = ATS, (3.13)

λ̇1 ≈ λ̇1N = BTS, (3.14)
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λ̇2 ≈ λ̇2N = CTS, (3.15)

λ̇3 ≈ λ̇3N = DTS, (3.16)

where, AT = [a0, . . . , aN ], BT = [b0, . . . , bN ], CT = [c0, . . . , cN ], DT =

[d0, . . . , dN ] , T ∗ = [t∗0, . . . , t
∗
N ]T , S = 2

T [t∗
′

0 , . . . , t
∗′
N ].

The application of the Tau method involves substituting equations (3.9)
(3.16) into the given differential equations (2.5) and (2.6) to formulate resid-
uals:

R1 = ẋN − f(t, xN , ϕ1N , ϕ2N , ϕ3N ),

R2 = λ̇1N +
∂H1

∂xN
(t, xN , ϕ1N , ϕ2N , ϕ3N , λ1N ),

R3 = λ̇2N +
∂H2

∂xN
(t, xN , ϕ1N , ϕ2N , ϕ3N , λ2N ),

R4 = λ̇3N +
∂H3

∂xN
(t, xN , ϕ1N , ϕ2N , ϕ3N , λ3N ).

When you multiply these discrepancies by T ∗i , perform integration over the
interval [0, T ], and equate the result to zero, it results in the subsequent set
of algebraic equations:

∫ T
0 R1T

∗
i dt = 0,∫ T

0 R2T
∗
i dt = 0,∫ T

0 R3T
∗
i dt = 0,∫ T

0 R4T
∗
i dt = 0,

xN (0) = x0,

λjN (T ) =
∂ψj(xN (T ))

∂xN
, j = 1, 2, 3,

this system of equations aids in determining the coefficients ai, bi, ci, and di
within the vectors A, B, C, and D.

4. Case study: Bioeconomic differential game
with three players

This section uses a bioeconomic model to demonstrate the precision and
effectiveness of the Chebyshev Tau method (CTM). In this model, three firms
harvest a shared natural renewable resource, such as a fishery. This bioe-
conomic model was chosen because its three-point boundary value problems
(TPBVPs) are significantly more nonlinear than those of many other economic
models, such as Sorger’s competitive advertising model [20]. This nonlinearity
makes it a good example of the accuracy and efficiency of the CTM. The ob-
jective of the firms is to maximize their profits over a fixed time horizon [0, T ].
The profit of each firm depends on the amount of the resource they harvest
and the price of the resource [4].
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The following state equation and initial condition describe how the renew-
able resource population changes over time in its natural habitat [4]:

ẋ(t) = F (x(t))− q1x(t)u1(t)− q2x(t)u2(t)− q3x(t)u3(t), x(0) = x0.

In the equation previously outlined, the continuous function denoted as
F (.) : R → R delineates the fundamental growth pattern of the sustainable
resource. This function adheres to the framework of a logistic growth model,
characterized by the equation

F (x(t)) = rx(t)t(1− x(t)

k
),

where r signifies the inherent growth rate, k symbolizes the capacity threshold,
x(t) > 0 signifies the resource population at time t, and u1(t) ≥ 0, u2(t) ≥ 0,
and u3(t) ≥ 0 correspond to the exploitation endeavors of the three entities at
time t. The constants q1 > 0, q2 > 0, and q3 > 0 represent the coefficients of
resource availability. An account of the remuneration for each entity over the
timeframe [0, T ] is articulated as follows:

J1(u1(.), u2(.), u3(.)) =

∫ T

0

(
π1q1x(t)u1(t)−

1

2
u21(t)

)
dt for firm 1,

J2(u1(.), u2(.), u3(.)) =

∫ T

0

(
π2q2x(t)u2(t)−

1

2
u22(t)

)
dt for firm 2,

J3(u1(.), u2(.), u3(.)) =

∫ T

0

(
π3q3x(t)u3(t)−

1

2
u23(t)

)
dt for firm 3,

let π1, π2, and π3 stand as unchanging values, symbolizing the unit cost of
the renewable natural resource associated with each of the three firms. The
expressions 1

2u
2
1,

1
2u

2
2, and 1

2u
2
3 signify the expenditure linked to harvesting

efforts u1, u2, and u3, as per reference [4]. To ascertain the Nash equilibrium
within this bioeconomic competition, we present the Hamiltonian function for
each enterprise as follows:

H1(t, x, u1, u2, u3, λ1) = π1q1xu1 −
1

2
u21 + λ1 (F (x)− q1xu1 − q2xu2 − q3xu3) ,

H2(t, x, u1, u2, u3, λ2) = π2q2xu2 −
1

2
u22 + λ2 (F (x)− q1xu1 − q2xu2 − q3xu3) ,

H3(t, x, u1, u2, u3, λ3) = π3q3xu3 −
1

2
u23 + λ3 (F (x)− q1xu1 − q2xu2 − q3xu3) .

By minimizing H1, H2, and H3 with respect to u1, u2, and u3 respectively,
we determine the (OLNE) for each firm:

∂H1

∂u1
= 0⇒ π1q1x− u1 − λ1q1x = 0⇒ u1 = q1x(π1 − λ1), (4.1)
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∂H2

∂u2
= 0⇒ π2q2x− u2 − λ2q2x = 0⇒ u2 = q2x(π2 − λ2), (4.2)

∂H3

∂u3
= 0⇒ π3q3x− u3 − λ3q3x = 0⇒ u3 = q3x(π3 − λ3). (4.3)

The adjoint dynamics of each player are defined as:

λ̇1 = −∂H1

∂x
= −π1q1u1 − λ1Ḟ (x) + λ1q1u1 + λ1q2u2 + λ1q3u3, (4.4)

λ̇2 = −∂H2

∂x
= −π2q2u2 − λ2Ḟ (x) + λ2q1u1 + λ2q2u2 + λ2q3u3, (4.5)

λ̇3 = −∂H3

∂x
= −π3q3u3 − λ3Ḟ (x) + λ3q1u1 + λ3q2u2 + λ3q3u3. (4.6)

Substituting Equations (4.1), (4.2), and (4.3) into Equations (4.4), (4.5),
and (4.6) respectively, we obtain the adjoint dynamics for each player.

The system of TPBVPs for this bioeconomic game is expressed as:

ẋ = F (x)− 1

2
q1x

2(π1 − λ1)−
1

2
q2x

2(π2 − λ2)−
1

2
q3x

2(π3 − λ3), (4.7)

λ̇1 = −π1q21x(π1 − λ1)− λ1Ḟ (x) + λ1q
2
1x(π1 − λ1)

+ λ1q
2
2x(π2 − λ2) + λ1q

2
3x(π3 − λ3), (4.8)

λ̇2 = −π2q22x(π2 − λ2)− λ2Ḟ (x) + λ2q
2
1x(π1 − λ1)

+ λ2q
2
2x(π2 − λ2) + λ2q

2
3x(π3 − λ3), (4.9)

λ̇3 = −π3q23x(π3 − λ3)− λ3Ḟ (x) + λ3q
2
1x(π1 − λ1)

+ λ3q
2
2x(π2 − λ2) + λ3q

2
3x(π3 − λ3), (4.10)

x(0) = x0, (4.11)

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0. (4.12)

Supposing that the singular resolution of Formula (4.7) with the initial state
stipulated in Formula (4.11) is designated as y, and signifying the individual
resolutions of Formulas (4.8),(4.9) and (4.10), with end conditions illustrated
in Formula (4.12), as γ1, γ2, and γ3 respectively, the ensuing theorem charac-
terizes the unique (OLNE) for this extended bioeconomic game.

The upcoming theorem describes the distinctive (OLNE) found within the
bioeconomic game that has been introduced.
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Theorem 4.1. The best strategy for each player in the three-player differential
game, given the strategies of the other players, is as follows:

u1 = q1y(π1 − λ1), (4.13)

u2 = q2y(π2 − λ2), (4.14)

u3 = q3y(π3 − λ3). (4.15)

Proof. Given the controls vi ≥ 0 for i = 1, 2, 3, we address the subsequent
optimal control scenarios:

(1) maxu1≥0 J1(u1(.), v2(.), v3(.)) =
∫ T
0

(
π1q1xu1 − 1

2u
2
1

)
dt

such that,. ẋ = F (x)− q1xu1 − q2xv2 − q3xv3, x(0) = x0,

(2) maxu2≥0 J2(v1(.), u2(.), v3(.)) =
∫ T
0

(
π2q2xu2 − 1

2u
2
2

)
dt

such that, ẋ = F (x)− q1xv1 − q2xu2 − q3xv3, x(0) = x0,

(3) maxu3≥0 J3(v1(.), v2(.), u3(.)) =
∫ T
0

(
π3q3xu3 − 1

2u
2
3

)
dt

such that. ẋ = F (x)− q1xv1 − q2xv2 − q3xu3, x(0) = x0.

These scenarios involve linear dynamics concerning the control variables ui
for i = 1, 2, 3, and the integrand of the performance index Ji for i = 1, 2, 3

exhibits concavity with respect to ui, given that ∂2Ji
∂u2i

= −1 < 0, i = 1, 2, 3.

Henceforth, the presence and singular characteristics stipulated by the Fil-
ippovCesari theorem of existence [5] remain valid in these optimal control
situations. Derived from this examination, it becomes undeniably clear that
solutions meeting these criteria are precisely governed by Equations (4.13),
(4.14) and (4.15). Consequently, the distinct (OLNE) in the aforementioned
differential game involving three participants is securely confirmed. �

The ensemble of Three-Point Boundary Value Problems (TPBVPs) delin-
eated by Equations (4.7)(4.12) constitutes a collection of nonlinear differential
equations characterized by split boundary values and generally evades a closed-
form analytical solution. To tackle this scenario numerically, employing the
methodology introduced earlier, we adopt a set of standard parameter values
as follows:

x0 = 0.1, q1 = q2 = q3 = 1, π1 = 2, π2 = 1.5, π3 = 1.8,

r = 0.1, k = 100, T = 1.

Consequently, the amenable numerical representation of the TPBVP system,
involving three players, can be articulated as:
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ẋ = 0.1x− 3.501x2 + x2λ1 + x2λ2 + x2λ3,

λ̇1 = −4x− 0.1λ1 + 5.502xλ1 − xλ21 − xλ1λ2 − xλ1λ3,
λ̇2 = −2.25x− 0.1λ2 + 5.002xλ2 − xλ22 − xλ1λ2 − xλ2λ3,
λ̇3 = −2.9x− 0.1λ3 + 5.732xλ3 − xλ23 − xλ1λ3 − xλ2λ3,
x(0) = 0.1,

λ1(1) = 0, λ2(1) = 0, λ3(1) = 0.

In order to confront this intricate TPBVP system, we consider the subse-
quent approximations for x, λ1, and λ2:

x ≈ xN =
∑N

i=0 aiT
∗
i = ATT ∗

λ1 ≈ λ1N =
∑N

i=0 biT
∗
i = BTT ∗,

λ2 ≈ λ2N =
∑N

i=0 ciT
∗
i = CTT ∗,

λ3 ≈ λ3N =
∑N

i=0 diT
∗
i = DTT ∗,

where AT = [a0, . . . , aN ], BT = [b0, . . . , bN ], CT = [c0, . . . , cN ], and DT =
[d0, . . . , dN ] are unknown vectors, and T ∗ = [t∗0, . . . , t

∗
N ]T signifies the vector

of shifted Chebyshev Polynomials.

Substituting these approximations into the TPBVP system’s equations yields
the ensuing residual expressions:

R1 =
2

T

N∑
i=0

aiT
∗′
i − 0.1

N∑
i=0

aiT
∗
i + 3.501(

N∑
i=0

aiT
∗
i )2 − (

N∑
i=0

aiT
∗
i )2

N∑
i=0

biT
∗
i

− (
N∑
i=0

aiT
∗
i )2

N∑
i=0

ciT
∗
i − (

N∑
i=0

aiT
∗
i )2

N∑
i=0

diT
∗
i ,

R2 =
2

T

N∑
i=0

biT
∗′
i + 4

N∑
i=0

aiT
∗
i + 0.1

N∑
i=0

biT
∗
i − 5.502

N∑
i=0

aiT
∗
i

N∑
i=0

biT
∗
i

+
N∑
i=0

aiT
∗
i (

N∑
i=0

biT
∗
i )2 +

N∑
i=0

aiT
∗
i

N∑
i=0

biT
∗
i

N∑
i=0

ciT
∗
i

−
N∑
i=0

aiT
∗
i

N∑
i=0

biT
∗
i

N∑
i=0

diT
∗
i ,
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R3 =
2

T

N∑
i=0

ciT
∗′
i + 2.25

N∑
i=0

aiT
∗
i + 0.1

N∑
i=0

ciT
∗
i − 5.002

N∑
i=0

aiT
∗
i

N∑
i=0

ciT
∗
i

+
N∑
i=0

aiT
∗
i (

N∑
i=0

ciT
∗
i )2 +

N∑
i=0

aiT
∗
i

N∑
i=0

biT
∗
i

N∑
i=0

ciT
∗
i

−
N∑
i=0

aiT
∗
i

N∑
i=0

biT
∗
i

N∑
i=0

diT
∗
i ,

R4 =
2

T

N∑
i=0

diT
∗′
i + 2.9

N∑
i=0

aiT
∗
i + 0.1

N∑
i=0

diT
∗
i − 5.732

N∑
i=0

aiT
∗
i

N∑
i=0

diT
∗
i

+

N∑
i=0

aiT
∗
i (

N∑
i=0

diT
∗
i )2 +

N∑
i=0

aiT
∗
i

N∑
i=0

biT
∗
i

N∑
i=0

diT
∗
i

−
N∑
i=0

aiT
∗
i

N∑
i=0

ciT
∗
i

N∑
i=0

diT
∗
i .

The numerical outcomes for the optimal payoff functions J1, J2, and J3
with varying N values are presented in the following tables.The graphs of
approximate solutions for (OLNE) for N = 14 are given in Figure (1).

Table 1. Optimal payoff function J1 for the three-player il-
lustration with CTM.

N J1CTM

5 0.016380210169522254216704694178224
7 0.016380209075360448134112122738199
9 0.016380209069981763839152784671981
11 0.016380209069971537054880540997263

Table 2. Optimal payoff function J2 for the three-player il-
lustration with CTM.

N J2CTM

5 0.0092479570970383153611687730098446
7 0.0092479570969001533684413638355018
9 0.0092479570969023516184877824151884
11 0.0092479570969023099745970910988349
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Table 3. Optimal payoff function J3 for the three-player il-
lustration with CTM.

N J3CTM

5 0.012789302542628878759568960346686
7 0.012789302542421004237271735456236
9 0.012789302542423635731872013086763
11 0.012789302542423608113133288430303
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Figure 1. Plots of approximate (OLNE) for illustrative ex-
ample when N = 14.

5. Conclusion

In conclusion, this research demonstrates the efficacy of the Chebyshev Tau
Method (CTM) in solving complex bioeconomic differential games with open-
loop Nash equilibria. By applying CTM to challenging scenarios like the three-
player fishery model, we unveil a powerful numerical approach for addressing
intricate systems that lack closed-form solutions. The success of this method
highlights its potential in various fields, opening new horizons for tackling
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nonlinear dynamics and decision-making processes in economics, ecology, and
beyond. Further exploration of CTM and its applications promises to advance
our understanding of complex systems and enhance decision support in real-
world scenarios.
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