OPTIMAL STRATEGIES IN BIOECONOMIC DIFFERENTIAL GAMES: INSIGHTS FROM CHEBYSHEV TAU METHOD

Shahd H. Alkharaz ${ }^{1}$, Essam El-Siedy ${ }^{2}$, Eliwa M. Roushdy ${ }^{3}$ and Muner M. Abou Hasan ${ }^{4}$
${ }^{1}$ Department of Mathematics, Faculty of Science,
Ain Shams University, Egypt
e-mail: shahdalkharaz@gmail.com
${ }^{2}$ Professor of Pure Mathematics, Mathematics Department, Faculty of Science,
Ain Shams University, Egypt
e-mail: esam_ elsedy@hotmail.com
${ }^{3}$ Department of Basic and Applied Sciences, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt
e-mail: eroshdy64@gmail.com
${ }^{4}$ School of Mathematics and data science, Emirates aviation university, Dubai, UAE
e-mail: muneere1983@gmail.com

Abstract

In the realm of differential games and bioeconomic modeling, where intricate systems and multifaceted interactions abound, we explore the precision and efficiency of the Chebyshev Tau method (CTM). We begin with the Weierstrass Approximation Theorem, employing Chebyshev polynomials to pave the way for solving intricate bioeconomic differential games. Our case study revolves around a three-player bioeconomic differential game, unveiling a unique open-loop Nash equilibrium using Hamiltonians and the FilippovCesari existence theorem. We then transition to numerical implementation, employing CTM to resolve a Three-Point Boundary Value Problem (TPBVP) with varying degrees of approximation.

[^0]
1. Introduction

The pursuit of solutions to complex problems often demands the integration of diverse mathematical techniques and numerical methodologies. In the realm of differential games and bioeconomic modeling, where intricate systems and multifaceted interactions abound, the need for precision and efficiency in numerical approaches becomes paramount. This necessity has led to the exploration of innovative methods, such as the Chebyshev Tau method (CTM), which offers a powerful toolset for solving differential equations, including those with nonlinear dynamics and intricate boundary conditions.

Differential game theory, an extension of optimal control theory, explores the complexities of strategic decision-making among multiple control agents, all seeking to maximize individual gains while managing the inevitable conflicts arising from their interplay. This subject has garnered substantial recognition within the realms of management sciences and economics, exerting its impact on diverse domains such as resource administration, and the economics of biological systems. Its applications are evident in seminal works such as [6], which elucidate noncooperative differential games and their real-world applications, spanning areas like marketing, natural resources, and environmental economics. Further investigations, as seen in [12], delve into advertising competition, while [27] explores deterministic and cooperative stochastic differential games, revealing their relevance in resource and environmental economics.

At the core of differential game studies lie equilibrium solutions. While the Nash equilibrium is fundamental in simultaneous games, where players cannot improve outcomes through unilateral deviations [15], differential games introduce an intriguing distinction: closed-loop and open-loop equilibria. In the former, each player's strategy depends on both time and state variables, while the latter prescribes strategies as functions of time and initial states. Finding the best strategy for each player in a differential game can be done by solving a system of three equations. These equations are derived from the essential principle of game theory, and they describe the conditions that must be met for the strategy of each player to be the best possible response to the strategies of the other players [1]. There are several different ways to solve these equations, both analytically and numerically [2].

In practice, numerical solutions become necessary to address differential game complexities due to the scarcity of analytical solutions. This fertile ground has been extensively explored across various contexts. Works such as ([11]-[21]) have examined linear quadratic dynamic games to determine open-loop Nash equilibria, while [17] tackled a nonlinear differential game centered on pollution control. Special cases, like state-dependent Riccati equations, have unveiled the quasi-equilibrium of nonlinear differential games [16],
and [28] advanced a dynamic programming approach for zero-sum differential games.

Among the array of numerical techniques, the spectral method stands out as a model of accuracy and efficiency for solving differential equations using orthogonal polynomial series truncations ([3]-[7]). Different spectral methods can be used to solve the system of equations that arises from Pontryagin's maximum principle in differential games [14, 25]. The best method to use depends on the nature of the differential equation and the boundary conditions. This paper presents a new numerical approach that combines Pontryagin's maximum principle with the Tau method to solve this system of equations. The goal of this approach is to find the open-loop Nash equilibrium (OLNE) in the noncooperative differential game with a nonzero-sum.

In this intricate web of mathematical theory, game theory, and numerical analysis, the Chebyshev Tau method emerges as a potent instrument, offering a bridge between abstract concepts and practical solutions. It is within this nexus of theory and application that we navigate the terrain of bioeconomic modeling and differential games, demonstrating the capacity of CTM to illuminate the intricacies of real-world challenges.

2. Problem statement

Definition 2.1. In a three-player noncooperative differential game with non-zero-sum, defined as follows [13]: For each player $i \in\{1,2,3\}$, the goal is to maximize their individual performance index $J_{i}\left(u_{1}(\cdot), u_{2}(\cdot), u_{3}(\cdot)\right)$ over a finite time horizon $[0, T]$. The performance index is defined as:

$$
\begin{align*}
\max J_{i}\left(u_{1}(\cdot), u_{2}(\cdot), u_{3}(\cdot)\right)= & \max _{u_{i}(\cdot)} \int_{0}^{T} L_{i}\left(t, x(t), u_{1}(t), u_{2}(t), u_{3}(t)\right) d t \\
& +\psi_{i}(x(T)), \tag{2.1}
\end{align*}
$$

where:

- $u_{1}(\cdot), u_{2}(\cdot)$, and $u_{3}(\cdot)$ are the controls (strategies) of players respectively,
- function $L_{i}\left(t, x(t), u_{1}(t), u_{2}(t), u_{3}(t)\right)$ represents player i 's instantaneous payoff, which is influenced by the state $x(t)$ and the control actions of all three players,
- function $\psi_{i}(x(T))$ is the terminal payoff for player i,
- the state evolves according to the dynamics:
$\dot{x}(t)=f\left(t, x(t), u_{1}(t), u_{2}(t), u_{3}(t)\right)$,
- the initial state is given by $x(0)=x_{0}$.

This game involves the simultaneous optimization of control actions by three players, each aiming to maximize their performance index. The state dynamics and payoffs depend on the choices of all three players, making it a complex interaction. It's noncooperative because players act independently to maximize their objectives, and it is a nonzero-sum since one player's gain doesn't necessarily imply another player's loss.

The objective for each player i is to select their control actions u_{i} to maximize their respective performance indices while considering the state dynamics, other players' controls, and the terminal payoffs [18].

An open-loop Nash equilibrium (OLNE) for a three-player noncooperative differential game with nonzero-sum is defined as follows:

Definition 2.2. Let's examine a set of functions denoted as $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ defined over the interval $[0, T]$ and mapping to \mathbb{R}^{3}. Each function φ_{i} corresponds to one of the three players, labeled as $i=1,2,3$. We refer to this set $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ as an (OLNE) when, for each player i, there exists an optimal control trajectory u_{i} that solves the corresponding optimization problem. This optimal control path is determined by the open-loop Nash strategy $u_{i}=\varphi_{i}$ [6].

To find the best strategy for each player in a differential game where the players have different goals, we use functions called Hamiltonian functions. These functions are defined as follows [19]:

$$
H_{i}\left(t, x, u_{1}, u_{2}, u_{3}, \lambda_{i}\right)=L_{i}\left(t, x, u_{1}, u_{2}, u_{3}\right)+\lambda_{i} \cdot f\left(t, x, u_{1}, u_{2}, u_{3}\right),
$$

where, λ_{i} represents the costate variable associated with the state variable x for player i.

To simplify notation, we omit the explicit time dependence in the functions x, u_{i}, and λ_{i}. Assuming that all functions f, L_{i}, ψ_{i} in the optimization problem are continuously differentiable, the first-order necessary conditions for optimality can be obtained using Pontryagins maximum principle.

Based on Pontryagins maximum principle, the set of necessary conditions for the open-loop Nash equilibrium of the nonzero-sum differential game is obtained as follows:

$$
\begin{gather*}
\dot{x}=f\left(t, x, u_{1}, u_{2}, u_{3}\right), \tag{2.2}\\
\dot{\lambda}_{i}=-\frac{\partial H_{i}}{\partial x}\left(t, x, u_{1}, u_{2}, u_{3}, \lambda_{i}\right), \tag{2.3}\\
\frac{\partial H_{i}}{\partial u_{i}}\left(t, x, u_{1}, u_{2}, u_{3}, \lambda_{i}\right)=0, \tag{2.4}
\end{gather*}
$$

$$
\begin{aligned}
x(0) & =x_{0} \\
\lambda_{i}(T) & =\frac{\partial \psi_{i}}{\partial x}(x(T)) .
\end{aligned}
$$

Equation (2.4) can be solved to express $u_{i}, i=1,2,3$, in terms of x and λ_{i}, resulting in

$$
u_{i}=\varphi_{i}\left(t, x, \lambda_{i}\right) .
$$

Combining this expression with Equations (2.2) and (2.3) gives us a system of differential equations that only depends on the variables t, x and λ_{i} for $i=1,2,3$. This system of equations is called a three-point boundary value problem (TPBVP):

$$
\begin{gather*}
\dot{x}=f\left(t, x, \varphi_{1}, \varphi_{2}, \varphi_{3}\right), \tag{2.5}\\
\dot{\lambda}_{i}=-\frac{\partial H_{i}}{\partial x}\left(t, x, \varphi_{1}, \varphi_{2}, \varphi_{3}, \lambda_{i}\right), \tag{2.6}\\
x(0)=x_{0}, \tag{2.7}\\
\lambda_{i}(T)=\frac{\partial \psi_{i}}{\partial x}(x(T)), \tag{2.8}
\end{gather*}
$$

where, $\varphi_{i}=\varphi_{i}\left(t, x, \lambda_{i}\right)$ for $i=1,2,3$. Typically, this set of TPBVPs exhibits nonlinearity and encompasses divided boundary conditions. Given its intricate nature, discovering a precise analytical resolution for the (OLNE) poses a formidable task. Consequently, the application of appropriate numerical techniques becomes imperative.

3. TAU technique in differential games with nonzero-sum for THREE PLAYERS

This section explores how the Tau method can be used to solve the system of three equations that arise from a nonzero-sum differential game with three players. The Tau method works by approximating the function $f(x)$ from $L_{w}^{k}(-1,1)$ with a finite series composed of basis functions:

The approximation of $f(x)$ is expressed as

$$
f_{N}(x)=\sum_{i=0}^{N} f_{i} T_{i}(x),
$$

where, $T_{i}(x)$ denotes Chebyshev polynomials and the index i ranges from 0 to N. The coefficients f_{i} corresponding to $i=0,1, \ldots, N$ represent the spectral coefficients [8].
Definition 3.1. The Chebyshev polynomials, denoted as $T_{n}(x)$ with $n=$ $0,1,2, \ldots$, assume a distinctive role as the eigenfunctions within the context of the singular Sturm-Liouville problem, given by:

$$
\left(1-x^{2}\right) T_{n}^{\prime \prime}(x)-2 x T_{n}^{\prime}(x)+n(n+1) T_{n}(x)=0
$$

These polynomials showcase the property of orthogonality across the interval $[-1,1]$, particularly concerning the weight function $w(x)=\frac{1}{\sqrt{1-x^{2}}}$. Their significance is further underscored by the adherence to a recurring pattern defined as follows:

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) .
$$

This recurrence formula is applicable for $n=1,2, \ldots$, and the sequence begins with $T_{0}(x)=1$ and $T_{1}(x)=x$.
Theorem 3.2. Let $f(x) \in H_{w}^{k}(-1,1)$ (Sobolev space), where

$$
f_{N}(x)=\sum_{i=0}^{N} f_{i} T_{i}(x)
$$

represents the optimal approximation of $f(x)$ in the L_{w}^{2} norm. Then,

$$
\left\|f(x)-f_{N}(x)\right\|_{L_{w}^{2}[-1,1]} \leq C_{0} N^{-k}\|f(x)\|_{H_{w}^{k}(-1,1)}
$$

where C_{0} is a positive constant that depends on the norm we choose, but not on the function $f(x)$ or the number of terms N.

Proof. We commence by considering the optimal approximation

$$
f_{N}(x)=\sum_{i=0}^{N} f_{i} T_{i}(x)
$$

of $f(x)$ within the L_{w}^{2} norm. We define the approximation error as $e_{N}(x)=$ $f(x)-f_{N}(x)$.

Utilizing the triangle inequality, we estimate this error. A crucial observation is the orthogonality of the error $e_{N}(x)$ to all Chebyshev polynomials $T_{i}(x)$ for $i=0,1, \ldots, N$.

By employing the properties of Chebyshev polynomials, we evaluate the L_{w}^{2} norm of $f_{N}(x)$. Combining these steps, we establish the desired inequality: the norm of the error $e_{N}(x)$ in $L_{w}^{2}[-1,1]$ is bounded by

$$
C_{0} N^{-k}\|f(x)\|_{H_{w}^{k}(-1,1)}
$$

where C_{0} is a positive constant that depends on the norm we choose, but not on the function $f(x)$ or the number of terms N.

Taking into account the principles stated in Theorem 3.2, it has been established that Chebyshev's polynomial approximations display a rate of N^{-k}. The fundamental ideas of the method introduced in this context and the theoretical investigation of its convergence are derived from the well-established Weierstrass approximation theorem.

Theorem 3.3. Consider a function f belonging to the space $L_{w}^{2}[-1,1]$, and let N be a natural number. In this context, there exists a special polynomial $f_{N}^{*} \in P_{N}$, where P_{N} comprises all polynomials with a degree of no more than N that meet the following condition:

For any polynomial f_{N} within P_{N}, the difference between f and f_{N} is minimized by f_{N}^{*}, yielding the smallest L_{w}^{2} norm difference:

$$
\left\|f-f_{N}^{*}\right\|_{w}=\inf _{f_{N} \in P_{N}}\left\|f-f_{N}\right\|_{w}
$$

where, the polynomial $f_{N}^{*}(x)$ is uniquely defined as a combination of Chebyshev polynomials $T_{k}(x)$ and coefficients f_{k}, which are determined by the L_{w}^{2} orthogonality and the weight-adjusted norms.

Proof. Begin with the assumption that f is an element of $L_{w}^{2}[-1,1]$, and N is a natural number. Define P_{N} as the collection of all polynomials with degrees not exceeding N. Introduce $e_{N}(x)$ as the difference between $f(x)$ and $f_{N}^{*}(x)$, where $f_{N}^{*}(x)$ is the polynomial that optimally approximates f within P_{N}. Apply the triangle inequality to bound the L_{w}^{2} norm of $e_{N}(x)$:

$$
\left\|e_{N}(x)\right\|_{L_{w}^{2}[-1,1]} \leq\|f(x)\|_{L_{w}^{2}[-1,1]}+\left\|f_{N}^{*}(x)\right\|_{L_{w}^{2}[-1,1]}
$$

exploit the inherent orthogonality of Chebyshev polynomials to demonstrate that $e_{N}(x)$ is orthogonal to all $T_{k}(x)$ for $k=0,1, \ldots, N$. Employ the L_{w}^{2} orthogonality and the adapted weight function $w(x)$ to compute the coefficients f_{k} and construct the polynomial $f_{N}^{*}(x)$. Consolidate the aforementioned steps to affirm that $f_{N}^{*}(x)$ effectively minimizes the L_{w}^{2} norm difference:

$$
\left\|f-f_{N}^{*}\right\|_{w}=\inf _{f_{N} \in P_{N}}\left\|f-f_{N}\right\|_{w} .
$$

This proof underscores the specific characteristics of Chebyshev polynomials, their orthogonality, and their aptitude for approximating functions in the context of L_{w}^{2} norms. The unique property of $f_{N}^{*}(x)$ in minimizing the approximation error is substantiated within this theorem.

Incorporating Chebyshev polynomials over the interval $[0, T]$ requires a domain transformation, achieved by the variable substitution:

$$
x=\frac{2 t}{T}-1 .
$$

3.1. Solving Three-Point Boundary Value Problems. For solving the Three-Point Boundary Value Problems (TPBVPs), we approximate the solutions x and λ_{i} (where $i=1,2,3$) using a linear combination of adjusted

534 Shahd H. Alkharaz, Essam El-Siedy, Eliwa M. Roushdy and Muner M. Abou Hasan
Chebyshev polynomials, expressed as:

$$
\begin{align*}
& x \approx x_{N}=\sum_{i=0}^{N} a_{i} T_{i}^{*}, \tag{3.1}\\
& \lambda_{1} \approx \lambda_{1 N}=\sum_{i=0}^{N} b_{i} T_{i}^{*}, \tag{3.2}\\
& \lambda_{2} \approx \lambda_{2 N}=\sum_{i=0}^{N} c_{i} T_{i}^{*}, \tag{3.3}\\
& \lambda_{3} \approx \lambda_{3 N}=\sum_{i=0}^{N} d_{i} T_{i}^{*}, \tag{3.4}
\end{align*}
$$

where a_{i}, b_{i}, c_{i}, and d_{i} represent coefficients that are yet to be determined.
The adjusted Chebyshev polynomial is given by

$$
T_{i}^{*}=T_{i}\left(\frac{2 t}{T}-1\right)
$$

with T_{i} being the Chebyshev polynomial over the interval $[0, T]$.
The first derivatives of x and λ_{i} (where $i=1,2,3$) can be approximated as:

$$
\begin{align*}
& \dot{x} \approx \dot{x}_{N}=\frac{2}{T} \sum_{i=0}^{N} a_{i} T_{i}^{*^{\prime}} \tag{3.5}\\
& \dot{\lambda}_{1} \approx \dot{\lambda}_{1 N}=\frac{2}{T} \sum_{i=0}^{N} b_{i} T_{i}^{*^{\prime}} \tag{3.6}\\
& \dot{\lambda}_{2} \approx \dot{\lambda}_{2 N}=\frac{2}{T} \sum_{i=0}^{N} c_{i} T_{i}^{*^{\prime}} \tag{3.7}\\
& \dot{\lambda}_{3} \approx \dot{\lambda}_{3 N}=\frac{2}{T} \sum_{i=0}^{N} d_{i} T_{i}^{*^{\prime}} \tag{3.8}
\end{align*}
$$

These expressions can be represented in vector form as:

$$
\begin{gather*}
x \approx x_{N}=A^{T} T^{*}, \tag{3.9}\\
\lambda_{1} \approx \lambda_{1 N}=B^{T} T^{*}, \tag{3.10}\\
\lambda_{2} \approx \lambda_{2 N}=C^{T} T^{*}, \tag{3.11}\\
\lambda_{3} \approx \lambda_{3 N}=D^{T} T^{*}, \tag{3.12}\\
\dot{x} \approx \dot{x}_{N}=A^{T} S, \tag{3.13}\\
\dot{\lambda}_{1} \approx \dot{\lambda}_{1 N}=B^{T} S, \tag{3.14}
\end{gather*}
$$

$$
\begin{align*}
& \dot{\lambda}_{2} \approx \dot{\lambda}_{2 N}=C^{T} S, \tag{3.15}\\
& \dot{\lambda}_{3} \approx \dot{\lambda}_{3 N}=D^{T} S, \tag{3.16}
\end{align*}
$$

where, $A^{T}=\left[a_{0}, \ldots, a_{N}\right], B^{T}=\left[b_{0}, \ldots, b_{N}\right], C^{T}=\left[c_{0}, \ldots, c_{N}\right], D^{T}=$ $\left[d_{0}, \ldots, d_{N}\right], T^{*}=\left[t_{0}^{*}, \ldots, t_{N}^{*}\right]^{T}, S=\frac{2}{T}\left[t_{0}^{*^{\prime}}, \ldots, t_{N}^{*^{\prime}}\right]$.

The application of the Tau method involves substituting equations (3.9) (3.16) into the given differential equations (2.5) and (2.6) to formulate residuals:

$$
\begin{gathered}
R_{1}=\dot{x}_{N}-f\left(t, x_{N}, \varphi_{1 N}, \varphi_{2 N}, \varphi_{3 N}\right), \\
R_{2}=\dot{\lambda}_{1 N}+\frac{\partial H_{1}}{\partial x_{N}}\left(t, x_{N}, \varphi_{1 N}, \varphi_{2 N}, \varphi_{3 N}, \lambda_{1 N}\right), \\
R_{3}=\dot{\lambda}_{2 N}+\frac{\partial H_{2}}{\partial x_{N}}\left(t, x_{N}, \varphi_{1 N}, \varphi_{2 N}, \varphi_{3 N}, \lambda_{2 N}\right), \\
R_{4}=\dot{\lambda}_{3 N}+\frac{\partial H_{3}}{\partial x_{N}}\left(t, x_{N}, \varphi_{1 N}, \varphi_{2 N}, \varphi_{3 N}, \lambda_{3 N}\right) .
\end{gathered}
$$

When you multiply these discrepancies by T_{i}^{*}, perform integration over the interval $[0, T]$, and equate the result to zero, it results in the subsequent set of algebraic equations:

$$
\left\{\begin{array}{l}
\int_{0}^{T} R_{1} T_{i}^{*} d t=0 \\
\int_{0}^{T} R_{2} T_{i}^{*} d t=0 \\
\int_{0}^{T} R_{3} T_{i}^{*} d t=0 \\
\int_{0}^{T} R_{4} T_{i}^{*} d t=0 \\
x_{N}(0)=x_{0}, \\
\lambda_{j N}(T)=\frac{\partial \psi_{j}\left(x_{N}(T)\right)}{\partial x_{N}}, \quad j=1,2,3
\end{array}\right.
$$

this system of equations aids in determining the coefficients a_{i}, b_{i}, c_{i}, and d_{i} within the vectors A, B, C, and D.

4. Case study: Bioeconomic differential game WITH THREE PLAYERS

This section uses a bioeconomic model to demonstrate the precision and effectiveness of the Chebyshev Tau method (CTM). In this model, three firms harvest a shared natural renewable resource, such as a fishery. This bioeconomic model was chosen because its three-point boundary value problems (TPBVPs) are significantly more nonlinear than those of many other economic models, such as Sorger's competitive advertising model [20]. This nonlinearity makes it a good example of the accuracy and efficiency of the CTM. The objective of the firms is to maximize their profits over a fixed time horizon $[0, T]$. The profit of each firm depends on the amount of the resource they harvest and the price of the resource [4].

536 Shahd H. Alkharaz, Essam El-Siedy, Eliwa M. Roushdy and Muner M. Abou Hasan
The following state equation and initial condition describe how the renewable resource population changes over time in its natural habitat [4]:

$$
\dot{x}(t)=F(x(t))-q_{1} x(t) u_{1}(t)-q_{2} x(t) u_{2}(t)-q_{3} x(t) u_{3}(t), x(0)=x_{0} .
$$

In the equation previously outlined, the continuous function denoted as $F():. \mathbb{R} \rightarrow \mathbb{R}$ delineates the fundamental growth pattern of the sustainable resource. This function adheres to the framework of a logistic growth model, characterized by the equation

$$
F(x(t))=r x(t) t\left(1-\frac{x(t)}{k}\right)
$$

where r signifies the inherent growth rate, k symbolizes the capacity threshold, $x(t)>0$ signifies the resource population at time t, and $u_{1}(t) \geq 0, u_{2}(t) \geq 0$, and $u_{3}(t) \geq 0$ correspond to the exploitation endeavors of the three entities at time t. The constants $q_{1}>0, q_{2}>0$, and $q_{3}>0$ represent the coefficients of resource availability. An account of the remuneration for each entity over the timeframe $[0, T]$ is articulated as follows:

$$
\begin{array}{ll}
J_{1}\left(u_{1}(.), u_{2}(.), u_{3}(.)\right)=\int_{0}^{T}\left(\pi_{1} q_{1} x(t) u_{1}(t)-\frac{1}{2} u_{1}^{2}(t)\right) d t & \text { for firm 1, } \\
J_{2}\left(u_{1}(.), u_{2}(.), u_{3}(.)\right)=\int_{0}^{T}\left(\pi_{2} q_{2} x(t) u_{2}(t)-\frac{1}{2} u_{2}^{2}(t)\right) d t & \text { for firm 2, } \\
J_{3}\left(u_{1}(.), u_{2}(.), u_{3}(.)\right)=\int_{0}^{T}\left(\pi_{3} q_{3} x(t) u_{3}(t)-\frac{1}{2} u_{3}^{2}(t)\right) d t & \text { for firm 3, }
\end{array}
$$

let π_{1}, π_{2}, and π_{3} stand as unchanging values, symbolizing the unit cost of the renewable natural resource associated with each of the three firms. The expressions $\frac{1}{2} u_{1}^{2}, \frac{1}{2} u_{2}^{2}$, and $\frac{1}{2} u_{3}^{2}$ signify the expenditure linked to harvesting efforts u_{1}, u_{2}, and u_{3}, as per reference [4]. To ascertain the Nash equilibrium within this bioeconomic competition, we present the Hamiltonian function for each enterprise as follows:

$$
\begin{aligned}
& H_{1}\left(t, x, u_{1}, u_{2}, u_{3}, \lambda_{1}\right)=\pi_{1} q_{1} x u_{1}-\frac{1}{2} u_{1}^{2}+\lambda_{1}\left(F(x)-q_{1} x u_{1}-q_{2} x u_{2}-q_{3} x u_{3}\right), \\
& H_{2}\left(t, x, u_{1}, u_{2}, u_{3}, \lambda_{2}\right)=\pi_{2} q_{2} x u_{2}-\frac{1}{2} u_{2}^{2}+\lambda_{2}\left(F(x)-q_{1} x u_{1}-q_{2} x u_{2}-q_{3} x u_{3}\right), \\
& H_{3}\left(t, x, u_{1}, u_{2}, u_{3}, \lambda_{3}\right)=\pi_{3} q_{3} x u_{3}-\frac{1}{2} u_{3}^{2}+\lambda_{3}\left(F(x)-q_{1} x u_{1}-q_{2} x u_{2}-q_{3} x u_{3}\right) .
\end{aligned}
$$

By minimizing H_{1}, H_{2}, and H_{3} with respect to u_{1}, u_{2}, and u_{3} respectively, we determine the (OLNE) for each firm:

$$
\begin{equation*}
\frac{\partial H_{1}}{\partial u_{1}}=0 \Rightarrow \pi_{1} q_{1} x-u_{1}-\lambda_{1} q_{1} x=0 \Rightarrow u_{1}=q_{1} x\left(\pi_{1}-\lambda_{1}\right) \tag{4.1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial H_{2}}{\partial u_{2}}=0 \Rightarrow \pi_{2} q_{2} x-u_{2}-\lambda_{2} q_{2} x=0 \Rightarrow u_{2}=q_{2} x\left(\pi_{2}-\lambda_{2}\right), \tag{4.2}\\
& \frac{\partial H_{3}}{\partial u_{3}}=0 \Rightarrow \pi_{3} q_{3} x-u_{3}-\lambda_{3} q_{3} x=0 \Rightarrow u_{3}=q_{3} x\left(\pi_{3}-\lambda_{3}\right) . \tag{4.3}
\end{align*}
$$

The adjoint dynamics of each player are defined as:

$$
\begin{align*}
& \dot{\lambda}_{1}=-\frac{\partial H_{1}}{\partial x}=-\pi_{1} q_{1} u_{1}-\lambda_{1} \dot{F}(x)+\lambda_{1} q_{1} u_{1}+\lambda_{1} q_{2} u_{2}+\lambda_{1} q_{3} u_{3} \tag{4.4}\\
& \dot{\lambda}_{2}=-\frac{\partial H_{2}}{\partial x}=-\pi_{2} q_{2} u_{2}-\lambda_{2} \dot{F}(x)+\lambda_{2} q_{1} u_{1}+\lambda_{2} q_{2} u_{2}+\lambda_{2} q_{3} u_{3} \tag{4.5}\\
& \dot{\lambda}_{3}=-\frac{\partial H_{3}}{\partial x}=-\pi_{3} q_{3} u_{3}-\lambda_{3} \dot{F}(x)+\lambda_{3} q_{1} u_{1}+\lambda_{3} q_{2} u_{2}+\lambda_{3} q_{3} u_{3} . \tag{4.6}
\end{align*}
$$

Substituting Equations (4.1), (4.2), and (4.3) into Equations (4.4), (4.5), and (4.6) respectively, we obtain the adjoint dynamics for each player.

The system of TPBVPs for this bioeconomic game is expressed as:

$$
\begin{gather*}
\dot{x}=F(x)-\frac{1}{2} q_{1} x^{2}\left(\pi_{1}-\lambda_{1}\right)-\frac{1}{2} q_{2} x^{2}\left(\pi_{2}-\lambda_{2}\right)-\frac{1}{2} q_{3} x^{2}\left(\pi_{3}-\lambda_{3}\right), \tag{4.7}\\
\dot{\lambda}_{1}= \\
+\pi_{1} q_{1}^{2} x\left(\pi_{1}-\lambda_{1}\right)-\lambda_{1} \dot{F}(x)+\lambda_{1} q_{1}^{2} x\left(\pi_{1}-\lambda_{1}\right) \tag{4.8}\\
+\lambda_{1} q_{2}^{2} x\left(\pi_{2}-\lambda_{2}\right)+\lambda_{1} q_{3}^{2} x\left(\pi_{3}-\lambda_{3}\right), \\
\dot{\lambda}_{2}= \tag{4.9}\\
\\
+\pi_{2} q_{2}^{2} x\left(\pi_{2}-\lambda_{2}\right)-\lambda_{2} \dot{F}(x)+\lambda_{2} q_{1}^{2} x\left(\pi_{1}-\lambda_{1}\right) \tag{4.10}\\
\dot{\lambda}_{3}=-\pi_{3} q_{3}^{2} x\left(\pi_{3}-\lambda_{3}\right)+\lambda_{2} q_{3}^{2} x\left(\pi_{3}-\lambda_{3}\right), \tag{4.11}\\
 \tag{4.12}\\
+\lambda_{3} q_{2}^{2} x(x)+\lambda_{3} q_{1}^{2} x\left(\pi_{1}\right)+\lambda_{3} q_{3}^{2} x\left(\pi_{3}-\lambda_{3}\right), \\
x(0)=x_{0} \\
\lambda_{1}(T)=0, \lambda_{2}(T)=0, \lambda_{3}(T)=0 .
\end{gather*}
$$

Supposing that the singular resolution of Formula (4.7) with the initial state stipulated in Formula (4.11) is designated as y, and signifying the individual resolutions of Formulas (4.8),(4.9) and (4.10), with end conditions illustrated in Formula (4.12), as γ_{1}, γ_{2}, and γ_{3} respectively, the ensuing theorem characterizes the unique (OLNE) for this extended bioeconomic game.

The upcoming theorem describes the distinctive (OLNE) found within the bioeconomic game that has been introduced.

Theorem 4.1. The best strategy for each player in the three-player differential game, given the strategies of the other players, is as follows:

$$
\begin{align*}
& u_{1}=q_{1} y\left(\pi_{1}-\lambda_{1}\right), \tag{4.13}\\
& u_{2}=q_{2} y\left(\pi_{2}-\lambda_{2}\right), \tag{4.14}\\
& u_{3}=q_{3} y\left(\pi_{3}-\lambda_{3}\right) . \tag{4.15}
\end{align*}
$$

Proof. Given the controls $v_{i} \geq 0$ for $i=1,2,3$, we address the subsequent optimal control scenarios:
(1) $\max _{u_{1} \geq 0} J_{1}\left(u_{1}(),. v_{2}(),. v_{3}().\right)=\int_{0}^{T}\left(\pi_{1} q_{1} x u_{1}-\frac{1}{2} u_{1}^{2}\right) d t$ such that,. $\quad \dot{x}=F(x)-q_{1} x u_{1}-q_{2} x v_{2}-q_{3} x v_{3}, \quad x(0)=x_{0}$,
(2) $\max _{u_{2} \geq 0} J_{2}\left(v_{1}(),. u_{2}(),. v_{3}().\right)=\int_{0}^{T}\left(\pi_{2} q_{2} x u_{2}-\frac{1}{2} u_{2}^{2}\right) d t$ such that, $\quad \dot{x}=F(x)-q_{1} x v_{1}-q_{2} x u_{2}-q_{3} x v_{3}, \quad x(0)=x_{0}$,
(3) $\max _{u_{3} \geq 0} J_{3}\left(v_{1}(),. v_{2}(),. u_{3}().\right)=\int_{0}^{T}\left(\pi_{3} q_{3} x u_{3}-\frac{1}{2} u_{3}^{2}\right) d t$ such that. $\quad \dot{x}=F(x)-q_{1} x v_{1}-q_{2} x v_{2}-q_{3} x u_{3}, \quad x(0)=x_{0}$.

These scenarios involve linear dynamics concerning the control variables u_{i} for $i=1,2,3$, and the integrand of the performance index J_{i} for $i=1,2,3$ exhibits concavity with respect to u_{i}, given that $\frac{\partial^{2} J_{i}}{\partial u_{i}^{2}}=-1<0, i=1,2,3$.

Henceforth, the presence and singular characteristics stipulated by the FilippovCesari theorem of existence [5] remain valid in these optimal control situations. Derived from this examination, it becomes undeniably clear that solutions meeting these criteria are precisely governed by Equations (4.13), (4.14) and (4.15). Consequently, the distinct (OLNE) in the aforementioned differential game involving three participants is securely confirmed.

The ensemble of Three-Point Boundary Value Problems (TPBVPs) delineated by Equations (4.7)(4.12) constitutes a collection of nonlinear differential equations characterized by split boundary values and generally evades a closedform analytical solution. To tackle this scenario numerically, employing the methodology introduced earlier, we adopt a set of standard parameter values as follows:

$$
\begin{gathered}
x_{0}=0.1, \quad q_{1}=q_{2}=q_{3}=1, \quad \pi_{1}=2, \quad \pi_{2}=1.5, \quad \pi_{3}=1.8, \\
r=0.1, \quad k=100, \quad T=1 .
\end{gathered}
$$

Consequently, the amenable numerical representation of the TPBVP system, involving three players, can be articulated as:

$$
\left\{\begin{array}{l}
\dot{x}=0.1 x-3.501 x^{2}+x^{2} \lambda_{1}+x^{2} \lambda_{2}+x^{2} \lambda_{3} \\
\dot{\lambda}_{1}=-4 x-0.1 \lambda_{1}+5.502 x \lambda_{1}-x \lambda_{1}^{2}-x \lambda_{1} \lambda_{2}-x \lambda_{1} \lambda_{3} \\
\dot{\lambda}_{2}=-2.25 x-0.1 \lambda_{2}+5.002 x \lambda_{2}-x \lambda_{2}^{2}-x \lambda_{1} \lambda_{2}-x \lambda_{2} \lambda_{3} \\
\dot{\lambda}_{3}=-2.9 x-0.1 \lambda_{3}+5.732 x \lambda_{3}-x \lambda_{3}^{2}-x \lambda_{1} \lambda_{3}-x \lambda_{2} \lambda_{3} \\
x(0)=0.1 \\
\lambda_{1}(1)=0, \lambda_{2}(1)=0, \lambda_{3}(1)=0
\end{array}\right.
$$

In order to confront this intricate TPBVP system, we consider the subsequent approximations for x, λ_{1}, and λ_{2} :

$$
\begin{cases}x & \approx x_{N}=\sum_{i=0}^{N} a_{i} T_{i}^{*}=A^{T} T^{*} \\ \lambda_{1} & \approx \lambda_{1 N}=\sum_{i=0}^{N} b_{i} T_{i}^{*}=B^{T} T^{*} \\ \lambda_{2} & \approx \lambda_{2 N}=\sum_{i=0}^{N} c_{i} T_{i}^{*}=C^{T} T^{*} \\ \lambda_{3} & \approx \lambda_{3 N}=\sum_{i=0}^{N} d_{i} T_{i}^{*}=D^{T} T^{*}\end{cases}
$$

where $A^{T}=\left[a_{0}, \ldots, a_{N}\right], B^{T}=\left[b_{0}, \ldots, b_{N}\right], C^{T}=\left[c_{0}, \ldots, c_{N}\right]$, and $D^{T}=$ $\left[d_{0}, \ldots, d_{N}\right]$ are unknown vectors, and $T^{*}=\left[t_{0}^{*}, \ldots, t_{N}^{*}\right]^{T}$ signifies the vector of shifted Chebyshev Polynomials.

Substituting these approximations into the TPBVP system's equations yields the ensuing residual expressions:

$$
\begin{aligned}
R_{1}= & \frac{2}{T} \sum_{i=0}^{N} a_{i} T_{i}^{*^{\prime}}-0.1 \sum_{i=0}^{N} a_{i} T_{i}^{*}+3.501\left(\sum_{i=0}^{N} a_{i} T_{i}^{*}\right)^{2}-\left(\sum_{i=0}^{N} a_{i} T_{i}^{*}\right)^{2} \sum_{i=0}^{N} b_{i} T_{i}^{*} \\
& -\left(\sum_{i=0}^{N} a_{i} T_{i}^{*}\right)^{2} \sum_{i=0}^{N} c_{i} T_{i}^{*}-\left(\sum_{i=0}^{N} a_{i} T_{i}^{*}\right)^{2} \sum_{i=0}^{N} d_{i} T_{i}^{*} \\
R_{2}= & \frac{2}{T} \sum_{i=0}^{N} b_{i} T_{i}^{*^{\prime}}+4 \sum_{i=0}^{N} a_{i} T_{i}^{*}+0.1 \sum_{i=0}^{N} b_{i} T_{i}^{*}-5.502 \sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} b_{i} T_{i}^{*} \\
& +\sum_{i=0}^{N} a_{i} T_{i}^{*}\left(\sum_{i=0}^{N} b_{i} T_{i}^{*}\right)^{2}+\sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} b_{i} T_{i}^{*} \sum_{i=0}^{N} c_{i} T_{i}^{*} \\
& -\sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} b_{i} T_{i}^{*} \sum_{i=0}^{N} d_{i} T_{i}^{*}
\end{aligned}
$$

540 Shahd H. Alkharaz, Essam El-Siedy, Eliwa M. Roushdy and Muner M. Abou Hasan

$$
\begin{aligned}
R_{3}= & \frac{2}{T} \sum_{i=0}^{N} c_{i} T_{i}^{*^{\prime}}+2.25 \sum_{i=0}^{N} a_{i} T_{i}^{*}+0.1 \sum_{i=0}^{N} c_{i} T_{i}^{*}-5.002 \sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} c_{i} T_{i}^{*} \\
& +\sum_{i=0}^{N} a_{i} T_{i}^{*}\left(\sum_{i=0}^{N} c_{i} T_{i}^{*}\right)^{2}+\sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} b_{i} T_{i}^{*} \sum_{i=0}^{N} c_{i} T_{i}^{*} \\
& -\sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} b_{i} T_{i}^{*} \sum_{i=0}^{N} d_{i} T_{i}^{*}, \\
R_{4}= & \frac{2}{T} \sum_{i=0}^{N} d_{i} T_{i}^{*^{\prime}}+2.9 \sum_{i=0}^{N} a_{i} T_{i}^{*}+0.1 \sum_{i=0}^{N} d_{i} T_{i}^{*}-5.732 \sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} d_{i} T_{i}^{*} \\
& +\sum_{i=0}^{N} a_{i} T_{i}^{*}\left(\sum_{i=0}^{N} d_{i} T_{i}^{*}\right)^{2}+\sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} b_{i} T_{i}^{*} \sum_{i=0}^{N} d_{i} T_{i}^{*} \\
& -\sum_{i=0}^{N} a_{i} T_{i}^{*} \sum_{i=0}^{N} c_{i} T_{i}^{*} \sum_{i=0}^{N} d_{i} T_{i}^{*} .
\end{aligned}
$$

The numerical outcomes for the optimal payoff functions J_{1}, J_{2}, and J_{3} with varying N values are presented in the following tables. The graphs of approximate solutions for (OLNE) for $\mathrm{N}=14$ are given in Figure (1).

Table 1. Optimal payoff function J_{1} for the three-player illustration with CTM.

N	$J_{1 \text { CTM }}$
5	0.016380210169522254216704694178224
7	0.016380209075360448134112122738199
9	0.016380209069981763839152784671981
11	0.016380209069971537054880540997263

Table 2. Optimal payoff function J_{2} for the three-player illustration with CTM.

N	$J_{2 \mathrm{CTM}}$
5	0.0092479570970383153611687730098446
7	0.0092479570969001533684413638355018
9	0.0092479570969023516184877824151884
11	0.0092479570969023099745970910988349

Table 3. Optimal payoff function J_{3} for the three-player illustration with CTM.

N	$J_{3 \text { CTM }}$
5	0.012789302542628878759568960346686
7	0.012789302542421004237271735456236
9	0.012789302542423635731872013086763
11	0.012789302542423608113133288430303

Figure 1. Plots of approximate (OLNE) for illustrative example when $\mathrm{N}=14$.

5. Conclusion

In conclusion, this research demonstrates the efficacy of the Chebyshev Tau Method (CTM) in solving complex bioeconomic differential games with openloop Nash equilibria. By applying CTM to challenging scenarios like the threeplayer fishery model, we unveil a powerful numerical approach for addressing intricate systems that lack closed-form solutions. The success of this method highlights its potential in various fields, opening new horizons for tackling

542 Shahd H. Alkharaz, Essam El-Siedy, Eliwa M. Roushdy and Muner M. Abou Hasan
nonlinear dynamics and decision-making processes in economics, ecology, and beyond. Further exploration of CTM and its applications promises to advance our understanding of complex systems and enhance decision support in realworld scenarios.

References

[1] A. Bressan, Bifurcation analysis of a non-cooperative differential game with one weak player, J. Dif. Equ., 248 (2010), 1297-1314.
[2] A. Bressan, Noncooperative differential games. A tutorial. Milan J. Math., 79 (2011), 357-427.
[3] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer: New York, NY, USA, 2006.
[4] D.A. Carlson and G. Leitmann, An extension of the coordinate transformation method for open-loop Nash equilibria, J. Optim. Theory Appl., 123 (2004), 27-47.
[5] L. Cesari, Optimization-Theory and Applications: Problems with Ordinary Differential Equations. Springer: New York, NY, USA, 1983.
[6] E. Dockner, S. Jorgensen, N. Van Long and G. Sorger, Differential Games in Economics and Management Science. Cambridge University Press: Cambridge, UK, 2000.
[7] E.H. Doha, W.M. Abd-Elhameed and A.H. Bhrawy, Efficient spectral ultrasphericalGalerkin algorithms for the direct solution of 2nth-order linear differential equations, Appl. Math. Model., 33 (2009), 1982-1996.
[8] E.H. Doha, A.H. Bhrawy and R.M. Hafez, On shifted Jacobi spectral method for highorder multi-point boundary value problems, Commu.. Nonlinear Sci. Numer. Simul., 17 (2012), 3802-3810.
[9] J.C. Engwerda, LQ Dynamic Optimization and Differential Games, John Wiley and Sons: Hoboken, NJ, USA, 2005.
[10] J.C. Engwerda, On the open-loop Nash equilibrium in LQ games, J. Econom. Dynam. Control, 22 (1998), 729-762.
[11] J.C. Engwerda, Feedback Nash equilibria in the scalar infinite horizon LQ game, Automatica, 36(2000), 135-139.
[12] G. Erickson, "Dynamic Models of Advertising Competition." Kluwer: Boston, MA, USA, 2003.
[13] L. Grosset, A note on open loop Nash equilibrium in linear-state differential games, Appl. Math. Sci., 8 (2014), 7239-7248.
[14] B.Y. Guo, Spectral Methods and Their Applications, World Scientific: Singapore, 1998.
[15] S. Jafari and H. Navidi, A game-theoretic approach for modeling competitive diffusion over social networks, Games, 9 (2018).
[16] M. Jiménez-Lizárraga, M. Basin, V. Rodríguez and P. Rodríguez, Open-loop Nash equilibrium in polynomial differential games via state-dependent Riccati equation, Automatica, 53 (2015), 155-163.
[17] G. Kossiorisa, M. Plexousakis, A. Xepapadeas, A. de Zeeuwe and K.G. Maler, Feedback Nash equilibria for non-linear differential games in pollution control, J. Econom. Dynam. Control, 32 (2008), 1312-1331.
[18] R. Moosavi Mohseni, Mathematical Analysis of the Chaotic Behavior in Monetary Policy Games, Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2019.
[19] Z. Nikooeinejad, A. Delavarkhalafi and M. Heydari, A numerical solution of openloop Nash equilibrium in nonlinear differential games based on Chebyshev pseudospectral method, J. Comput. Appl. Math., 300 (2016), 369-384.
[20] G. Sorger, Competitive dynamic advertising: A modification of the case game, J. Econom. Dynam. Control, 13 (1989), 55-80.
[21] A. Starr and Y. Ho, Further properties of nonzero-sum differential games, J. Optim. Theory Appl., 3 (1969), 207-219.
[22] A. Starr and Y. Ho, Nonzero-sum differential games, J. Optim. Theory Appl., 3 (1969), 184-206.
[23] NH. Sweilam and MM. Abou Hasan, An Improved Method for Nonlinear VariableOrder LévyFeller AdvectionDispersion Equation, Bull. Malaysian Math. Sci. Soc., 42(6) (2019), 3021-3046.
[24] NH. Sweilam and MM. Abou Hasan. Efficient Method for Fractional Levy-Feller Advection-Dispersion Equation Using Jacobi Polynomials, Progress Fractional Dif. Appl., 6(2) (2018), doi.org/10.48550/arXiv.1803.03143.
[25] NH. Sweilam, TA. Assiri and MM. Abou Hasan, Optimal control problem of variableorder delay system of advertising procedure: Numerical treatment, Discrete Conti. Dyn. Syst., 15(5) (2022), 1247.
[26] NH. Sweilam, AF. Ghaleb, MS. Abou-Dina and MM. Abou Hasan, Numerical solution to a one-dimensional nonlinear problem of heat wave propagation in a rigid thermal conducting slab, Indian J. Phy., 96(1), 223-232.
[27] D. Yeung, and L. Petrosjan, Cooperative Stochastic Differential Games, Springer: Berlin/Heidelberg, Germany, 2005.
[28] H. Zhang, Q. Wei and D. Liu, An iterative dynamic programming method for solving a class of nonlinear zero-sum differential games, Automatica, 47 (2011), 207-214.

[^0]: ${ }^{0}$ Received October 8, 2023. Revised November 19, 2023. Accepted November 26, 2023.
 ${ }^{0} 2020$ Mathematics Subject Classification: 91A23, 91A80, 65Q10.
 ${ }^{0}$ Keywords: Differential Games, bioeconomic modeling, Chebyshev Tau Method (CTM), open-loop Nash equilibrium, three-point boundary value problem (TPBVP).
 ${ }^{0}$ Corresponding author: D. Alkharaz(shahdalkharaz@gmail.com).

