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MULTIPLICITY RESULTS OF ORDERED
POSITIVE SOLUTIONS FOR SEMILINEAR
ELLIPTIC PROBLEMS ON R"

Bongsoo Ko AND YonNG-HOON LEE!

ABSTRACT. We prove the existence of 2N — 1 distinct ordered pos-
itive solutions of a class of semilinear elliptic Dirichlet boundary
value problems on R™ when the forcing term has NV distinct posi-
tive stable zeros and the coefficient function decaying to the zero at
infinity.

1. Introduction

In this paper, we are concerned with the existenc¢e of 2N — 1 distinct
ordered positive solutions of the following semilinear elliptic boundary
value problem;

(Px) lim u(z)=

z]—>ro00

{ Au+ )\g(|x|)f(u),=v 0 in R”
where n > 3. In what follows, we assume f € C(I,R), I =[0,b] C R
is a bounded closed interval, and g € C(R*,R*), g(r) > 0 for some

r > 0, denoting R* = [0, 00). Furthermore, we assume the following
conditions;
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(fo) There exists a positive constant M such that
f(u) = f(v) > —-M@u-v), fu,vel, u>w.

(f1) There exist exactly N positive numbers 0 < a; <az <---<an
such that f(a;) =0, forall¢=1,---,N.

(f2) [0,an] C I and there exists a positive constant Ky such that
f(a;) < —-Ky, foralli=1,---,N.
(f3) [ f(u)du >0, for all s € [0,a;) and for all 4 = 1,--- , N.

(9) g€ CHRY) satisfles [ rg(r)dr < oo.

If the domain of the equation in problem (P)) is bounded and
open with smooth boundary, then there have been several studies
([2],[3],{4],[5],{7],[8]) which prove generally that there exists A, > 0
such that (Py) has at least 2N — 1 distinct ordered positive solutions
for all A > Ao. _

In those studies, the boundedness of the domain is crucial. If the
domain is unbounded, the situation is quite different because the com-
pactness of operator or functional induced from the problem is not
guaranteed. Thus it is interesting to study the existence of multiple
positive solutions when the problem is defined on R™, and as far as the
authors know, related studies have not been made yet.

To obtain our desired result, we split R™ into a ball B(0,1) and
its compliment Q@ = R™ \ B(0,1) and solve problem (P,) defined on
B(0,1) and  respectively.

As mentioned above, we get the existence of N positive ordered
solutions for (P)) defined on B(0,1) if A is sufficiently large.

To obtain the existence of N positive solutions for the problem de-
fined on the exterior domain 2, we transform (1)) into the singular
boundary value problem (S,): More precisely, the problem on 2, we
concern, is as follows;

Au+Ag(lz])f(u) =0 in 2,

(1) u(z) = a; if |$| =1,

lim u(z)=0.
|z|—o00
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By transformations r = || and t = r2~™", (1,) can be transformed into

{u”-%—.)\q(t)f(u) =0, 0<t<l,

() w(0) =0, u(1) = a;,

‘where ¢ is given by

A=z t’*n%”’g(tm)

It is known that a positive so]utlon of (SA) corresponds to a positive
radial solution of (1,).

In the problem (S)), the coefficient function g is of two types de-
pending on the asymptotic growth condition on g as follows; if g in
(Py) satisfies lim, o0 72~ Vg(r) < 00, then g can be éxtended con-
tinuously on [0, 1}, so problem (S5)) is regular. On the other hand, if
g satisfies limy oo 72" Dg(r) = o0, then g € C(0,1] é.nd singular at
t = 0, see [9] for further detail.

For problem (S)), we show the existence of positive solutmns for the
singular case. We know the result for the regular case is followed by
that of the smgular case with less conditions.

Once positive solutions of two problems are prowded we glue them
together to get N-pairs of lower and upper solutions of (Py), and then
we use Three Solution Theorem ({1},{8]) and an argument of some con-
vergence method ([10]) for proving our multiplicity. , ‘

In Section 2, we give a fundamental existence theorem of positive
solutions on the method of G-upper and G-lower solutions which might
have singular peints in the interior of the interval {0, 1} In Section 3,
we study the multiplicity of positive solutions for problem (P)) in the
process as the previous paragraphs.

2. Existence of solutions for singular boundary value prob-
lems

In this section, we prove a fundamental existence theorem in terms of
general upper and lower solutions for singular boundary value problems
of the form (SBV P);

u’ + f(t,u) =0, 0<t<1
(SBVP) {u(()) = A, u(l) =
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where f: D C (0,1) x R — R is continuous. A solution u(-) means a
function u € C[0,1] N C%(0,1) such that (¢,u(t)) € D, for all t € (0,1)
and u satisfies the ordinary differential equation pointwise on (0,1)
with u(0) = A and u(1) = B.

DEFINITION 1. a € C[0,1] N C?(0,1) is called a lower solution of
(SBVP) if (t,a(t)) € D for all t € (0,1) and

o”(t) + f(t,a(t)) >0,
a(0) < A, o(l) <B.

Similarly, 8 € C[0,1] N C?(0,1) is called an upper solution of (SBV P)
if the above inequalities are reversed.

The fundamental theorem on upper and lower solution method for
the problem (SBV P) is studied by Habets and Zanolin [6]. We give
definitions of somewhat general type of upper and lower solutions and
prove a fundamental theorem for this type.

DEFINITION 2. We say that a continuous function a(-) : [0,1] — R
is a G-lower solution of (SBV P) if a € C2(0,1) except at finite points
T, - ,Tn With 0 <11 < -+. < 1, <1 such that

(L1) at each 7, there exist o/(1;7), o/(mt) such that o/(1;7) <
(1) and

© o'(t) + f(t,at)) >0, for allte (0,1)\ {1, - ,7a},
2) a(0) < A4, (1) < B.

We also say that a continuous function G(-) : [0,1] — R is a G-upper

solution of (SBV P) if 8 € C%(0,1) except at finite points o1, ,0m
with 0 < 01 < --- < 0y, < 1 such that

(U1) at each o, there exist §'(0;7), #'(0;7) and B'(0;7) > §'(0;7)
and

(U) B (t) + f(,8(t) <0, for allte 0, 1)\ {01, -+ ,om},
2 B(0) > 4, B(1) > B.
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REMARK 1. We note that lower and upper solutions of (SBV P)
imply G-lower and G-upper solutions, respectively. But not vice versa.
Hence, Theorem 1 below is a generalization of Theorem 1 in [6].

DeFINITION 3. If @, B € C[0,1] are such that a(t) < B(2), for all
t € [0,1], we define the set

Df = {(t,u) € (0,1) x R: aft) <u < ()}

THEOREM 1. Let a and (8 be, respectively, a G-lower solution and
a G-upper solution of (SBV P) such that
(a1) «aft) < B(t), forallte(0,1].
(az) Dg c D.
Assume also that there is a function h € C((0,1),R") such that
(a3) |f(t,w)| < h(t), for all (t,u) € D2 and
(aq) fol s(1 = s)h(s)ds < co.
Then (SBV P) has at least one solution u such that

a(t) < u(t) < B(t), forallte(0,1).
Proof. Define a modified function of f as follows;

16,80) - “=PD i s ),

1+u2’
CF(tu)={ f(ty), ifat) Sus<p),
F(t,a(t)) — = +"‘(§), if u < a(t).

Then F : (0,1) x R — R is continuous and
(1) |F(t, u)| < m(e, B) + h(t),

for all (¢,u) € (0,1) x R, where m(c, 8) = {|laflco + |Bllco + 1.
Consider the problem

v+ F(t,u)=0, 0<t<]l,
@ {u(()) =4, u(l)=
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We claim that any solution u of (2) satisfies a(t) < u(t) < 8(t), for all
t € [0,1]. Without loss of generality, we only prove that a(t) < ( ) for
allt € [0,1]. We can prove for the case that u(t) < (t) for all t € [0,1]
by a similar fashion.

Suppose that a $_ u. So let (o — u)(to) = maxyep,1)(a — u)(t) > 0.
Ift, € (0,1) \ {m1, -+ ,7Tn}, then (a — u)"(t,) < 0. Since u(t,) < a(t,),

0> (a - u)”(to) = a”(tO) + F(toau(to))
= o/(t) + fltor alty)) — A= 0lt)

14+ u2(t,)
. afty) — ufts)

0
1+ u2(t,) >0

a contradiction.
Let t, = 7;, for some i = 1,--- ,n. Since a — u attains its positive
maximum at 7,

(@—u)(17) >0 and (a—u)'(r]") <0.
Thus
0<(a—u)(r7) - (e —u) (")
= /() ~ (7).

This leads to a contradiction to the definition of G-lower solution.
Lett,=0o0r1

O0<(a—u)(0)=a(0)—A<L
0<(a—u)(l)=0(0)-B< 0

a contradiction.

Therefore, a(t) < u(t) < B(t), and so we can conclude u is a solution
of (SBV P).

We claim that (2) has at least one solution. It is well-known that
problem (2) is equivalently written as

u=Tu on X = CJ[0,1],



Multiple solutions 361

where X
Tu(t) = A+ (B - A)t + /0 G(t,5)F(s, u(s))ds

and G(t,s) is the Green’s function explicitly written as

it s(1-t), 0<s<t,
G =141-s), t<s<i.

By (1) and (a4), T : X — X is well-defined, continuous and TX is
bounded. If T is a compact operator, then the proof of the existence
of a solution is done by Schauder fixed point theorem. -

To show T compact, making use of Arzela-Ascoli Theorem, it suffices
to show that T'X is equicontinuous. :

Let t € (0,1). Then by (1) we get

TU(t)l
< |B - Al +/ s|F(s,u(s))|ds +/ (1 - s)|F(s, u(s))ﬂés
< |B- Aj+ f—n~(2—’ﬂ-)-(t2 +(1-t)?)+ fo sh(s)ds + /t (1- s)h(s)ds |
218 a1+ 20D 2 4 (1 - 92 440, |
If v € L1(0,1), then the proof follows from that
/ fr(s)lds < Jim (1~ 1) / sh(s)ds + lim ¢ / (1= &)h(s)ds -

+2 / s(1 — s)h(s)ds

<4 / 51 = $)h(s)ds < co.
) 0
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REMARK 2. It is not hard to see that if we replace (a4) by the
condition fol sh(s)ds < oo (fol(l — s)h(s)ds < 00), then the solution u
which we have found belongs to C*(0,1] (C[0, 1)).

EXAMPLE. As an application of Theorem 1, we solve the following
singular boundary value problem:

(3,) {u”-f—x\u(u—%)(l—u):O, 0<t<l,
u(0) =0, u(1) = 0.

We can easily check that problem (3,) satisfies (a3) and (a4) in Theo-
rem 1. It seems to be quite difficult to find a pair of lower and upper
solution for (35). Because, the function u(t) = % intersects the func-
tion u(t) = 1 in the open interval (0,1). However, by Theorem 1, it is
enough to construct a pair of G-lower solution and G-upper solution to
get a positive solution u(#; A) of (3,). The following theorem is useful
to construct a pair of G-lower solution and G-upper solution.

THEOREM. (Theorem 4 in [8]) Let f € C([a,b] x I,R). Suppose
that there is a positive real number u; satisfying the following condi-
tions:

(i) f(t,u1) =0 for all t € [a,b)],
(i) fu(t,u1) < —k® <0 for all t € [a,b], and
(iii) [ f(t,u)du >0 fort=a andt="5b and s € [0,u1).
Then there is a positive number A, such that for all A > \,, the problem
u + Af(t,u)=0, a<t<b,
u(a) =0 =u(b)
has a positive lower solution  satisfying o(t) < u for all t € [a, b].
Let f(t,u) =u(u— 3) (1 —u). At t = 1, we note that

/slu(u—%> (1—-u)du>0

for all s € [0,1). Hence, there exists a positive number § so that

/slu(u—%) (1—w)du >0
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uniformly on & [1 - 6,1) and for all s € {0,1), and we can apply the
above Theorem with u; = 1 on the interval {1 — 4, 1], .and obtain a
positive A, so that for all A > ), the following problem:

) {u/1+,\u<u——>(1—u) 0, 1-—5‘<'t<:1,
u(l-48)=0, u(l)=0. E

has a positive lower solution v(t;\) satisfying v(¢; /\) <1lforallte
[1 — 6,1]. Obviously u; = 1 is an upper solution of (3)\)
We define a G-lower solution a(t; \) by -

oo % 0st<1-5
oft; )"{v(t;,\), 1-6<t<1.

Then a < 3 =1 are a G-lower solution and a G-upper solution of (3,),
respectively. Consequently, by Theorem 1, there is a positive solution
u(t; A) of (3,) which lies between a(t; \) and 1.

3. Ordered positive solutions

We prove the existence of 2N — 1 distinct ordered positive solutions
of the following problem;

Au+ Ag(l:cl)f(u) =0 in R",
(P») { ‘1],31 w(z) =

If the domain ) of the equation in (P,) is contained in the large ball
B(0,r) with r > 7, and has the smooth boundary, if the function
g € CY() satisfies g(r,) > 0, and if we also assume the conditions
(fo) ~ (f3) for f, then the multiplicity result of positive solutions for
large enough A can be obtained ([4],[8]).

REMARK 3. Necessary and sufficient condition that g satisfies the
integral condition in (g) is that ¢ fulfills the following condition,;

1
(€) /0 sq(s)ds < oo
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which corresponds condition (as) in Theorem 1. We also note that
g satisfies condition in (g) if fRn\B(O,r)g(|z|)|a:|2_"dx < oo for some
r > 0. Furthermore, if we let h(z) = g(|z|), we get the following
statement: if for some p with 1 <p < %, h € LP(R™\ B(0,7)), then ¢
satisfies the integral condition (C). But the converse may not be true.
This also implies that the nonlinear operator induced from (Py) might
not be compact.

The following is the main result in this paper.

THEOREM 2. Let n > 3 and assume (fo) ~ (f3). If g satisfies con-
dition (g), then there exists A, > 0 such that (P)) has 2N — 1 distinct
ordered positive solutions for all A > X,.

Proof. Without loss of generality, we assume that there exists a
point z¢ such that |zo| < 1 and g(|zg|) > 0. Let

Q={zeR":1< |z| < o0}
Then the problem

Au+Ag(|z])f(u) =0 inQ,

(1) u(z)=a; if |z|=1,
lim u(z) =0,
|zj—200

can be transformed into

v’ +Ag(t)f(u) =0, 0<t<]l,
(5x) {
u(0) =0, u(l) = a;.
We notice by condition (g) that Theorem 1 is valid for (S)). It is not
hard to check that 0 and a; are a lower solution and an upper solution
of (1,), respectively, for all A, thus (Sx) has solutions y; = y;(t;A), 7 =
1,---,N with 0 < y;(t; A) < aj, for all ¢ € [0,1], and thus (1)) has
positive radial solutions ﬂg‘ (z) = y;(Jz|2~™;A), 5=1,---,N, for all X
such that

0< '&;‘(z) <a; foral z€Q and lim @}(z)=0.

|z|—o00 7
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On the other hand, since g(jzo]) > 0, from Theorem 5 'in [8], there "
exists A, > 0 such that for all X\ > X,, the following problem

[ Au+Ag(lehf(u) =0 in 0o <L,
ufz) =0 i |r|=1

has N distinet positive ordered solutions &} such that 0 < }(z) < g
for all 0 < |z} < 1 and @) converges to a; as X — co uniformly on
every compact subsets of the unit open ball. For X > A, aﬁd R> 0
the function @) defined by

_ e if 0<z| <1,
'9(“’)‘{~«\(z) if l:vf>1

and the function @} defined by

Y .
e T@) i 0<lal <1,
;) {0 it gl 21

are a quasi-supersolution and a quasi-subsolution ([8]) respectively of
the following problem;

(4r) { Au+trg(lzl)fw) =0 inlz] <R,

we)=0 if |z|=

Smcewj <3, Wiy <@ By, W) < Wiy, and B ﬂﬁw}“ Theorem 3
n (9)(or Three Solutmn Theorem in [t ]) implies the existence of three
dlstlnct solutions uR < uf i+t = ufy, of (4g) such that

w"‘(azR) < uﬁ (903) <® +1($R),

for some zg with |zr| < 1. Fix j and X, letting R — oo, Theorem
2.10 in [10] implies that, without loss of generality (otherwise using
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diagonal process),

. R
u; = lim uj
J R5o00 7’
: R
Uit = lim u;
It R— oo it

- 1 R
wivh = gy

are solutions of problem (P,), and those are distinct since aj, 17])-‘“
are independent of R and liminfg_, |zr| < 1. Trivially, they are
positive. Since lim;|_, o %}(z) = 0, we get u;(z) — 0 as |z| — oo and
this completes the proof. 0

From the simple scaling technique, we have the following result.

COROLLARY. With assumptions in Theorem 2, there are 2N — 1
distinct ordered positive solutions of the following problem for all suf-
ficiently large \:

Au—i—g(’;’)f(u) =0 inR"

lim u(z) =0,
|z] =00

REMARK 4. Let g(0) = 1. With the above corollary and some
convergence method, we hope to prove the same multiplicity of positive
ordered solutions for the problem Au + f(u) = 0 in R™ with the same
limiting behavior at the infinity. But the problem is still open.
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