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FOURTH ORDER ELLIPTIC BOUNDARY VALUE

PROBLEM WITH SQUARE GROWTH NONLINEARITY

Tacksun Jung and Q-Heung Choi∗

Abstract. We give a theorem for the existence of at least three
solutions for the fourth order elliptic boundary value problem with
the square growth variable coefficient nonlinear term. We use the
variational reduction method and the critical point theory for the
associated functional on the finite dimensional subspace to prove our
main result. We investigate the shape of the graph of the associated
functional on the finite dimensional subspace, (P.S.) condition and
the behavior of the associated functional in the neighborhood of the
origin on the finite dimensional reduction subspace.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
a : Ω → R be a continuous function which changes sign on Ω, that is,
the subsets of Ω

Ω+ = {x ∈ Ω| a(x) > 0}, Ω− = {x ∈ Ω| a(x) < 0}
are nonempty. Let us set

a+ = a · χΩ+ , a− = −a · χΩ− ,
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so that a = a+ − a−. Let ∆ be the elliptic operator and ∆2 be the
biharmonic operator. Let c ∈ R. The eigenvalue problem

∆2u + c∆u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω

has infinitely many eigenvalues Λj = λj(λj−c), j ≥ 1, and corresponding
eigenfunctions φj, j ≥ 1, where λj, j ≥ 1 are the eigenvalues and φj,
j ≥ 1, are the corresponding eigenfunctions, suitably normalized with
respect to L2(Ω) inner product and each eigenvalue λj is repeated as
often as its multiplicity, of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω.

We note that Λ1 < Λ2, limk∞ Λk = ∞, and that φ1(x) > 0 for x ∈ Ω.
In this paper we study the following variable coefficient nonlinear fourth
order elliptic equation with Dirichlet boundary condition

∆2u + c∆u = a(x)g(u) in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω.

For the constant coefficient nonlinear case Choi and Jung [1,2] show
that the problem

∆2u + c∆u = bu+ + s in Ω, (1.2)

u = 0, ∆u = 0 on ∂Ω

has at least two nontrivial solutions when (c < λ1, Λ1 < b < Λ2 and
s < 0) or (λ1 < c < λ2, b < Λ1 and s > 0). The authors obtained these
results by use of the variational reduction method. The authors [3] also
proved that when c < λ1, Λ1 < b < Λ2 and s < 0, (1.2) has at least
three nontrivial solutions by use of the degree theory. Tarantello [6] also
studied the problem

∆2u + c∆u = b((u + 1)+ − 1) in Ω, (1.3)

u = 0, ∆u = 0 on ∂Ω.

She show that if c < λ1 and b ≥ Λ1, then (1.3) has a negative solution.
She obtained this result by the degree theory. Micheletti and Pistoia
[4] also proved that if c < λ1 and b ≥ Λ2, then (1.3) has at least four
solutions by the variational linking theorem and Leray-Schauder degree
theory.
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We assume that g satisfies the following conditions:
(g1) g ∈ C1(R, R) with g(0) = 0,
(g2) There exist α < β such that

α ≤ a+(x)g′(u) ≤ β.

(g3) Let Λj+1, Λj+2, Λj+m, m ≥ 1, be all eigenvalues within [α, β](without
loss of generality, we may assume that α, β are not the eigenvalues Λi,
i ≥ 1). Suppose that there exist γ and C such that Λj+m < γ < β and

a+(x)G(u) ≥ 1

2
γ‖u‖2

L2(Ω) − C, ∀u ∈ R,

where G(ξ) =
∫ ξ

0
g(t)dt.

(g4) There exists eigenvalue Λl ∈ [Λj+1, Λj+m) such that

Λl < a+(x)g′(0) < Λl+1.

In this paper we are trying to find the weak solutions of (1.1), that is,∫

Ω

∆2u · v + c∆u · v − a(x)g(u)v = 0, ∀v ∈ H,

where H is introduced in section 2.
Our main result is the following.

Theorem 1.1. Assume that λj < c < λj+1. We also assume that g
satisfies the conditions (g1)-(g4), and there exists a small number ε > 0
such that

∫
Ω− a−(x)dx < ε. Then (1.1) has at least three nontrivial

solutions.

For the proof of main theorem we use the finite dimensional reduc-
tion method to reduce the theory on the infinite dimensional space to
the one on the finite dimensional subspace. So we obtain the critical
points results of the functional on the infinite dimensional space H from
the critical points results of the corresponding functional Ĩ(v) on the
finite dimensional reduction subspace. By these reasons we are trying
to find the critical points for Ĩ(v) by investigating the (P.S.)c condi-
tion and the shape of the graph of the functional Ĩ and applying the
critical point theory for the functional Ĩ(v). The outline of the proof
is as follows: In section 2 we introduce the Hilbert space H and show
that the corresponding functional I(u) of (1.1) is in C1(H, R), Fréchet

differentiable. In section 3, we show that Ĩ(v) satisfies the Palais-Smale
condition. prove Theorem 1.1.
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2. Variational formulation

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hjφj with
∑

h2
j < ∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|Λj|h2
j < ∞}.

Then this is a complete normed space with a norm

‖u‖ = [
∑

|Λj|h2
j ]

1
2 .

Since Λj → +∞ and c is fixed, we have
(i) ∆2u + c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0,
which is proved in [1].

From now on we assume that λj < c < λj+1. Let us define the
subspaces of H as follows:

H+ = span{eigenfunctions whose corresponding eigenvalues Λj are positive.},
H− = span{eigenfunctions whose corresponding eigenvalues Λj are negative.}.
Then H = H− ⊕H+, for u ∈ H, u = u− + u+ ∈ H− ⊕H+. Let P+ be
the orthogonal projection from H onto H+ and P− be the orthogonal
projection from H onto H−. We can write P+u = u+, P−u = u−, for
u ∈ H.

Lemma 2.1. Assume that g satisfies the conditions (g1)-(g4). Then
the solutions in L2(Ω) of

∆2u + c∆u = a(x)g(u) in L2(Ω)

belong to H.

Proof. Let a(x)g(u) =
∑

a(x)hkφk ∈ L2(Ω). Then

(∆2 + c∆)−1(a(x)g(u)) =
∑ 1

Λk

a(x)hkφk.

Hence we have

‖(∆2 + c∆)−1a(x)g(u)‖2 =
∑

|Λk| 1

Λ2
k

(a(x)hk)
2 ≤ C

∑
(a(x)hk)

2



Fourth order elliptic boundary value problem with square growth 327

for some C > 0, which means that

‖(∆2 + c∆)−1a(x)g(u)‖ ≤ C1‖a(x)g(u)‖L2(Ω).

We are looking for the weak solutions of (1.1). The weak solutions of
(1.1) coincide with the critical points of the associated functional

I(u) ∈ C1(H, R),

I(u) =
1

2

∫

Ω

[
1

2
|∆u|2 − c

2
|∇u|2 −

∫

Ω

a(x)G(u)]dx. (2.1)

=
1

2
(‖P+u‖2 − ‖P−u‖2)−

∫

Ω

a(x)G(u)dx,

where G(ψ) =
∫ ψ

0
g(t)dt.

By (g1) and (g2), I is well defined. By the following Lemma 2.2,
I ∈ C1(H,R) and I is Fréchet differentiable in H:

Lemma 2.2. Assume that λj < c < λj+1, j ≥ 1, and g satisfies
(g1) − (g4). Then I(u) is continuous and Fréchet differentiable in H
with Fréchet derivative

∇I(u)h =

∫

Ω

[∆u ·∆h− c∇u · ∇h− a(x)g(u)h]dx. (2.2)

If we set

K(u) =

∫

Ω

a(x)G(u)dx,

then K ′(u) is continuous with respect to weak convergence, K ′(u) is
compact, and

K ′(u)h =

∫

Ω

a(x)g(u)hdx for all h ∈ H,

this implies that I ∈ C1(H,R) and K(u) is weakly continuous.

The proof of Lemma 2.2 has the same process as that of the proof in
Appendix B in [5].

Now we shall give a lemma to obtain the critical points of the func-
tional on the infinite dimensional space H from that of the reduced
functional on the finite dimensional reduction one.

Let V be a m dimensional subspace of H spanned by φj+1,. . . ,φj+m

whose eigenvalues are Λj,. . . , Λj+m. Let W be the orthogonal comple-
ment of V in H. Let P : H → V be the orthogonal projection of H onto
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V and I − P : H → W denote that of H onto W . Then every element
u ∈ L2(Ω) is expressed by u = v + z, v ∈ Pu, z = (I − P )u. Then (1.1)
is equivalent to the two systems in the two unknowns v and z:

∆2v + c∆v = P (a(x)g(v + z)) in Ω,

∆2z + c∆z = (I − P )(a(x)g(v + z)) in Ω,

v = 0, ∆v = 0 on ∂Ω,

z = 0, ∆z = 0 on ∂Ω.

Let W1 be a subspace of W spanned by eigenvalues Λ1, . . ., Λj and W2

be a subspace of W spanned by eigenvalues Λi, i ≥ j +m+1. Let v ∈ V
be fixed and consider the function h : W1 ×W2 → R defined by

h(w1, w2) = I(v + w1 + w2).

The function h has continuous partial Fréchet derivatives D1h and D2h
with respect to its first and second variables given by

Dih(w1, w2)(yi) = DI(v + w1 + w2)(yi)

for yi ∈ Wi, i = 1, 2.

Lemma 2.3. Assume that λj < c < λj+1. We also assume that g
satisfies the conditions (g1)-(g4) and there exists a small number ε > 0
such that

∫
Ω− a−(x)dx < ε. Then

(i) there exists m1 < 0 such that if w1 and y1 are in W1 and w2 ∈ W2,
then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1) ≤ m1‖w1 − y1‖2
L2(Ω),

(ii) there exists m2 > 0 such that if w2 and y2 are in W2 and w1 ∈ W1,
then

(D2h(w1, w2)−D2h(w1, y2))(w2 − y2) ≥ m2‖w2 − y2‖2
L2(Ω).

(iii) there exists a unique solution z ∈ W of the equation

∆2z + c∆z = (I − P )(a(x)g(v + z)) in W. (2.3)

If we put z = θ(v), then θ is continuous on V and satisfies a uniform
Lipschitz condition in v with respect to the L2 norm(also norm ‖ · ‖).
Moreover

DI(v + θ(v))(w) = 0 for all w ∈ W.
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(iv) If Ĩ : V → R is defined by Ĩ(v) = I(v+θ(v)), then Ĩ has a continuous
Fréchet derivative DĨ with respect to v, and

DĨ(v)(h) = DI(v + θ(v))(h) for all v, h ∈ V.

(v) If v0 ∈ V is a critical point of Ĩ if and only if v0 + θ(v0) is a critical
point of I.

Proof. (i) According to the variational characterization of the eigen-
values {Λj}∞j=1 we have

‖w1‖2 ≤ Λj‖w1‖2
L2(Ω) (2.4)

for all w1 ∈ W1 and

‖w2‖2 ≥ Λj+m+1‖w1‖2
L2(Ω) (2.5)

for all w2 ∈ W2. If w1 and y1 are in W1 and w2 ∈ W2, then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1)

=

∫

Ω

|∆(w1 − y1)|2 − c|∇(w1 − y1)|2 − a+(x)(g(v + w1 + w2)

− g(v + y1 + w2))(w1 − y1)

+

∫

Ω

a−(x)(g(v + w1 + w2)− g(v + y1 + w2))(w1 − y1)dx.

Since a+(x)(g(ξ2)− g(ξ1))(ξ2 − ξ1) > α(ξ2 − ξ1)
2 and (2.4) holds, we see

that if w1 and y1 are in W1 and w2 ∈ W2, then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1) ≤ m‖w1 − y1‖2
L2(Ω)

+ max |(g(v + w1 + w2)− g(v + y1 + w2))(w1 − y1)|
∫

Ω−
a−(x)dx.

where m = 1 − α
Λj

< 0. Since there exists a small number ε > 0 such

that
∫
Ω− a−(x)dx < ε, We can choose a small number ε′ such that

m‖w1−y1‖2
L2(Ω)+max |(g(v+w1+w2)−g(v+y1+w2))(w1−y1)|

∫

Ω−
a−(x)dx

< m‖w1 − y1‖2
L2(Ω) + ε′ < m1‖w1 − y1‖2

L2(Ω)
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with m1 < 0.
(ii) Similarly, we have that if w2 and y2 are in W2 and w1 ∈ W1, then

(D2h(w1, w2)−D2h(w1, y2))(w2 − y2)

=

∫

Ω

|∆(w2 − y2)|2 − c|∇(w2 − y2)|2 − a+(x)(g(v + w1 + w2)

− g(v + w1 + y2))(w2 − y2)

+

∫

Ω

a−(x)(g(v + w1 + w2)− g(v + w1 + y2))(w2 − y2)dx.

Since a+(x)(g(ξ2)− g(ξ1))(ξ2 − ξ1) < β(ξ2 − ξ1)
2 and (2.5) holds, we see

that if w1 is in W1 and w2 and y2 ∈ W2, then

(D2h(w1, w2)−D2h(w1, y2))(w2 − y2) ≥ m′‖w2 − y2‖2
L2(Ω)

+ min |(g(v + w1 + w2)− g(v + w1 + y2)(w2 − y2)|
∫

Ω

a−(x)dx,

where m′ = 1− β
Λj+m+1

> 0. We can choose a small number ε′′ > 0 such

that

m′‖w2−y2‖2
L2(Ω)+min |(g(v+w1+w2)−g(v+w1+y2)(w2−y2)|

∫

Ω

a−(x)dx

> m′‖w2 − y2‖2
L2(Ω) + ε′′ > m2‖w2 − y2‖2

L2(Ω)

with m2 > 0.
(iii) Let δ = α+β

2
. If g1(ξ) = g(ξ) − δξ, the equation (2.3) is equivalent

to
z = (∆2 + c∆− δ)−1(I − P )(a(x)g1(v + z)). (2.6)

Since (∆2 + c∆ − δ)−1(I − P ) is self adjoint, compact and linear map
from (I −P )L2(Ω) into itself, the eigenvalues of (∆2 + c∆− δ)−1(I −P )
are (Λl − δ)−1, l ≤ j or l ≥ j + m + 1. Therefore its L2 norm is
(min{|Λj−δ|, |Λj+m+1−δ|}−1. We also have that |a(x)(g1(ξ2)−g1(ξ1))| ≤
|a+(x)(g1(ξ2) − g1(ξ1))| + |a−(x)(g1(ξ2) − g1(ξ1))| ≤ max{|α − δ|, |β −
δ|}|ξ2−ξ1|+ |a−(x)(g1(ξ2)−g1(ξ1))|. Since

∫
Ω− a−(x)dx < ε, there exists

a small number ε1 such that

max{|α− δ|, |β − δ|}|ξ2 − ξ1|+ |a−(x)(g1(ξ2)− g1(ξ1))|
< max{|α− δ|, |β − δ|}|ξ2 − ξ1|+ ε1|ξ2 − ξ1)|

and r = (min{|Λj − δ|, |Λj+m+1 − δ|}−1(max{|α− δ|, |β − δ|}+ ε1) < 1.
it follows that the right-hand side of (2.6) defines, for fixed v ∈ V , a
Lipschitz mapping of (I − P )L2(Ω) into itself with Lipschitz constant
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r < 1. Therefore, by the contraction mapping principle, for given v ∈
V , there exists a unique z ∈ (I − P )L2(Ω) which satisfies (2.6). If
θ(v) denote the unique z ∈ (I − P )L2(Ω) which solves (2.3), then θ is
continuous and satisfies a uniform Lipschitz condition in v with respect
to the L2 norm(also norm ‖ · ‖). In fact, if z1 = θ(v1) and z2 = θ(v2),
then

‖z1 − z2‖L2(Ω)

= ‖(∆2 + c∆− δ)−1(I − P )a(x)(g1(v1 + z1)− g1(v2 + z2))‖L2(Ω)

≤ r‖(v1 + z1)− (v2 + z2)‖L2(Ω)

≤ r(‖v1 − v2‖L2(Ω) + ‖z1 − z2‖L2(Ω)) ≤ r‖v1 − v2‖+ r‖z1 − z2‖.
Hence

‖z1 − z2‖ ≤ C‖v1 − v2‖, C =
r

1− r
. (2.7)

Let u = v + z, v ∈ V and z = θ(v). If w ∈ (I −P )L2(Ω)∩H, then from
(2.3) we see that

∫

Ω

[∆z ·∆w − c∇z · ∇w − (I − P )(a(x)g(v + z)w)]dx = 0.

Since ∫

Ω

∆z ·∆w = 0 and

∫

Ω

∇v · ∇w = 0,

we have

DI(v + θ(v))(w) = 0. (2.8)

(iv) Since the functional I has a continuous Fréchet derivative DI, Ĩ
has a continuous Fréchet derivative DĨ with respect to v.
(v) Suppose that there exists v0 ∈ V such that DĨ(v0) = 0. From
DĨ(v)(h) = DI(v + θ(v))(h) for all v, h ∈ V , DI(v0 + θ(v0))(h) = 0 for
all h ∈ V . Since DI(v + θ(v))(w) for all w ∈ W and H is the direct sum
of V and W , it follows that DI(v0 + θ(v0)) = 0. Thus v0 + θ(v0) is a
solution of (1.1). Conversely if u is a solution of (1.1) and v = Pu, then
DĨ(v) = 0.

3. Proof of Theorem 1.1

Now we shall show that Ĩ(v) satisfies the (P.S.)c condition.
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Proposition 3.1. (Palais-Smale condition)
Assume that λj < c < λj+1. We also assume that g satisfies (g1)− (g4)
and there exists a small number ε > 0 such that

∫
Ω− a−(x)dx. Then

Ĩ(v), v ∈ V , satisfies the Palais-Smale condition.

Proof. Let u(v) = u− + v + u+, u− ∈ H−, v ∈ V , u+ ∈ H+. Then we
have

Ĩ(v) = I(u(v)) = I(u− + v + u+)

=

∫

Ω

[
1

2
|∆u(v)|2 − c

2
|∇u(v)|2]dx−

∫

Ω

a(x)G(u(v))dx

=

∫

Ω

[
1

2
|∆z|2 − c

2
|∇z|2]dx−

∫

Ω

a(x)G(z)dx

+ {
∫

Ω

[
1

2
|∆u(v)|2 − c

2
|∇u(v)|2 − 1

2
|∆z|2

+
c

2
|∇z|2]dx−

∫

Ω

a(x)[G(u(v))−G(z)]dx},

where z = u− + v. The terms in the bracket

∫

Ω

[
1

2
|∆u(v)|2− c

2
|∇u(v)|2−1

2
|∆z|2+ c

2
|∇z|2]dx−

∫

Ω

a(x)[G(u(v))−G(z)]dx

=
1

2

∫

Ω

(∆2 + c∆)(u+ + z)u+dx−
∫

Ω

∫ 1

0

a(x)g(su+ + z)u+dsdx.

Integrating by parts, we have that

∫

Ω

∫ 1

0

a(x)g′(su+ + z)u+u+sdsdx

=

∫

Ω

a(x)g(u+ + z)u+dx−
∫

Ω

∫ 1

0

a(x)g(su+ + z)u+dsdx

=

∫

Ω

(∆2 + c∆)(u+ + z)u+dx−
∫

Ω

∫ 1

0

a(x)g(su+ + z)u+dsdx.
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Thus we have that

1

2

∫

Ω

(∆2 + c∆)(u+ + z)u+dx−
∫

Ω

∫ 1

0

a(x)g(su+ + z)u+dsdx

=

∫

Ω

∫ 1

0

a(x)g′(su+ + z)u+u+sdsdx− 1

2

∫

Ω

(∆2 + c∆)(u+)u+dx

=

∫

Ω

∫ 1

0

a+(x)g′(su+ + z)u+u+sdsdx−
∫

Ω

∫ 1

0

a−(x)g′(su+ + z)u+u+sdsdx

− 1

2

∫

Ω

(∆2 + c∆)(u+)u+dx.

Since
∫

Ω

∫ 1

0

a+(x)g′(su++z)u+u+sdsdx−
∫

Ω

∫ 1

0

a−(x)g′(su++z)u+u+sdsdx < 0

and −1
2

∫
Ω
(∆2 + c∆)(u+)u+dx < 0,

∫

Ω

∫ 1

0

a+(x)g′(su+ + z)u+u+sdsdx−
∫

Ω

∫ 1

0

a−(x)g′(su+ + z)u+u+sdsdx

−1

2

∫

Ω

(∆2 + c∆)(u+)u+dx < 0.

Thus

Ĩ(v) ≤
∫

Ω

[
1

2
|∆z|2− c

2
|∇z|2]dx−

∫

Ω

a+(x)G(z)dx+max |G(z)|
∫

Ω

a−(x)dx

≤ 1

2
(Λj+m − γ)‖z‖2 + max |G(z)|

∫

Ω

a−(x)dx.

Since Λj+m < γ < β and
∫
Ω

a−(x)dx < ε. we can choose ε3 such that

Ĩ(v) ≤ 1

2
(Λj+m − γ)‖z‖2 + ε3 < 0.

Thus Ĩ(v) → −∞ as ‖z‖ → ∞. So −Ĩ(v) is bounded from below and
satisfies the Palais-Smale condition.

Proof of Theorem 1.1
By Lemma 3.1, Ĩ(v) → −∞ as ‖z‖ → ∞, so −Ĩ(v) is bounded from
below and satisfies the (P.S.) condition and We claim that 0 is neither
a minimum nor degenerate. In fact, we note that 0 = 0 + θ(0), θ(0) =
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0. Since I + θ is continuous, I is identity map, there exists a small
neighborhood B of 0 such that if v ∈ B, then, by (g4),

1

2

∫

Ω

(∆2v + c∆v)vdx− Λ

2

∫

Ω

v2dx + o(‖v‖2) ≤ Ĩ(v)

≤ 1

2

∫

Ω

(∆2v + c∆v)vdx− Λ̄

2

∫

Ω

v2dx + o(‖v‖2),

where (Λ, Λ̄) ⊂ (Λl, Λl+1). Thus Ĩ(v) has at least three nontrivial weak
solutions.
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