References
- R. I. Avery and J. Henderson, Two positive fixed points of nonlinear operators on ordered Banach spaces, Comm. Appl. Nonlinear Anal. 8 (2001), 27-36.
- C. Bai, Existence of positive solutions for boundary value problems of fractional functional differential equations, Elec. J. Qual. Theory Diff. Equ. 30 (2010), 1-14.
- Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl. 311 (2005), 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052
- M. Benchohra, J. Henderson, S. K. Ntouyas, and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340-1350. https://doi.org/10.1016/j.jmaa.2007.06.021
- K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics # 2004, Springer, Heidelberg-Dordrecht etc, 2010.
- K. Diethelm and N. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. https://doi.org/10.1006/jmaa.2000.7194
- C. Goodrich, Existence of a positive solution to systems of differential equations of fractional order, Comput. Math. Appl. 62 (2011), 1251-1268. https://doi.org/10.1016/j.camwa.2011.02.039
- D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Acadamic Press, San Diego, 1988.
- J. Henderson and R. Luca, Positive solutions for a system of nonlo- cal fractional boundary value problems, Fract. Calc. Appl. Anal. 16 (2013), 985-1008.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- E. R. Kauffman and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 3 (2008), 1-11.
- A. A. Kilbas, H. M. Srivasthava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies # 204, Elsevier Science, Amsterdam, 2006.
- K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
- I. Podulbny, Fractional Diffrential Equations, Academic Press, San Diego, 1999.
- K. R. Prasad and B. M. B. Krushna, Multiple positive solutions for a coupled system of Riemann-Liouville fractional order two-point boundary value problems, Nonlinear Stud. 20 (2013), 501-511.
- K. R. Prasad and B. M. B. Krushna, Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems, Fract. Calc. Appl. Anal. 17 (2014), 638-653.
- K. R. Prasad and B. M. B. Krushna, Existence of solutions for a coupled system of three-point fractional order boundary value problems, Differ. Equ. Appl. 7 (2015), 187-200.
- K. R. Prasad, B. M. B. Krushna, and L. T. Wesen, Existence results for multiple positive solutions of Riemann-Liouville fractional order three-point boundary value problems, Bull. Int. Math. Virtual Inst. 6 (2016), 25-36.
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Langhorne, PA, 1993.
- V. Tarasov, Fractional Dynamics: Applications of Fractional Cal- culus to Dynamics of Particles, Fields and Media, Springer-Verlag, New York, 2011.