DOI QR코드

DOI QR Code

EXISTENCE OF EVEN NUMBER OF POSITIVE SOLUTIONS TO SYSTEM OF FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

  • Krushna, B.M.B. (Department of Mathematics MVGR College of Engineering (Autonomous)) ;
  • Prasad, K.R. (Department of Applied Mathematics Andhra University)
  • Received : 2016.03.16
  • Accepted : 2018.04.26
  • Published : 2018.05.15

Abstract

We establish the existence and multiplicity of positive solutions to a coupled system of fractional order differential equations satisfying three-point boundary conditions by utilizing Avery-Henderson functional fixed point theorems and under suitable conditions.

Keywords

References

  1. R. I. Avery and J. Henderson, Two positive fixed points of nonlinear operators on ordered Banach spaces, Comm. Appl. Nonlinear Anal. 8 (2001), 27-36.
  2. C. Bai, Existence of positive solutions for boundary value problems of fractional functional differential equations, Elec. J. Qual. Theory Diff. Equ. 30 (2010), 1-14.
  3. Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl. 311 (2005), 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052
  4. M. Benchohra, J. Henderson, S. K. Ntouyas, and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340-1350. https://doi.org/10.1016/j.jmaa.2007.06.021
  5. K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics # 2004, Springer, Heidelberg-Dordrecht etc, 2010.
  6. K. Diethelm and N. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. https://doi.org/10.1006/jmaa.2000.7194
  7. C. Goodrich, Existence of a positive solution to systems of differential equations of fractional order, Comput. Math. Appl. 62 (2011), 1251-1268. https://doi.org/10.1016/j.camwa.2011.02.039
  8. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Acadamic Press, San Diego, 1988.
  9. J. Henderson and R. Luca, Positive solutions for a system of nonlo- cal fractional boundary value problems, Fract. Calc. Appl. Anal. 16 (2013), 985-1008.
  10. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  11. E. R. Kauffman and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 3 (2008), 1-11.
  12. A. A. Kilbas, H. M. Srivasthava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies # 204, Elsevier Science, Amsterdam, 2006.
  13. K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
  14. I. Podulbny, Fractional Diffrential Equations, Academic Press, San Diego, 1999.
  15. K. R. Prasad and B. M. B. Krushna, Multiple positive solutions for a coupled system of Riemann-Liouville fractional order two-point boundary value problems, Nonlinear Stud. 20 (2013), 501-511.
  16. K. R. Prasad and B. M. B. Krushna, Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems, Fract. Calc. Appl. Anal. 17 (2014), 638-653.
  17. K. R. Prasad and B. M. B. Krushna, Existence of solutions for a coupled system of three-point fractional order boundary value problems, Differ. Equ. Appl. 7 (2015), 187-200.
  18. K. R. Prasad, B. M. B. Krushna, and L. T. Wesen, Existence results for multiple positive solutions of Riemann-Liouville fractional order three-point boundary value problems, Bull. Int. Math. Virtual Inst. 6 (2016), 25-36.
  19. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Langhorne, PA, 1993.
  20. V. Tarasov, Fractional Dynamics: Applications of Fractional Cal- culus to Dynamics of Particles, Fields and Media, Springer-Verlag, New York, 2011.