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DIRICHLET BOUNDARY VALUE PROBLEM FOR A

CLASS OF THE ELLIPTIC SYSTEM

Tacksun Jung* and Q-Heung Choi**

Abstract. We get a theorem which shows the existence of at least
three solutions for some elliptic system with Dirichlet boundary
condition. We obtain this result by using the finite dimensional
reduction method which reduces the infinite dimensional problem
to the finite dimensional one. We also use the critical point theory
on the reduced finite dimensioal subspace.

1. Introduction

Let Ω be a bounded subset of Rn with smooth boundary ∂Ω, n ≥ 3.
Let λ1 < λ2 ≤ · · · ≤ λk ≤ · · · be the eigenvalues of the eigenvalue
problem −∆u = λu in Ω, u = 0 on ∂Ω, and φk be the eigenfunction
belonging to the eigenvalue λk, k ≥ 1. Let F : Rn × Rn → R be a C2

function such that F (x, θ) = 0, θ = (0, · · · , 0). In this paper we are
concerned with the multiple solutions for a class of the systems of the
elliptic equations with Dirichlet boundary condition

(1.1) −∆u1 = Fu1(x, u1, · · · , un) in Ω,

−∆u2 = Fu2(x, u1, · · · , un) in Ω,

...
...

...

−∆un = Fun(x, u1, · · · , un) in Ω,

ui(x) = 0, i = 1, · · · , n, on ∂Ω,
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where ui(x) ∈ W 1,2
0 (Ω) and Fui(x, u1, · · · , un) = ∂F (x,u1,··· ,un)

∂ui
, i =

1, · · · , n. Let U = (u1, · · · , un) and ‖·‖Rn denote the Euclidean norm in
Rn. Let us denote FU (x, U) = gradUF (x, U) = (Fu1(x, u1, · · · , un), · · · ,
Fun(x, u1, · · · , un)).

We assume that F satisfies the following conditions:

(F1) F ∈ C2(Rn × Rn, R), F (x, θ) = 0, FU (x, θ) = θ, x ∈ Ω, θ =
(0, · · · , 0),

(F2) There exist constants α and β (α, β are not eigenvalues of the
elliptic eigenvalue problem) such that α < β and

αI ≤ d2
UF (x, U) ≤ βI ∀(x, U) ∈ Rn ×Rn

and there exists k ∈ N∗ such that αI < λkI < d2
UF (x, U) <

λk+1I < βI for every U .
(F3) There exist eigenvalues λh+1, · · · , λh+m such that

λh < α < λh+1 < · · · < λh+m < β < λh+m+1,

where h ≥ 1, m ≥ 1.
(F4) There exist γ and C such that λh+m < γ < β and

F (x, U) ≥ 1

2
γ‖U‖2Rn − C, ∀(x, U) ∈ Rn ×Rn.

Some papers of Lee [4, 6, 7, 8] concerning the semilinear elliptic sys-
tem and some papers of the other several authors [3, 5] have treated the
system of this kind nonlinear elliptic equations. Some papers of Chang
[1] and Choi and Jung [2] considered the existence and the multiplicity
of the weak solutions for the nonlinear boundary value problems with
asymptotically linear term. The authors obtained some results for those
problems by approaching the variational method, the critical point the-
ory and the topological method.

Let E be a cartesian product of the Sobolev spaces W 1,2
0 (Ω, R), i.e.,

E = W 1,2
0 (Ω, R)×· · ·×W 1,2

0 (Ω, R). We endow the Hilbert space E with
the norm

‖U‖2 =

n∑
i=1

‖ui‖2,

where ‖ui‖2 =
∫

Ω |∇ui(x)|2dx.
The system (1.1) can be rewritten by

(1.2) −∆U = gradUF (x, U), in Ω,

U = θ on ∂Ω,



Dirichlet boundary value problem for a class of the elliptic system 709

where U = (u1, · · · , un) and θ = (0, · · · , 0). In this paper we are looking
for the weak solutions of system (1.1) in E, that is, U = (u1, · · · , un) ∈ E
such that∫

Ω
[−∆U · V ]dx−

∫
Ω
FU (x, U) · V = 0, for all V ∈ E.

Our main result is the following:

Theorem 1.1. Assume that F satisfies the conditions (F1) − (F4).
Then system (1.1) has at least three nontrivial weak solutions.

The proof of Theorem 1.1 is organized as follows: We approach the
variational method and use the finite dimensional reduction method
which reduce the infinite dimensional problem to the finite dimensional
one. We also use the critical point theory on the reduced finite dimen-
sional subspace. In section 2, we approach the variational method and
the reduction method. We show that the reduced functional satisfies the
(P.S.)c condition for any real number c ∈ R. In section 3, we show that
the graph of the reduced functional has at least three nontrivial critical
points, and prove Theorem 1.1.

2. Reduction approach

We assume that F ∈ C2(Rn × Rn, R), F (x, θ) = 0, FU (x, θ) = θ,
θ = (0, · · · , 0) and there exist constants α and β (α, β are not eigenvalues
of the elliptic eigenvalue problem) such that α < β and

αI ≤ d2
UF (x, U) ≤ βI ∀(x, U) ∈ Rn ×Rn

and there exists k ∈ N∗ such that αI < λkI < d2
UF (x, U) < λk+1I < βI

for every U , where U = (u1, · · · , un) and there exist eigenvalues λh+1,
· · · , λh+m such that

λh < α < λh+1 < · · · < λh+m < β < λh+m+1,

where h ≥ 1, m ≥ 1.

Lemma 2.1. Let Fui(x, U) ∈ L2(Ω). Then all the solutions of

−∆U = gradUF (x, U)

belong to E.



710 Tacksun Jung and Q-Heung Choi

Proof. Let Fui(x, U) ∈ L2(Ω), U = (u1, · · · , un). We note that {λn :
|λn| < |c|} is finite. Then Fui(x, u1, · · · , un) ∈ L2(Ω), i = 1, · · · , n, can

be expressed by

Fui(x, u1, · · · , un) =
∞∑
k=1

hkφk,
∞∑
k=1

h2
k <∞, for each i = 1, · · · , n.

Then

(−∆)−1Fui(x, u1, · · · , un) =
∑ 1

λk
hkφk.

Hence we have the inequality

‖(−∆)−1Fui(x, u1, · · · , un)‖2 =
∑

λ2
n

1

λ2
k

h2
k ≤

∑
h2
k,

which means that

‖(−∆)−1Fui(x, u1, · · · , un)‖ ≤ ‖graduiF (x, u1, · · · , un)‖L2(Ω).

By the following Lemma 2.2, the weak solutions of system (1.1) co-
incide with the critical points of the associated functional I

I ∈ C1,1(E,R),

I(U) =

∫
Ω

[
1

2
|∇U |2 − F (x, U)]dx,

(2.1)

where U = (u1, · · · , un) and
∫

Ω ‖∇U‖
2
Rndx =

∑n
i=1

∫
Ω |∇ui|

2dx, n ≥ 1.

Lemma 2.2. Assume that H satisfies the conditions (F1)-(F4). Then
the functional I(U) is continuous, Fréchet differentiable with Fréchet
derivative

DI(U) · V =

∫
Ω

[(−∆U) · V − FU (x, U) · V ]dx.

Moreover DI ∈ C. That is I ∈ C1.

Proof. First we shall prove that I(U) is continuous. For U, V ∈ E,

|I(U + V )− I(U)| =
∣∣∣1
2

∫
Ω

(−∆U −∆V ) · (U + V )dx−
∫

Ω
F (x, U + V )dx

−1

2

∫
Ω

(−∆U) · Udx+

∫
Ω
F (x, U)dx

∣∣∣
=

∣∣∣1
2

∫
Ω

[(−∆U · V −∆V · U −∆V · V )dx

−
∫

Ω
(F (x, U + V )− F (x, U))dx

∣∣∣.
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We have ∣∣∣ ∫
Ω

[F (x, U + V )− F (x, U)]dx
∣∣∣

≤
∣∣∣ ∫

Ω
[FU (x, U) · V +O(‖V ‖Rn)]dx

∣∣∣ = O(‖V ‖Rn).

(2.2)

Thus we have

(2.3) |I(U + V )− I(U)| = O(‖V ‖Rn).

(2.4) |I(U + V )− I(U)−DI(U) · V | = O(‖V ‖2Rn).

Next we shall prove that I(U) is Fréchet differentiable. For U, V ∈ E,

|I(U + V )− I(U)−DI(U) · V |

= |1
2

∫
Ω

(−∆U −∆V ) · (U + V )dx−
∫

Ω
F (x, U + V )dx

− 1

2

∫
Ω

(−∆U) · Udx+

∫
Ω
F (x, U)dx−

∫
Ω

(−∆U − FU (x, U)) · V dx|

= |1
2

∫
Ω

[−∆U · V −∆V · U −∆V · V ]dx

−
∫

Ω
[F (x, u+ v)− F (x, U)]dx−

∫
Ω

[(−∆U − FU (x, U)) · V ]dx|.

By (2.2),

||I(U + V )− I(U)−DI(U) · V || = O(‖V ‖2Rn).

Thus I ∈ C1.

Lemma 2.3. Assume that F satisfies the conditions (F1) − (F4).
Then the functional I satisfies (P.S.)c condition for every c ∈ R.

Proof. Let (Un)n be a sequence in E such that I(Un) → c and
DI(Un) → 0. We shall show that (Un)n has a convergent subsequence.
We claim that (Un)n is bounded. By contradiction, we suppose that
‖Un‖ → +∞ and set Wn = Un

‖Un‖ . Up to a subsequence Wn ⇀ W0

weakly for some W0 ∈ E. By the asymptotically linearity of DI(Un) we
have

〈DI(Un),
Un
‖Un‖

〉

=
2I(Un)

‖Un‖
+

∫
Ω

[
2F (x, Un)

‖Un‖
− (Fu1(x, Un), · · · , Fun(x, Un)) · Un

‖Un‖
]dx,
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where Un = (Un1 , · · · , Unn). Passing to the limit we get

lim
n→∞

∫
Ω

[
2F (x, Un)

‖Un‖
− (Fu1(x, Un), · · · , Fun(x, Un)) · Un

‖Un‖
]dx = 0.

Since F , Fui are bounded and ‖Un‖ → ∞ in Ω, W0 = 0. Moreover we
have

〈DI(Un)

‖Un‖
,Wn〉 =

∫
Ω

[
−∆Un

‖Un‖
·Wn −

(Fu1
(x, Un), · · · , Fun

(x, Un)) ·Wn

‖Un‖
]dx

=

∫
Ω

[−∆Wn ·Wn −
(Fu1

(x, Un), · · · , Fun
(x, Un)) ·Wn

‖Un‖
]dx.

Since Wn converges to 0 weakly and Fui(x, Un), i = 1, · · · , n are
bounded,

∫
Ω−∆Wn · Wndx = ‖Wn‖2 → 0. Thus Wn converges to 0

strongly, which is a contradiction. Thus (Un) is bounded. Up to a sub-
sequence, Un converges weakly to U for some U ∈ E. We claim that Un
converges to U strongly. We have
(2.5)

〈DI(Un), Un〉 =

∫
Ω

[−∆Un·Un−(Fu1(x, Un), · · · , Fun(x, Un))·Un]dx −→ 0.

By the boundedness of Fui(x, Un), i = 1, · · · , n,

lim
n∞

∫
Ω

(−∆Un · Un)dx = lim
n∞

∫
Ω

(−∆U · U)dx

= lim
n∞

∫
Ω

(Fu1(x, Un), · · · , Fun(x, Un)) · Undx

Thus we have that Un converges to U strongly. Thus we have

DI(U) = lim
n→∞

DI(Un) = 0.

Thus we prove the lemma.

Let V be m−dimensional subspace of E spanned by eigenfunctions
corresponding to the eigenvalues λk, k = h+ 1, · · · , h+m of the eigen-
value problem −∆U = λkU with U |∂Ω = (0, · · · , 0). Let W be the
orthogonal complement of V in E. Let P : E → V be the orthogonal
projection of E onto V and I − P : E → W denote that of E onto W .
Then every element U ∈ L2(Ω) is expressed by U = Y + Z, Y = PU ,
Z = (I − P )U . Then (1.2) is equivalent to the two systems in the two
unknowns Y and Z:

(2.6) −∆Y = P (gradUF (x, Y + Z)), in Ω,

(2.7) −∆Z = (I − P )(gradUF (x, Y + Z)), in Ω,
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Y = (0, · · · , 0), Z = (0, · · · , 0) on ∂Ω.

Let W1 be a subspace of W spanned by eigenfunctions corresponding to
the eigenvalues λk ≤ λh, 1 ≤ k ≤ h and W2 be a subspace of W spanned
by eigenfunctions corresponding to the eigenvalues λk ≥ λh+m+1, k ≥
h+m+1. Let Y ∈ V be fixed and consider the function h : W1×W2 → R
defined by

h(Z1, Z2) = I(Y + Z1 + Z2).

The function h has continuous partial Fréchet derivatives D1h and D2h
with respect to its first and second variables given by

(2.8) Dih(Z1, Z2)(Xi) = DI(Y + Z1 + Z2)(Xi)

for Xi ∈Wi, i = 1, 2. By Lemma 2.2, I is a functional of class C1.
By the following Lemma 2.4, we can get the critical points of the

functional I(U) on the infinite dimensional space E from that of the
functional on the finite dimensional subspace V .

Lemma 2.4. (Reduction lemma) Assume that F satisfies the condi-
tions (F1)-(F4).Then

(i) there exists a unique solution Z ∈W of the equation

−∆Z = (I − P )(gradUF (x, Y + Z)) in Ω,

Z = (0, · · · , 0) on ∂Ω.

If we put Z = Θ(Y ), then Θ is continuous on V and satisfies a
uniform Lipschitz condition in V with respect to the L2 norm(also
norm ‖ · ‖). Moreover

DI(Y + Θ(Y )) ·X = 0 for all X ∈W.
(ii) There exists m1 < 0 such that if Z1 and X1 are in W1 and Z2 ∈W2,

then

(D1h(Z1, Z2)−D1h(X1, Z2))(Z1 −X1) ≤ m1‖Z1 −X1‖2.
(iii) There exists m2 > 0 such that if Z2 and X2 are in W2 and Z1 ∈W1,

then

(D2h(Z1, Z2)−D2h(Z1, X2)) · (Z2 −X2) ≥ m2‖Z2 −X2‖2.

(iv) If Ĩ : V → R is defined by Ĩ(Y ) = I(Y + Θ(Y )), then Ĩ has a

continuous Fréchet derivative DĨ with respect to Y , and

(2.9) DĨ(Y ) ·B = DI(Y + Θ(Y )) ·B for all Y,B ∈ V.

(v) If Y0 ∈ V is a critical point of Ĩ if and only if Y0 + Θ(Y0) is a
critical point of I.
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Proof. (i) Let δ = α+β
2 . The equation (2.7) is equivalent to

(2.10) Z = (−∆− δ)−1(I − P )(gradUF (x, Y + Z)− δ(Y + Z))

The operator (−∆− δ)−1(I−P ) is self adjoint, compact and linear map
from (I − P )L2(Ω) into itself and its L2 norm is (min{λh+m+1 − δ, δ −
λh}−1. Let U1, U2 ∈ E. Since

(gradUF (x, U2)− δU2)− (gradUF (x, U1)− δU1)

≤ max{|α− δ|, |β − δ|}‖U2 − U1‖Rn =
|α+ β|

2
‖U2 − U1‖Rn ,

it follows that the right-hand side of (2.10) defines, for fixed Y ∈ V , a
Lipschitz mapping of (I − P )L2(Ω) into itself with Lipschitz constant
r < 1. Therefore, by the contraction mapping principle, for given Y ∈ V ,
there exists a unique Z = (I − P )L2(Ω) which satisfies (2.10). If Θ(Y )
denote the unique Z ∈ (I − P )L2(Ω) which solves (2.10), then Θ is
continuous and satisfies a uniform Lipschitz condition in Y with respect
to the L2 norm(also norm ‖ · ‖). In fact, if Z1 = Θ(Y1) and Z2 = Θ(Y2),
then

‖Z1 − Z2‖L2(Ω)

= ‖(−∆− δ)−1(I − P )[(gradUF (x, Y1 + Z1)− δ(Y1 + Z1))

− (gradUF (x, Y2 + Z2)− δ(Y2 + Z2))‖L2(Ω)

≤ r‖(Y1 + Z1)− (Y2 + Z2)‖L2(Ω)

≤ r(‖Y1 − Y2‖L2(Ω) + ‖Z1 − Z2‖L2(Ω)) ≤ r‖Y1 − Y2‖+ r‖Z1 − Z2‖.
Hence

(2.11) ‖Z1 − Z2‖ ≤ C‖Y1 − Y2‖, C =
r

1− r
.

Let U = Y + Z, Y ∈ V and Z = Θ(Y ). If X ∈ (I − P )L2(Ω) ∩ E,

DI(Y + Θ(Y )) ·X

=

∫
Ω

[−∆(Y + Θ(Y )) ·X − P ((gradUF (x, Y + Z)− δ(Y + Z)) ·X)

−(I − P )((gradUF (x, Y + Z)− δ(Y + Z)) ·X)]dx.

It follows from (2.7) that∫
Ω

[−∆Z(x) ·X(x)− gradUF (x, Y (x) + Z(x)) ·X(x)]dx = 0.

Since ∫
Ω
−∆Y (x) ·X(x) = 0,
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we have

(2.12) DI(Y + Θ(Y )) ·X = 0.

(ii) If Z1 and X1 are in W1 and Z2 ∈W2, then

(D1h(Z1, Z2)−D1h(X1, Z2))(Z1 −X1)

=

∫
Ω

[|∇(Z1 −X1)|2 − (gradUF (x, Y + Z1 + Z2)

−gradUF (x, Y +X1 + Z2)) · (Z1 −X1)]dx.

Since
∫

Ω |∇(Z1 −X1)|2 = ‖Z1 −X1‖2 ≤ λh‖Z1 −X1‖2L2(Ω) and∫
Ω

(gradUF (x, Y + Z1 + Z2)− gradUF (x, Y +X1 + Z2)) · (Z1 −X1)

≥ α‖Z1 −X1‖L2(Ω) ≥
α

λh
‖Z1 −X1‖,

(D1h(Z1, Z2)−D1h(X1, Z2))(Z1 −X1) ≤ (1− α

λh
)‖Z1 −X1‖2

where 1− α
λh
< 0.

(iii) Similarly, using the fact that
∫

Ω |∇(Z2 −X2)|2dx = ‖Z2 −X2‖2 ≥
λh+m+1‖Z2 −X2‖2L2(Ω) and∫

Ω
(gradUF (x, Y + Z1 + Z2)− gradUF (x, Y + Z1 +X2)) · (Z2 −X2)

≤ β‖Z2 −X2‖L2(Ω) ≤
β

λh+m+1
‖Z2 −X2‖2,

we see that if Z2 and X2 are in W2 and Z1 ∈W1, then

(D2h(Z1, Z2)−D2h(Z1, X2))(Z2 −X2) ≥ (1− β

λh+m+1
)‖Z2 −X2‖2

where (1− β
λh+m+1

) > 0.

(iv) Since the functional I has a continuous Fréchet derivative DI, Ĩ

has a continuous Fréchet derivative DĨ with respect to Y .
(v) Suppose that there exists Y0 ∈ V such that DĨ(Y0) = 0. From

DĨ(Y ) ·B = DI(Y + Θ(Y )) ·B for all Y,B ∈ V , DI(Y0 + Θ(Y0))(B) =

DĨ(Y0)(B) = 0 for all B ∈ V . Since DI(Y +Θ(Y ))·B = 0 for all B ∈W
and E is the direct sum of V and W , it follows that DI(Y0 +Θ(Y0)) = 0.
Thus Y0 + Θ(Y0) is a solution of (1.1). Conversely if U is a solution of

(1.1) and Y = PU , then DĨ(Y ) = 0.

Remark 2.5. We note that if Y ∈ V , then Θ(Y ) = 0.
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3. Proof of Theorem 1.1

Lemma 3.1. Assume that F satisfies the conditions (F1)-(F4). Then
Y = θ, θ = (0, · · · , 0), is neither a minimum nor degenerate.

Proof. We have

Ĩ(Y ) = I(Y + Θ1(Y ) + Θ2(Y ))

=
1

2

∫
Ω

(−∆(Y + Θ1(Y ) + Θ2(Y )) · (Y + Θ1(Y ) + Θ2(Y )))dx

−
∫

Ω
F (x, Y + Θ1(Y ) + Θ2(Y ))dx

=
1

2

∫
Ω

(−∆(Y + Θ1(Y )) · (Y + Θ1(Y ))dx

−
∫

Ω
F (x, Y + Θ1(Y ))dx+

1

2

∫
Ω

(−∆Θ2(Y )) ·Θ2(Y )dx

−
∫

Ω
[F (x, Y + Θ1(Y ) + Θ2(Y ))− F (x, Y + Θ1(Y ))]dx.

We claim that

1

2

∫
Ω

(−∆Θ2(Y )) ·Θ2(Y )dx

−
∫

Ω
[F (x, Y + Θ1(Y ) + Θ2(Y ))− F (x, Y + Θ1(Y ))]dx ≤ 0.

In fact,

1

2

∫
Ω

(−∆Θ2(Y )) ·Θ2(Y )dx

−
∫

Ω
[F (x, Y + Θ1(Y ) + Θ2(Y ))− F (x, Y + Θ1(Y ))]dx

= −1

2

∫
Ω

[−∆Θ2(Y ) ·Θ2(Y )]dx

−
∫ 1

0

∫
Ω

[FU (x, Y + Θ1(Y ) + tΘ2(Y ))− FU (x, Y + Θ1(Y ) + Θ2(Y ))] ·Θ2(Y )dxdt

= −1

2

∫
Ω

[−∆Θ2(Y ) ·Θ2(Y )]dx

−
∫ 1

0

∫
Ω

[(d2
UF (x, Y + Θ1(Y ) + tΘ2(Y ))] · tΘ2(Y )) ·Θ2(Y )dxdt ≤ 0
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by condition (F2). Thus we have
(3.1)

Ĩ(Y ) ≤ 1

2

∫
Ω

(−∆(Y + Θ1(Y )) · (Y + Θ1(Y ))dx−
∫

Ω
F (x, Y + Θ1(Y ))dx.

We have that

|
∫

Ω

F (x, Y + Θ1(Y ))− 1

2

∫
Ω

(d2
UF (x, θ) · (Y + Θ1(Y )) · (Y + Θ1(Y ))dx|

= |
∫ 1

0

∫
Ω

[FU (x, t(Y + Θ1(Y )))− (d2
UF (x, θ) · t(Y + Θ1(Y ))) · (Y + Θ1(Y ))]dxdt|

≤ 1

2
sup

0<t<1
‖d2

UF (x, t(Y + Θ1(Y )))− d2
UF (x, θ)|L(V,V )‖Y + Θ1(Y )‖2.

Thus we have

−
∫

Ω
F (x, Y + Θ1(Y ))

≤ −1

2

∫
Ω

(d2
UF (x, θ) · (Y + Θ1(Y ))) · (Y + Θ1(Y )) + o(‖Y + Θ1(Y )‖2).

Since Θ1 ∈ C1(V,W1), it follows that if ‖Y ‖ → 0, then ‖Θ1(Y )‖ =
O(‖Y ‖) because Θ1(θ) = 0. Thus

‖Y + Θ1(Y )‖ = O(‖Y ‖).

Since FU (x, θ) = θ, there exists a bounded self adjoint operator A ∈
L(E,E) which commutes with Po and P− such that

λh+1I ≤ A ≤ d2
UF (x, θ).

Thus we have

Ĩ(Y ) ≤ 1

2

∫
Ω

(−∆(Y + Θ1(Y )) · (Y + Θ1(Y ))dx

−1

2

∫
Ω

(d2
UF (x, θ) · (Y + Θ1(Y ))) · (Y + Θ1(Y ))dx+ o(‖Y ‖2)

≤ 1

2

∫
Ω

(−∆(Y + Θ1(Y )) · (Y + Θ1(Y ))dx

−1

2

∫
Ω
A(Y + Θ1(Y )) · (Y + Θ1(Y )) + o(‖Y ‖2)

=
1

2

∫
Ω

(−∆Θ1(Y ) ·Θ1(Y )dx− 1

2

∫
Ω
A(Θ1(Y )) ·Θ1(Y )

+
1

2

∫
Ω

(−∆Y · Y )dx− 1

2

∫
Ω
A(Y ) · Y + o(‖Y ‖2)
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as ‖Y ‖ → 0. Since λh+1I ≤ A, it follows from that

1

2

∫
Ω

(−∆Θ1(Y ) ·Θ1(Y )dx− 1

2

∫
Ω
A(Θ1(Y )) ·Θ1(Y )

≤ 1

2

∫
Ω

(−∆Θ1(Y ) ·Θ1(Y )dx− 1

2

∫
Ω
λh+1Θ1(Y ) ·Θ1(Y ) ≤ 0.

Therefore we have

Ĩ(Y ) ≤ 1

2

∫
Ω

(−∆Y · Y )dx− 1

2

∫
Ω
A(Y ) · Y + o(‖Y ‖2)

≤ 1

2

∫
Ω

[(−∆Y ) · Y − λh+1Y
2]dx+ o(‖Y ‖2).

as ‖Y ‖ → 0. Similarly we can choose a bounded self adjoint operator
B ∈ L(E,E) which commutes with Po and P− such that

d2
UF (x, θ) ≤ B ≤ λh+m+1I

It follows from that

Ĩ(Y ) ≥ 1

2

∫
Ω

(−∆Y · Y )dx− 1

2

∫
Ω
B(Y ) · Y + o(‖Y ‖2)

≥ 1

2

∫
Ω

[(−∆Y ) · Y − λh+m+1Y
2]dx+ o(‖Y ‖2)

as ‖Y ‖ → 0. Thus Y = θ, θ = (0, · · · , 0), is neither a minimum nor
degenerate.

We shall show that −Ĩ(Y ) is bounded from below and Ĩ(Y ) satisfies
the (P.S.) condition.

Lemma 3.2. Assume that F satisfies the conditions (F1)-(F4). Then

Ĩ(Y )→ −∞as ‖Y ‖ → ∞.

Proof. By (3.1), we have

Ĩ(Y ) ≤ 1

2

∫
Ω

(−∆(Y + Θ1(Y )) · (Y + Θ1(Y ))dx−
∫

Ω
F (x, Y + Θ1(Y ))dx.

Thus by (F4), we have

Ĩ(Y ) ≤ 1

2

∫
Ω

(−∆(Y + Θ1(Y )) · (Y + Θ1(Y ))dx−
∫

Ω

F (x, Y + Θ1(Y ))dx

≤ 1

2
(λh+m+1 − γ)‖Y + Θ1(Y )‖2LΩ + C −→ −∞ as ‖Y ‖L2(Ω) →∞.

Thus the lemma is proved.

The following result come from Lemma 3.2.
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Lemma 3.3. Assume that F satisfies the conditions (F1)-(F4). Then

−Ĩ(v) is bounded from below and Ĩ(v) satisfies the Palais-Smale condi-
tion.

Proof of Theorem 1.1 By Lemma 2.2, Ĩ(Y ) is continuous and Fréchet

differentiable in V . By Lemma 3.3, Ĩ(v) is bounded above, satisfies the

(P.S.) condition and Ĩ(Y ) → −∞ as ‖Y ‖ → ∞. By Lemma 3.1, Y = θ

is neither a minimum nor degenerate. By Lemma 3.2, Ĩ(Y ) → −∞ as

‖Y ‖ → ∞. We note that maxY ∈V Ĩ(Y ) > 0 is another critical value of

Ĩ. By the shape of the graph of the functional Ĩ on the m-dimensional
subspace V , there exist the third critical point of Ĩ(Y ). Thus (1.1) has
at least three nontrivial solutions.
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