• Title/Summary/Keyword: theta functions

Search Result 130, Processing Time 0.026 seconds

GLOBAL PARAMETRIC SUFFICIENT OPTIMALITY CONDITIONS FOR DISCRETE MINMAX FRACTIONAL PROGRAMMING PROBLEMS CONTAINING GENERALIZED $({\theta},\;{\eta},\;{\rho})-V-INVEX$ FUNCTIONS AND ARBITRARY NORMS

  • Zalmai, G.J.
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.1-23
    • /
    • 2007
  • The purpose of this paper is to develop a fairly large number of sets of global parametric sufficient optimality conditions under various generalized $({\theta},\;{\eta},\;{\rho})-V-invexity$ assumptions for a discrete minmax fractional programming problem involving arbitrary norms.

A SIMPLE PROOF OF QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF J

  • Choi, SoYoung
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.919-920
    • /
    • 2011
  • For two even unimodular positive definite integral quadratic forms A[X], B[X] in n-variables, J. K. Koo [1, Theorem 1] showed that ${\theta}_A(\tau)/{\theta}_B(\tau)$ is a rational function of J, satisfying a certain condition. Where ${\theta}_A(\tau)$ and ${\theta}_B(\tau)$ are theta series related to A[X] and B[X], respectively, and J is the classical modular invariant. In this paper we give a simple proof of Theorem 1 of [1].

SOME STRONG FORMS OF (g,g')-CONTINUITY ON GENERALIZED TOPOLOGICAL SPACES

  • Min, Won-Keun;Kim, Young-Key
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.85-91
    • /
    • 2011
  • We introduce and investigate the notions of super (g,g')-continuous functions and strongly $\theta$(g,g')-continuous functions on generalized topological spaces, which are strong forms of (g,g')-continuous functions. We also investigate relationships among such the functions, (g,g')-continuity and (${\delta},{\delta}'$)-continuity.

A Short Note on Superefficiency

  • Lee, Youngjo;Park, Byeong U.
    • Journal of the Korean Statistical Society
    • /
    • 제20권2호
    • /
    • pp.202-207
    • /
    • 1991
  • In Le Cam's earlier work on superefficiency, it is proved that if an estimate is superefficient at a given paramter value $\theta$$\_$0/, then there must exist an infinite sequence {$\theta$$\_$n/}) of values(conversing to $\theta$$\_$0/) at which this estimate is worse than M. L. E. for certain classes of loss functions. For one-dimensional cases, these classes of lass functions include squared error loss. However. for multi-dimensional cases, they do not. This note is to give an example where a superefficiest estimator of a multi-dimensional parameter is not inferior to M. L. E. along any sequence ($\theta$$\_$n/) converging to the point of superefficiency with respect to the squared error loss.

  • PDF

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT OVER WIENER PATHS IN ABSTRACT WIENER SPACE: AN Lp THEORY

  • Cho, Dong-Hyun
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.265-294
    • /
    • 2004
  • In this paper, using a simple formula, we evaluate the conditional Fourier-Feynman transforms and the conditional convolution products of cylinder type functions, and show that the conditional Fourier-Feynman transform of the conditional convolution product is expressed as a product of the conditional Fourier-Feynman transforms. Also, we evaluate the conditional Fourier-Feynman transforms of the functions of the forms exp {$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}$\Phi$($\chi$(T)), exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}$\Phi$($\chi$(T)) which are of interest in Feynman integration theories and quantum mechanics.

ARITHMETIC OF THE MODULAR FUNCTION $j_4$

  • Kim, Chang-Heon;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.707-723
    • /
    • 1999
  • Since the modular curve $X(4)=\Gamma(4)/{\mathfrak{}}^*$ has genus 0, we have a field isomorphism K(X(4)){\approx}\mathcal{C}(j_{4})$ where $j_{4}(z)={\theta}_{3}(\frac{z}{2})/{\theta}_{4}(\frac{z}{2})$ is a quotient of Jacobi theta series ([9]). We derive recursion formulas for the Fourier coefficients of $j_4$ and $N(j_{4})$ (=the normalized generator), respectively. And we apply these modular functions to Thompson series and the construction of class fields.

  • PDF

A NOTE ON MODULAR EQUATIONS OF SIGNATURE 2 AND THEIR EVALUATIONS

  • Kumar, Belakavadi Radhakrishna Srivatsa;Rathie, Arjun Kumar;Sayinath, Nagara Vinayaka Udupa;Shruthi, Shruthi
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.31-43
    • /
    • 2022
  • In his notebooks, Srinivasa Ramanujan recorded several modular equations that are useful in the computation of class invariants, continued fractions and the values of theta functions. In this paper, we prove some new modular equations of signature 2 by well-known and useful theta function identities of composite degrees. Further, as an application of this, we evaluate theta function identities.

General Theorem for Explicit Evaluations and Reciprocity Theorems for Ramanujan-Göllnitz-Gordon Continued Fraction

  • SAIKIA, NIPEN
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.983-996
    • /
    • 2015
  • In the paper A new parameter for Ramanujan's theta-functions and explicit values, Arab J. Math. Sc., 18 (2012), 105-119, Saikia studied the parameter $A_{k,n}$ involving Ramanujan's theta-functions ${\phi}(q)$ and ${\psi}(q)$ for any positive real numbers k and n and applied it to find explicit values of ${\psi}(q)$. As more application to the parameter $A_{k,n}$, in this paper we prove a new general theorem for explicit evaluation of Ramanujan-$G{\ddot{o}}llnitz$-Gordon continued fraction K(q) in terms of the parameter $A_{k,n}$ and give examples. We also find some new explicit values of the parameter $A_{k,n}$ and offer reciprocity theorems for the continued fraction K(q).