SOME EISENSTEIN SERIES IDENTITIES RELATED TO MODULAR EQUATION OF THE FOURTH ORDER

Bhaskar Srivastava

Abstract. We find some Eisenstein series related to modulus 4 using a theta function identity of McCullough and Shen and residue theorem for elliptic functions.

1. Introduction

The Eisenstein series $P(q), Q(q)$ and $R(q)$ are defined for $|q|<1$ by

$$
\begin{align*}
& P(q):=1-24 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}, \tag{1.1}\\
& Q(q):=1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}}, \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
R(q):=1-504 \sum_{n=1}^{\infty} \frac{n^{5} q^{n}}{1-q^{n}} \tag{1.3}
\end{equation*}
$$

This is the notation used by Ramanujan in his lost notebook [8, pp. 136162], but in his ordinary notebooks, P, Q and R are replaced by L, M and N respectively. We shall be using L, M and N, respectively, for P, Q and R.

We studied the continued fraction of Ramanujan

$$
\begin{equation*}
C(q)=1+\frac{(1+q)}{1+} \frac{q^{2}}{1+} \frac{\left(q+q^{3}\right)}{1+} \frac{q^{4}}{1+\cdots}=\frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}} \tag{1.4}
\end{equation*}
$$

and called this continued fraction analogous to the celebrated Rogers-Ramanujan continued fraction $R(q)$

$$
\begin{equation*}
R(q)=\frac{q^{1 / 5}}{1+} \frac{q}{1+} \frac{q^{2}}{1+\cdots}=q^{1 / 5} \frac{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}} \tag{1.5}
\end{equation*}
$$

Received November 17, 2009.
2010 Mathematics Subject Classification. 11F20, 33D15.
Key words and phrases. Eisenstein series, theta functions, q-hypergeometric series.

Since the continued fraction $C(q)$ sums to q-hypergeometric series on base 4 , motivated me to study Eisenstein series identities related to modular equations of order 4. In this paper we will prove the following identities:

$$
\begin{equation*}
2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)=\frac{1}{3}\left(L(\tau)-4^{2} L(4 \tau)\right) \tag{1.6}
\end{equation*}
$$

$$
\begin{gather*}
2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime \prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime \prime}\left(\left.\frac{2 \pi}{4} \right\rvert\, q\right)=\frac{2}{15}\left(M(\tau)-4^{4} M(4 \tau)\right) \tag{1.7}\\
1-4 \sum_{m=0}^{\infty}\left(\frac{(4 m+1)^{2} q^{4 m+1}}{1-q^{4 m+1}}-\frac{(4 m+3)^{2} q^{4 m+3}}{1-q^{4 m+3}}\right)=\frac{\eta^{4}(\tau) \eta^{6}(2 \tau)}{\eta(4 \tau) \eta^{3}(4 \tau)} \tag{1.8}\\
\\
{\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]^{2}} \\
= \\
1+8\left[\sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}-\sum_{n=1}^{\infty} \frac{4 n q^{n}}{1-q^{4 n}}\right]
\end{gather*}
$$

and

$$
\begin{align*}
& 160+128 \sum_{n=0}^{\infty}\left(\frac{(4 n+1)^{4} q^{4 n+1}}{1-q^{4 n+1}}-\frac{(4 n+3)^{4} q^{4 n+3}}{1-q^{4 n+3}}\right) \tag{1.10}\\
= & -2^{5}\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]^{5} \\
& +10\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]\left(\frac{16}{15} M(\tau)+\frac{2}{15} 4^{4} M(4 \tau)\right) \\
& +10\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]\left(\frac{4}{3} L(\tau)-\frac{16}{3} L(4 \tau)\right)^{2} .
\end{align*}
$$

The identity (1.10) is very interesting.

2. Preliminaries

Throughout the paper $q=e^{2 \pi i \tau}, \operatorname{Im}(\tau)>0$ and the standard q-notaions are used:

$$
\begin{equation*}
(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
(a ; q)_{n}=\prod_{k=1}^{n}\left(1-a q^{k-1}\right) \tag{2.2}
\end{equation*}
$$

and

$$
(a)_{0}=(a ; q)_{0}=1 .
$$

The Dedekind eta-function is defined by

$$
\begin{equation*}
\eta(\tau)=q^{\frac{1}{24}}(q ; q)_{\infty} . \tag{2.3}
\end{equation*}
$$

Jacobi theta function is defined as follows, see [9, p. 464]

$$
\begin{align*}
\theta_{1}(z \mid q) & =-i q^{\frac{1}{8}} \sum^{\infty}(-1)^{n} q^{\frac{n(n+1)}{2}} e^{(2 n+1) i z} \tag{2.4}\\
& =2 q^{\frac{1}{8}} \sum_{n=0}^{\infty}(-1)^{n} q^{\frac{n(n+1)}{2}} \sin (2 n+1) z \tag{2.5}
\end{align*}
$$

In terms of infinite products

$$
\begin{align*}
\theta_{1}(z \mid q) & =2 q^{\frac{1}{8}} \sin z(q ; q)_{\infty}\left(q e^{2 i z} ; q\right)_{\infty}\left(q e^{-2 i z} ; q\right)_{\infty} \tag{2.6}\\
& =i q^{\frac{1}{8}} e^{-i z}(q ; q)_{\infty}\left(e^{2 i z} ; q\right)_{\infty}\left(q e^{-2 i z} ; q\right)_{\infty} \tag{2.7}
\end{align*}
$$

Differentiating partially with respect to z and then putting $z=0$, we have the identity

$$
\begin{equation*}
\theta_{1}^{\prime}(q)=\theta_{1}^{\prime}(0 \mid q)=2 q^{\frac{1}{8}}(q ; q)_{\infty}^{3} \tag{2.8}
\end{equation*}
$$

From the definition of $\theta_{1}(z \mid q)$,

$$
\begin{equation*}
\theta_{1}(z+n \pi \mid q)=(-1)^{n} \theta_{1}(z \mid q) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{1}(z+n \pi \tau \mid q)=(-1)^{n} q^{-\frac{n^{2}}{2}} e^{-2 n i z} \theta_{1}(z \mid q) \tag{2.10}
\end{equation*}
$$

In this paper we shall be using the following residue theorem of elliptic functions:
Theorem. The sum of all the residues of an elliptic function in the period parallelogram is zero.

3. The proofs of (1.6) and (1.7)

By infinite product expansion for $\theta_{1}(z \mid q)$ given in (2.7) and by simple computation, we have

$$
\begin{equation*}
\theta_{1}\left(4 z \mid q^{4}\right)=\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}^{4}} \theta_{1}(z \mid q) \theta_{1}\left(\left.z-\frac{\pi}{4} \right\rvert\, q\right) \theta_{1}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right) \theta_{1}\left(\left.z-\frac{\pi}{2} \right\rvert\, q\right) \tag{3.1}
\end{equation*}
$$

Taking logarithmic derivative of both the sides of (3.1), we obtain

$$
\begin{equation*}
4 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(4 z \mid q^{4}\right)-\frac{\theta_{1}^{\prime}}{\theta_{1}}(z \mid q)=\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z-\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z-\frac{\pi}{2} \right\rvert\, q\right) \tag{3.2}
\end{equation*}
$$

We now use the following identity, [6, eq.(2.10), p. 109] to simplify the left hand side:

$$
\begin{align*}
\frac{\theta_{1}^{\prime}}{\theta_{1}}(z \mid q)= & \frac{1}{z}-\frac{1}{3} L(\tau) z-\frac{1}{45} M(\tau) z^{3}-\frac{2}{945} N(\tau) z^{5} \\
& -\frac{1}{4725}\left(1+480 \sum_{n=1}^{\infty} \frac{n^{7} q^{n}}{1-q^{n}}\right) z^{7}+\cdots \tag{3.3}
\end{align*}
$$

So (3.2) can be written as

$$
\begin{align*}
& \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z-\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z-\frac{\pi}{2} \right\rvert\, q\right) \tag{3.4}\\
= & \frac{1}{3}\left(L(\tau)-4^{2} L(4 \tau)\right) z+\frac{1}{45}\left(M(\tau)-4^{4} M(4 \tau)\right) z^{3}+O\left(z^{5}\right) .
\end{align*}
$$

Differentiate both side of (3.4) with respect to z and then put $z=0$ to get

$$
\begin{equation*}
2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)=\frac{1}{3}\left(L(\tau)-4^{2} L(4 \tau)\right) \tag{3.5}
\end{equation*}
$$

which proves (1.6).
Differentiate thrice both side of (3.4) with respect to z and then put $z=0$ to get

$$
2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime \prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime \prime}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)=\frac{2}{15}\left(M(\tau)-4^{4} M(4 \tau)\right)
$$

which proves (1.7).

4. The proof of (1.8)

Recall the following identity [6, eq.(8.1), p. 117]

$$
\begin{align*}
& \cot ^{2} y-\cot ^{2} x+8 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}(\cos 2 n x-\cos 2 n y) \tag{4.1}\\
= & \theta_{1}^{\prime}(0 \mid q)^{2} \frac{\theta_{1}(x-y \mid q) \theta_{1}(x+y \mid q)}{\theta_{1}^{2}(x \mid q) \theta_{1}^{2}(y \mid q)} .
\end{align*}
$$

There is a slight misprint which has been corrected.
Differentiate (4.1) partially with respect to x then putting $y=x$ to obtain

$$
\begin{equation*}
2 \cot x \operatorname{cosec}^{2} x-16 \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{n}} \sin 2 n x=\frac{\theta_{1}^{\prime}(0 \mid q)^{3} \theta_{1}(2 x \mid q)}{\theta_{1}^{4}(x \mid q)} \tag{4.2}
\end{equation*}
$$

Putting $x=\frac{\pi}{4}$ in (4.2), we have

$$
4-16 \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{n}} \sin \frac{n \pi}{2}=\theta_{1}^{\prime}(0 \mid q)^{3}\left[\frac{\theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)}{\theta_{1}^{4}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)}\right]
$$

or

$$
4-16 \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{n}} \sin \frac{n \pi}{2}=\frac{4(q ; q)_{\infty}^{4}\left(q^{2} ; q^{2}\right)_{\infty}^{6}}{\left(q^{4} ; q^{4}\right)_{\infty}^{4}}
$$

so

$$
1-4 \sum_{m=0}^{\infty}\left(\frac{(4 m+1)^{2} q^{4 m+1}}{1-q^{4 m+1}}-\frac{(4 m+3)^{2} q^{4 m+3}}{1-q^{4 m+3}}\right)=\frac{(q ; q)_{\infty}^{4}\left(q^{2} ; q^{2}\right)_{\infty}^{6}}{\left(q^{4} ; q^{4}\right)_{\infty}^{4}}
$$

Using the definition of Dedekind eta-function defined in (2.3), we have

$$
1-4 \sum_{m=0}^{\infty}\left(\frac{(4 m+1)^{2} q^{4 m+1}}{1-q^{4 m+1}}-\frac{(4 m+3)^{2} q^{4 m+3}}{1-q^{4 m+3}}\right)=\frac{\eta^{4}(\tau) \eta^{6}(2 \tau)}{\eta(4 \tau) \eta^{3}(4 \tau)}
$$

which proves (1.8).

5. The proof of (1.9)

For proving (1.9) we first construct the following elliptic function:

$$
\begin{equation*}
f(z)=\frac{\theta_{1}^{2}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right) \theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, q\right)}{\theta_{1}^{3}(z \mid q)} \tag{5.1}
\end{equation*}
$$

and use residue theorem of elliptic functions.
It is easy to see that $f(z)$ is an elliptic function of periods π and $\pi \tau$, and has a pole of order 3 at $z=0$. We now compute residue of $f(z)$ at $z=0$.

Now

$$
\begin{equation*}
\operatorname{res}(f ; 0)=\frac{1}{2}\left[\frac{d^{2}}{d z^{2}}\left(z^{3} f(z)\right)\right]_{z=0} . \tag{5.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
F(z)=z^{3} f(z) \text { and } \varphi(z)=\frac{F^{\prime}(z)}{F(z)} . \tag{5.3}
\end{equation*}
$$

By logarithmic differentiation

$$
\begin{equation*}
\operatorname{res}(f ; 0)=\frac{1}{2}\left[\frac{d^{2}}{d z^{2}}\left(z^{3} f(z)\right)\right]_{z=0}=\frac{1}{2} F(0)\left[\varphi(0)^{2}+\varphi^{\prime}(0)\right] . \tag{5.4}
\end{equation*}
$$

Now

$$
\begin{align*}
\varphi(z) & =\frac{3 z^{2} f(z)+z^{3} f^{\prime}(z)}{z^{3} f(z)}=\frac{3}{z}+\frac{f^{\prime}(z)}{f(z)} \\
& =\frac{3}{z}-3 \frac{\theta_{1}^{\prime}}{\theta_{1}}(z \mid q)+2 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{2} \right\rvert\, q\right) \tag{5.5}\\
& =L(\tau) z+2 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{2} \right\rvert\, q\right)+O\left(z^{3}\right) .
\end{align*}
$$

Now

$$
\begin{align*}
\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{4} \right\rvert\, q\right) & =\cot \frac{\pi}{4}+4 \sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}} \sin \frac{n \pi}{2} \tag{5.6}\\
& =1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)=4 \sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}} \sin n \pi=0 \tag{5.7}
\end{equation*}
$$

So

$$
\begin{equation*}
2 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)=2\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right] \tag{5.8}
\end{equation*}
$$

Putting $z=0$ in (5.5) and using (5.8), we have

$$
\begin{align*}
\varphi(0) & =2 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{2} \right\rvert\, q\right) \\
& =2\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right] \tag{5.9}
\end{align*}
$$

Differentiating (5.5) with respect to z and then putting $z=0$ and using (3.5), we have

$$
\begin{align*}
\varphi^{\prime}(0) & =L(\tau)+2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{2} \right\rvert\, q\right) \\
& =\frac{1}{3}(4 L(\tau)-16 L(4 \tau)) \\
& =\frac{1}{3}\left[4\left(1-24 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}\right)-16\left(1-24 \sum_{n=1}^{\infty} \frac{n q^{4 n}}{1-q^{4 n}}\right)\right] \tag{5.10}\\
& =-4-32 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}+128 \sum_{n=1}^{\infty} \frac{n q^{4 n}}{1-q^{4 n}}
\end{align*}
$$

Also

$$
F(0)=\frac{\theta_{1}^{2}\left(\left.\frac{\pi}{4} \right\rvert\, q\right) \theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)}{\theta_{1}^{\prime}(0 \mid q)^{3}} \neq 0 .
$$

Now by the residue theorem and using (5.4), we obtain

$$
\begin{equation*}
\varphi(0)^{2}=-\varphi^{\prime}(0) \tag{5.11}
\end{equation*}
$$

Hence from (5.9) and (5.10)

$$
\begin{align*}
& {\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]^{2} } \tag{5.12}\\
= & 1+8\left[\sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}-\sum_{n=1}^{\infty} \frac{4 n q^{n}}{1-q^{4 n}}\right]
\end{align*}
$$

which is (1.9).

6. The proof of (1.10)

For proving (1.10) we construct the following elliptic function and use the residue theorem of elliptic functions.

Let

$$
\begin{equation*}
f(z)=\frac{\theta_{1}(2 z \mid q) \theta_{1}^{2}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right) \theta_{1}\left(\left.z+\frac{\pi}{2} \right\rvert\, q\right)}{\theta_{1}^{7}(z \mid q)} \tag{6.1}
\end{equation*}
$$

By (2.9) it is easily seen that $f(z)$ is an elliptic function of periods π and $\pi \tau$ with only one pole at $z=0$ of order 6 .

Now

$$
\begin{equation*}
\operatorname{res}(f ; 0)=\frac{1}{120}\left[\frac{d^{5}}{d z^{5}}\left(z^{6} f(z)\right)\right]_{z=0} \tag{6.2}
\end{equation*}
$$

To compute $\operatorname{res}(f ; 0)$, let

$$
\begin{equation*}
F(z)=z^{6} f(z) \text { and } \varphi(z)=\frac{F^{\prime}(z)}{F(z)} \tag{6.3}
\end{equation*}
$$

By logarithmic differentiation and elementary computation, we get

$$
\begin{align*}
& \frac{d^{5}}{d z^{5}} F(z) \\
&=F(z)\left[\varphi(z)^{5}+10 \varphi(z)^{3} \varphi^{\prime}(z)+5 \varphi(z) \varphi^{\prime \prime \prime}(z)+10 \varphi(z)^{2} \varphi^{\prime \prime}(z)\right. \tag{6.4}\\
&\left.+5 \varphi(z) \varphi^{\prime}(z)^{2}+10 \varphi^{\prime}(z) \varphi^{\prime \prime}(z)+\varphi^{(4)}(z)\right] .
\end{align*}
$$

It is obvious that

$$
F(0)=\lim _{z \rightarrow 0} z^{6} f(z)=\frac{\theta_{1}^{2}\left(\left.\frac{\pi}{4} \right\rvert\, q\right) \theta_{1}\left(\left.\frac{\pi}{2} \right\rvert\, q\right)}{\theta_{1}^{\prime}(0 \mid q)^{6}} \neq 0
$$

We now calculate $\varphi(0)$.

From (6.3)
(6.5)

$$
\begin{aligned}
\varphi(z) & =\frac{6 z^{5} f(z)+z^{6} f^{\prime}(z)}{z^{6} f(z)}=\frac{6}{z}+\frac{f^{\prime}(z)}{f(z)} \\
& =\frac{6}{z}+2 \frac{\theta_{1}^{\prime}}{\theta_{1}}(2 z \mid q)-7 \frac{\theta_{1}^{\prime}}{\theta_{1}}(z \mid q)+2 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{2} \right\rvert\, q\right) \\
& =L(\tau) z-\frac{z^{3}}{5} M(\tau)+2 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.z+\frac{\pi}{2} \right\rvert\, q\right)+O\left(z^{5}\right) \text { by }
\end{aligned}
$$

Putting $z=0$, we have

$$
\begin{equation*}
\varphi(0)=2 \frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\frac{\theta_{1}^{\prime}}{\theta_{1}}\left(\left.\frac{\pi}{2} \right\rvert\, q\right) \tag{6.6}
\end{equation*}
$$

Hence by (5.8)

$$
\begin{equation*}
\varphi(0)=2\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right] \tag{6.7}
\end{equation*}
$$

Diferentiating (6.5) with respect to z and then setting $z=0$ and using (1.6), we have

$$
\begin{align*}
\varphi^{\prime}(0) & =L(\tau)+2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime}\left(\left.\frac{\pi}{2} \right\rvert\, q\right) \\
& =\frac{4}{3} L(\tau)-\frac{16}{3} L(4 \tau) \tag{6.8}\\
& =-4-32 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}+128 \sum_{n=1}^{\infty} \frac{n q^{4 n}}{1-q^{4 n}} \text { by }(1.1) .
\end{align*}
$$

Diferentiating (6.5) twice with respect to z and setting $z=0$, we have

$$
\begin{equation*}
\varphi^{\prime \prime}(0)=2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime}\left(\left.\frac{\pi}{2} \right\rvert\, q\right) \tag{6.9}
\end{equation*}
$$

Now for determining the right hand side of (6.9) we use the following identity [9, p. 489]

$$
\begin{equation*}
\frac{\theta_{1}^{\prime}}{\theta_{1}}(z \mid \tau)=\cot z+4 \sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}} \sin 2 n z \tag{6.10}
\end{equation*}
$$

Diferentiating (6.10) twice with respect to z, we get

$$
\begin{equation*}
\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime}(z \mid \tau)=2 \operatorname{cosec}^{2} z \cot z-16 \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{n}} \sin 2 n z . \tag{6.11}
\end{equation*}
$$

Setting $z=\frac{\pi}{4}$ and $z=\frac{\pi}{2}$, respectively in (6.11), we have

$$
\begin{aligned}
\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime}\left(\left.\frac{\pi}{4} \right\rvert\, \tau\right) & =4-16 \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{n}} \sin \frac{n \pi}{2} \\
& =4-16 \sum_{n=0}^{\infty}\left[\frac{(4 n+1)^{2} q^{4 n+1}}{1-q^{4 n+1}}-\frac{(4 n+3)^{2} q^{4 n+3}}{1-q^{4 n+3}}\right]
\end{aligned}
$$

and

$$
\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime}\left(\left.\frac{\pi}{2} \right\rvert\, \tau\right)=0
$$

Hence

$$
\begin{equation*}
\varphi^{\prime \prime}(0)=8\left[1-4 \sum_{n=0}^{\infty}\left(\frac{(4 n+1)^{2} q^{4 n+1}}{1-q^{4 n+1}}-\frac{(4 n+3)^{2} q^{4 n+3}}{1-q^{4 n+3}}\right)\right] . \tag{6.12}
\end{equation*}
$$

Differentiating (6.5) thrice with respect to z and then putting $z=0$ and using (1.7), we have

$$
\begin{align*}
\varphi^{\prime \prime \prime}(0) & =-\frac{6}{5} M(\tau)+2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime \prime}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{\prime \prime \prime}\left(\left.\frac{\pi}{2} \right\rvert\, q\right) \tag{6.13}\\
& =-\frac{16}{15} M(\tau)-\frac{2}{15} 4^{4} M(4 \tau) \text { by }(1.7)
\end{align*}
$$

and

$$
\varphi^{(4)}(0)=2\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{(4)}\left(\left.\frac{\pi}{4} \right\rvert\, q\right)+\left(\frac{\theta_{1}^{\prime}}{\theta_{1}}\right)^{(4)}\left(\left.\frac{\pi}{2} \right\rvert\, q\right) .
$$

By (6.10)

$$
\begin{align*}
\varphi^{(4)}(0) & =2 \cot ^{(4)}\left(\frac{\pi}{4}\right)+\cot ^{(4)}\left(\frac{\pi}{2}\right)+128 \sum_{n=1}^{\infty} \frac{n^{4} q^{n}}{1-q^{n}} \sin \frac{n \pi}{2} \\
& =160+128 \sum_{n=1}^{\infty} \frac{n^{4} q^{n}}{1-q^{n}} \sin \frac{n \pi}{2} \tag{6.14}\\
& =160+128 \sum_{n=0}^{\infty}\left(\frac{(4 n+1)^{4} q^{4 n+1}}{1-q^{4 n+1}}-\frac{(4 n+3)^{4} q^{4 n+3}}{1-q^{4 n+3}}\right) .
\end{align*}
$$

Now by (6.2) and (6.4) the $\operatorname{res}(f ; 0)$ is

$$
\begin{align*}
\operatorname{res}(f ; 0)=\frac{1}{120} F(0)[& \varphi(0)^{5}+10 \varphi(0)^{3} \varphi^{\prime}(0)+5 \varphi(0) \varphi^{\prime \prime \prime}(0)+10 \varphi(0)^{2} \varphi^{\prime \prime}(0) \tag{6.15}\\
& \left.+5 \varphi(0) \varphi^{\prime}(0)^{2}+10 \varphi^{\prime}(0) \varphi^{\prime \prime}(0)+\varphi^{(4)}(0)\right]
\end{align*}
$$

We see that $\varphi(0)$ calculated in (5.9) is the same as in (6.7) and $\varphi^{\prime}(0)$ calculated in (5.10) is the same as in (6.8). Hence by (5.11)

$$
\varphi(0)^{2}=-\varphi^{\prime}(0)
$$

Putting this in (6.15), $\operatorname{res}(f ; 0)$ simplifies to

$$
\operatorname{res}(f ; 0)=\frac{1}{120} F(0)\left[\varphi(0)^{5}+5 \varphi(0) \varphi^{\prime \prime \prime}(0)-5 \varphi(0) \varphi^{\prime}(0)^{2}+\varphi^{(4)}(0)\right]
$$

Since $\operatorname{res}(f ; 0)=0$ by the residue theorem, we have

$$
\begin{equation*}
\varphi^{(4)}(0)=-\left[\varphi(0)^{5}+5 \varphi(0) \varphi^{\prime \prime \prime}(0)-5 \varphi(0) \varphi^{\prime}(0)^{2}\right] . \tag{6.16}
\end{equation*}
$$

Using (6.7), (6.8), (6.13) and (6.14) the identity in (6.16) simplifies to

$$
\begin{aligned}
& 160+128 \sum_{n=0}^{\infty}\left(\frac{(4 n+1)^{4} q^{4 n+1}}{1-q^{4 n+1}}-\frac{(4 n+3)^{4} q^{4 n+3}}{1-q^{4 n+3}}\right) \\
= & -2^{5}\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]^{5} \\
& +10\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]\left(\frac{16}{15} M(\tau)+\frac{2}{15} 4^{4} M(4 \tau)\right) \\
& +10\left[1+4 \sum_{n=0}^{\infty}\left(\frac{q^{4 n+1}}{1-q^{4 n+1}}-\frac{q^{4 n+3}}{1-q^{4 n+3}}\right)\right]\left(\frac{4}{3} L(\tau)-\frac{16}{3} L(4 \tau)\right)^{2},
\end{aligned}
$$

which is (1.10).

References

[1] G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook. Part I, Springer, New York, 2005.
[2] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[3] Z.-G. Liu, Some Eisenstein series identities, J. Number Theory 85 (2000), no. 2, 231-252.
[4] \qquad , Residue theorem and theta function identities, Ramanujan J. 5 (2001), no. 2, 129-151.
[5] , Some theta functions identities associated with the modular equations of degree 5, Integers 1 (2001), A3, 14 pp.
[6] , Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), no. 1, 103-130.
[7] S. McCullough and L.-C. Shen, On the Szegõ kernel of an annulus, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1111-1121.
[8] S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927.
[9] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: with an account of the principal transcendental functions, Cambridge University Press, New York 1962.

Department of Mathmatics and Astronomy
Lucknow University
226007 Lucknow, India
E-mail address: bhaskarsrivastav@yahoo.com

