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SOME EISENSTEIN SERIES IDENTITIES RELATED TO

MODULAR EQUATION OF THE FOURTH ORDER

Bhaskar Srivastava

Abstract. We find some Eisenstein series related to modulus 4 using a
theta function identity of McCullough and Shen and residue theorem for
elliptic functions.

1. Introduction

The Eisenstein series P (q), Q(q) and R(q) are defined for |q| < 1 by

(1.1) P (q) := 1− 24

∞∑
n=1

nqn

1− qn
,

(1.2) Q(q) := 1 + 240
∞∑

n=1

n3qn

1− qn
,

and

(1.3) R(q) := 1− 504

∞∑
n=1

n5qn

1− qn
.

This is the notation used by Ramanujan in his lost notebook [8, pp. 136–
162], but in his ordinary notebooks, P, Q and R are replaced by L, M and N
respectively. We shall be using L, M and N , respectively, for P, Q and R.

We studied the continued fraction of Ramanujan

(1.4) C(q) = 1 +
(1 + q)

1+

q2

1+

(q + q3)

1+

q4

1 + · · ·
=

(q2; q4)2∞
(q; q4)∞(q3; q4)∞

and called this continued fraction analogous to the celebrated Rogers-Ramanu-
jan continued fraction R(q)

(1.5) R(q) =
q1/5

1+

q

1+

q2

1 + · · ·
= q1/5

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.
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Since the continued fraction C(q) sums to q-hypergeometric series on base 4,
motivated me to study Eisenstein series identities related to modular equations
of order 4. In this paper we will prove the following identities:

(1.6) 2

(
θ
′

1

θ1

)′ (π
4
|q
)
+

(
θ
′

1

θ1

)′ (π
2
|q
)
=

1

3

(
L(τ)− 42L(4τ)

)
,

(1.7) 2

(
θ
′

1

θ1

)′′′ (π
4
|q
)
+

(
θ
′

1

θ1

)′′′ (
2π

4
|q
)

=
2

15

(
M(τ)− 44M(4τ)

)
,

(1.8) 1− 4

∞∑
m=0

(
(4m+ 1)2q4m+1

1− q4m+1
− (4m+ 3)2q4m+3

1− q4m+3

)
=

η4(τ)η6(2τ)

η(4τ)η3(4τ)
,

(1.9)

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)]2

= 1 + 8

[ ∞∑
n=1

nqn

1− qn
−

∞∑
n=1

4nqn

1− q4n

]
,

and

(1.10)

160 + 128
∞∑

n=0

(
(4n+ 1)4q4n+1

1− q4n+1
− (4n+ 3)4q4n+3

1− q4n+3

)

= − 25

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)]5

+ 10

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)](
16

15
M(τ) +

2

15
44M(4τ)

)

+ 10

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)](
4

3
L(τ)− 16

3
L(4τ)

)2

.

The identity (1.10) is very interesting.

2. Preliminaries

Throughout the paper q = e2πiτ , Im(τ) > 0 and the standard q-notaions are
used:

(2.1) (a; q)∞ =
∞∏
k=0

(1− aqk),
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(2.2) (a; q)n =

n∏
k=1

(1− aqk−1),

and

(a)0 = (a; q)0 = 1.

The Dedekind eta-function is defined by

(2.3) η(τ) = q
1
24 (q; q)∞.

Jacobi theta function is defined as follows, see [9, p. 464]

(2.4) θ1(z|q) = −iq
1
8

∞∑
n=−∞

(−1)nq
n(n+1)

2 e(2n+1)iz

(2.5) = 2q
1
8

∞∑
n=0

(−1)nq
n(n+1)

2 sin(2n+ 1)z.

In terms of infinite products

(2.6) θ1(z|q) = 2q
1
8 sin z(q; q)∞(qe2iz; q)∞(qe−2iz; q)∞

(2.7) = iq
1
8 e−iz(q; q)∞(e2iz; q)∞(qe−2iz; q)∞.

Differentiating partially with respect to z and then putting z = 0, we have
the identity

(2.8) θ
′

1(q) = θ
′

1(0|q) = 2q
1
8 (q; q)3∞.

From the definition of θ1(z|q),

(2.9) θ1(z + nπ|q) = (−1)nθ1(z|q),

and

(2.10) θ1(z + nπτ |q) = (−1)nq−
n2

2 e−2nizθ1(z|q).

In this paper we shall be using the following residue theorem of elliptic
functions:
Theorem. The sum of all the residues of an elliptic function in the period
parallelogram is zero.

3. The proofs of (1.6) and (1.7)

By infinite product expansion for θ1(z|q) given in (2.7) and by simple com-
putation, we have

(3.1) θ1(4z|q4) =
(q4; q4)∞
(q; q)4∞

θ1(z|q)θ1(z −
π

4
|q)θ1(z +

π

4
|q)θ1(z −

π

2
|q).

Taking logarithmic derivative of both the sides of (3.1), we obtain

(3.2) 4
θ
′

1

θ1
(4z|q4)− θ

′

1

θ1
(z|q) = θ

′

1

θ1
(z − π

4
|q) + θ

′

1

θ1
(z +

π

4
|q) + θ

′

1

θ1
(z − π

2
|q).
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We now use the following identity, [6, eq.(2.10), p. 109] to simplify the left
hand side:

(3.3)

θ
′

1

θ1
(z|q) = 1

z
− 1

3
L(τ)z − 1

45
M(τ)z3 − 2

945
N(τ)z5

− 1

4725

(
1 + 480

∞∑
n=1

n7qn

1− qn

)
z7 + · · · .

So (3.2) can be written as

(3.4)

θ
′

1

θ1
(z − π

4
|q) + θ

′

1

θ1
(z +

π

4
|q) + θ

′

1

θ1
(z − π

2
|q)

=
1

3

(
L(τ)− 42L(4τ)

)
z +

1

45

(
M(τ)− 44M(4τ)

)
z3 +O(z5).

Differentiate both side of (3.4) with respect to z and then put z = 0 to get

(3.5) 2

(
θ
′

1

θ1

)′ (π
4
|q
)
+

(
θ
′

1

θ1

)′ (π
2
|q
)
=

1

3

(
L(τ)− 42L(4τ)

)
,

which proves (1.6).
Differentiate thrice both side of (3.4) with respect to z and then put z = 0

to get

2

(
θ
′

1

θ1

)′′′ (π
4
|q
)
+

(
θ
′

1

θ1

)′′′ (π
2
|q
)
=

2

15

(
M(τ)− 44M(4τ)

)
,

which proves (1.7).

4. The proof of (1.8)

Recall the following identity [6, eq.(8.1), p. 117]

(4.1)

cot2 y − cot2 x+ 8
∞∑

n=1

nqn

1− qn
(cos 2nx− cos 2ny)

= θ
′

1 (0|q)
2 θ1(x− y|q)θ1(x+ y|q)

θ21(x|q)θ21(y|q)
.

There is a slight misprint which has been corrected.
Differentiate (4.1) partially with respect to x then putting y = x to obtain

(4.2) 2 cotxcosec2x− 16
∞∑

n=1

n2qn

1− qn
sin 2nx =

θ
′

1(0|q)3θ1(2x|q)
θ41(x|q)

.

Putting x = π
4 in (4.2), we have

4− 16
∞∑

n=1

n2qn

1− qn
sin

nπ

2
= θ

′

1(0|q)3
[
θ1
(
π
2 |q
)

θ41
(
π
4 |q
)] ,
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or

4− 16

∞∑
n=1

n2qn

1− qn
sin

nπ

2
=

4(q; q)4∞(q2; q2)6∞
(q4; q4)4∞

,

so

1− 4
∞∑

m=0

(
(4m+ 1)2q4m+1

1− q4m+1
− (4m+ 3)2q4m+3

1− q4m+3

)
=

(q; q)4∞(q2; q2)6∞
(q4; q4)4∞

.

Using the definition of Dedekind eta-function defined in (2.3), we have

1− 4

∞∑
m=0

(
(4m+ 1)2q4m+1

1− q4m+1
− (4m+ 3)2q4m+3

1− q4m+3

)
=

η4(τ)η6(2τ)

η(4τ)η3(4τ)
,

which proves (1.8).

5. The proof of (1.9)

For proving (1.9) we first construct the following elliptic function:

(5.1) f(z) =
θ21(z +

π
4 |q)θ1(z +

π
2 |q)

θ31(z|q)

and use residue theorem of elliptic functions.
It is easy to see that f(z) is an elliptic function of periods π and πτ, and

has a pole of order 3 at z = 0. We now compute residue of f(z) at z = 0.
Now

(5.2) res(f ; 0) =
1

2

[
d2

dz2
(
z3f(z)

)]
z=0

.

Let

(5.3) F (z) = z3f(z) and φ(z) =
F

′
(z)

F (z)
.

By logarithmic differentiation

(5.4) res(f ; 0) =
1

2

[
d2

dz2
(
z3f(z)

)]
z=0

=
1

2
F (0)

[
φ(0)2 + φ

′
(0)
]
.

Now

(5.5)

φ(z) =
3z2f(z) + z3f

′
(z)

z3f(z)
=

3

z
+

f
′
(z)

f(z)

=
3

z
− 3

θ
′

1

θ1
(z|q) + 2

θ
′

1

θ1
(z +

π

4
|q) + θ

′

1

θ1
(z +

π

2
|q)

= L(τ)z + 2
θ
′

1

θ1
(z +

π

4
|q) + θ

′

1

θ1
(z +

π

2
|q) +O(z3).
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Now

(5.6)

θ
′

1

θ1
(
π

4
|q) = cot

π

4
+ 4

∞∑
n=1

qn

1− qn
sin

nπ

2

= 1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)
and

(5.7)
θ
′

1

θ1
(
π

2
|q) = 4

∞∑
n=1

qn

1− qn
sinnπ = 0.

So

(5.8) 2
θ
′

1

θ1
(
π

4
|q) + θ

′

1

θ1
(
π

2
|q) = 2

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)]
.

Putting z = 0 in (5.5) and using (5.8), we have

(5.9)

φ(0) = 2
θ
′

1

θ1
(
π

4
|q) + θ

′

1

θ1
(
π

2
|q)

= 2

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)]
.

Differentiating (5.5) with respect to z and then putting z = 0 and using
(3.5), we have

(5.10)

φ
′
(0) = L(τ) + 2

(
θ
′

1

θ1

)′ (π
4
|q
)
+

(
θ
′

1

θ1

)′ (π
2
|q
)

=
1

3
(4L(τ)− 16L(4τ))

=
1

3

[
4

(
1− 24

∞∑
n=1

nqn

1− qn

)
− 16

(
1− 24

∞∑
n=1

nq4n

1− q4n

)]

= − 4− 32
∞∑

n=1

nqn

1− qn
+ 128

∞∑
n=1

nq4n

1− q4n
.

Also

F (0) =
θ21(

π
4 |q)θ1(

π
2 |q)

θ
′
1(0|q)3

̸= 0.

Now by the residue theorem and using (5.4), we obtain

(5.11) φ(0)2 = −φ
′
(0).
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Hence from (5.9) and (5.10)

(5.12)

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)]2

= 1 + 8

[ ∞∑
n=1

nqn

1− qn
−

∞∑
n=1

4nqn

1− q4n

]
,

which is (1.9).

6. The proof of (1.10)

For proving (1.10) we construct the following elliptic function and use the
residue theorem of elliptic functions.

Let

(6.1) f(z) =
θ1(2z|q)θ21(z + π

4 |q)θ1(z +
π
2 |q)

θ71(z|q)
.

By (2.9) it is easily seen that f(z) is an elliptic function of periods π and πτ
with only one pole at z = 0 of order 6.

Now

(6.2) res(f ; 0) =
1

120

[
d5

dz5
(
z6f(z)

)]
z=0

.

To compute res(f ; 0), let

(6.3) F (z) = z6f(z) and φ(z) =
F

′
(z)

F (z)
.

By logarithmic differentiation and elementary computation, we get

(6.4)

d5

dz5
F (z)

= F (z)
[
φ(z)5 + 10φ(z)3φ

′
(z) + 5φ(z)φ

′′′
(z) + 10φ(z)2φ

′′
(z)

+ 5φ(z)φ
′
(z)2 + 10φ

′
(z)φ

′′
(z) + φ(4)(z)

]
.

It is obvious that

F (0) = lim
z→0

z6f(z) =
θ21(

π
4 |q)θ1(

π
2 |q)

θ
′
1(0|q)6

̸= 0.

We now calculate φ(0).
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From (6.3)
(6.5)

φ(z) =
6z5f(z) + z6f

′
(z)

z6f(z)
=

6

z
+

f
′
(z)

f(z)

=
6

z
+ 2

θ
′

1

θ1
(2z|q)− 7

θ
′

1

θ1
(z|q) + 2

θ
′

1

θ1
(z +

π

4
|q) + θ

′

1

θ1
(z +

π

2
|q)

= L(τ)z − z3

5
M(τ) + 2

θ
′

1

θ1
(z +

π

4
|q) + θ

′

1

θ1
(z +

π

2
|q) +O(z5) by (3.3).

Putting z = 0, we have

(6.6) φ(0) = 2
θ
′

1

θ1
(
π

4
|q) + θ

′

1

θ1
(
π

2
|q).

Hence by (5.8)

(6.7) φ(0) = 2

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)]
.

Diferentiating (6.5) with respect to z and then setting z = 0 and using (1.6),
we have

(6.8)

φ
′
(0) = L(τ) + 2

(
θ
′

1

θ1

)′ (π
4
|q
)
+

(
θ
′

1

θ1

)′ (π
2
|q
)

=
4

3
L(τ)− 16

3
L(4τ)

= − 4− 32
∞∑

n=1

nqn

1− qn
+ 128

∞∑
n=1

nq4n

1− q4n
by (1.1).

Diferentiating (6.5) twice with respect to z and setting z = 0, we have

(6.9) φ
′′
(0) = 2

(
θ
′

1

θ1

)′′ (π
4
|q
)
+

(
θ
′

1

θ1

)′′ (π
2
|q
)
.

Now for determining the right hand side of (6.9) we use the following identity
[9, p. 489]

(6.10)
θ
′

1

θ1
(z|τ) = cot z + 4

∞∑
n=1

qn

1− qn
sin 2nz.

Diferentiating (6.10) twice with respect to z, we get

(6.11)

(
θ
′

1

θ1

)′′

(z|τ) = 2cosec2z cot z − 16
∞∑

n=1

n2qn

1− qn
sin 2nz.
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Setting z = π
4 and z = π

2 , respectively in (6.11), we have(
θ
′

1

θ1

)′′

(
π

4
|τ) = 4− 16

∞∑
n=1

n2qn

1− qn
sin

nπ

2

= 4− 16
∞∑

n=0

[
(4n+ 1)2q4n+1

1− q4n+1
− (4n+ 3)2q4n+3

1− q4n+3

]
and (

θ
′

1

θ1

)′′

(
π

2
|τ) = 0.

Hence

(6.12) φ
′′
(0) = 8

[
1− 4

∞∑
n=0

(
(4n+ 1)2q4n+1

1− q4n+1
− (4n+ 3)2q4n+3

1− q4n+3

)]
.

Differentiating (6.5) thrice with respect to z and then putting z = 0 and
using (1.7), we have

(6.13)
φ

′′′
(0) = − 6

5
M(τ) + 2

(
θ
′

1

θ1

)′′′ (π
4
|q
)
+

(
θ
′

1

θ1

)′′′ (π
2
|q
)

= − 16

15
M(τ)− 2

15
44M(4τ) by (1.7)

and

φ(4)(0) = 2

(
θ
′

1

θ1

)(4) (π
4
|q
)
+

(
θ
′

1

θ1

)(4) (π
2
|q
)
.

By (6.10)

(6.14)

φ(4)(0) = 2 cot(4)
(π
4

)
+ cot(4)

(π
2

)
+ 128

∞∑
n=1

n4qn

1− qn
sin

nπ

2

= 160 + 128
∞∑

n=1

n4qn

1− qn
sin

nπ

2

= 160 + 128
∞∑

n=0

(
(4n+ 1)4q4n+1

1− q4n+1
− (4n+ 3)4q4n+3

1− q4n+3

)
.

Now by (6.2) and (6.4) the res(f ; 0) is
(6.15)

res(f ; 0) =
1

120
F (0)

[
φ(0)5 + 10φ(0)3φ

′
(0) + 5φ(0)φ

′′′
(0) + 10φ(0)2φ

′′
(0)

+ 5φ(0)φ
′
(0)2 + 10φ

′
(0)φ

′′
(0) + φ(4)(0)

]
.
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We see that φ(0) calculated in (5.9) is the same as in (6.7) and φ
′
(0) calcu-

lated in (5.10) is the same as in (6.8). Hence by (5.11)

φ(0)2 = −φ
′
(0).

Putting this in (6.15), res(f ; 0) simplifies to

res(f ; 0) =
1

120
F (0)

[
φ(0)5 + 5φ(0)φ

′′′
(0)− 5φ(0)φ

′
(0)2 + φ(4)(0)

]
.

Since res(f ; 0) = 0 by the residue theorem, we have

(6.16) φ(4)(0) = −
[
φ(0)5 + 5φ(0)φ

′′′
(0)− 5φ(0)φ

′
(0)2

]
.

Using (6.7), (6.8), (6.13) and (6.14) the identity in (6.16) simplifies to

160 + 128
∞∑

n=0

(
(4n+ 1)4q4n+1

1− q4n+1
− (4n+ 3)4q4n+3

1− q4n+3

)

= − 25

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)]5

+ 10

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)](
16

15
M(τ) +

2

15
44M(4τ)

)

+ 10

[
1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)](
4

3
L(τ)− 16

3
L(4τ)

)2

,

which is (1.10).
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