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ARITHMETIC OF THE MODULAR FUNCTION Ja
CHANG HeON KM anND Ja Kyung Koo

ABSTRACT. Since the modular curve X(4) = I'(4)\%* has genus
0, we have a field isomorphism K(X(4)) = C(j;) where js(2) =
03(%)/04(%) is a quotient of Jacobi theta series ([9]). We derive
recursion formulas for the Fourier coefficients of j; and N(js) (=the
normalized generator), respectively. And we apply these modular
functions to Thompson series and the construction of class fields.

1. Introduction

Let $ be the complex upper half plane. Then SLy(Z) acts on $
by (¢5)-7 =2 for 7 € . Let (N) (N = 1,2,3,---) be the
principal congruence subgroups of SLy(Z) of level N and let $* be the
union of ) and P}(Q). The modular curve T(N)\$* is a projective
closure of the smooth affine curve T'(N)\$), which we denote by X(N)
with genus gy. We identify the Tunction field K (X(N)) on the modular
curve X (V) with the field of modular functions of level N. By the genus
formula ([16] Ch.IV §7, or [17] Proposition 1.40), g5 = 0 only for the five
cases 1 < N < 5. Hence the field K(X(4)) is a rational function field
C(js), where a field generator j, (§2, Theorem 4) can be constructed by
using the theory of half integral modular forms. For generalities of half
integral forms, we refer to [10] and [18].

In §3 we shall derive a recursion formula for the Fourier coefficients of
Ja. Observing that the Fourier coefficients of the normalized generator
N(j4) vanish periodically, we shall prove this phenomenon in Theorem
8 rather generally.
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In §4 we shall show that the normalized generator N(j;) induces a
Thompson series of type 16 B and derives a recursion formula. In §5 we
shall explicitly construct some class fields over an imaginary quadratic
field from the modular function j4 by making use of Shimura theory and
standard results of complex multiplication.

Through this article we adopt the following notations:

$* the extended complex upper half plane

I', the isotropy subgroup of s

I(N) ={y€ SLy(Z)|y=1 mod N}

To(N ) the Hecke subgroup {(2%) € I'(1)] ¢=0 mod N}
( ) ={(¢ )EF(1)|a~d"1,CEO mod N}
(N) ={(2%)el(1)]b=c=0 mod N}
X(N) ey )\5"9*

Xo(N) = To(N)\H*

I’ the inhomogeneous group of I'(=T"/ £ I)

gh = e?m’z/h’ z€E f')

(y = 2N

Z, the ring of p-adic integers

Q, the field of p-adic numbers

a ~ b means that a is equivalent to b.

f(2) = g(z) + O(1) means that f(z) — g(z) is bounded as z goes to
100.

z — 100 denotes that z goes to i00.

fison T means that f is a modular function with respect to a group
L.

2. Hauptfunktionen of level 4 as a quotient of Jacobi theta
functions

For u,v € R and z € ), put

o LN
O,.(2) = %exp {m <n + 5#) z+ mnu} .

This series uniformly converges for Im(z) > n > 0, and hence defines a
holomorphic function on $.
—dripy
THEOREM 1. If 2 € §, then ©,,(z) = ‘z 2 )“% vu(—1/2).
bt 74
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Proof. Theorem 7:1.1 [15]. O
We recall the Jacobi theta functions 65,603, 6, defined by

0:(2) 1= Brp(x) = 3" "D

nez

0 ( @00 Z a3
neZ

0a(2) == B01(2) = Y_(-1)"¢5’
neL

Then we have the following transformation formulas.

THEOREM 2. For all z € 9,

(1) Oy(z+1) = ei™8y(2) (i) By(=1/2) = (—iz)264(2)
O5(z 4+ 1) = 04(2) 03(—1/2) = (—iz)265(2)
05(z + 1) = 05(2) 04(—1/z) = (—iz)16y(2).

Proof. Theorem 7.1.2 [15]. O

Let N be a multiple of 4. For v = (¢4) € I'((N), we define an
automorphy factor.j(vy, z) as follows:

i(y,2) = (S) e;'Vez+d

where ¢4 = 1 if d = 1 mod 4 and ¢ otherwise. Let I" be a congruence
subgroup of I'y( V) and f be a holomorphic function on § such that

flen, < £(2)

for all v € I'. Such a function is called a modular form of half-integral
weight k/2 for T when it satisfies some bounded condition at the cusps,

as described in [10], p. 182 or [18], p. 444. We denote by M. (T') the
vector space consisting of all such f.

THEOREM 3. 63(3) and 04(3) belong to M (f(4))
Proof. [9], Theorem 6. O
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Put
Ja(2)

VA Z
93('2‘)/94(5)
= 1+4qs+ 8gs® + 16¢,> + 32¢4* + 56¢4° + 96¢,° + 160g,” + - - -

THEOREM 4. K(X(4)) = C(js) and j4 has the following value at each
cusp: j4(00) = 1, 74(0) = oo (a simple pole), Ja(1) = i, jy(—=1) = —3,
Ja(—2) = 0 (a simple zero), js(3) = —1.

Proof. (9], Theorem 7. a

3. Some remarks on Fourier coefficients of j; and N(j,)

As before we let

jaz) = 63(%) _ ZneZ qu ,
94(3) Znez(-"l)"qg

=1+ 494 + 8g4® + 16¢® + 32¢4* + 564,° + 96¢,°

+ 160g," + 2565 + 404q,° + 624¢,'° + 944¢,"!

+ 1408¢,™ + 2072¢,™ + 3008¢,™ + 4320¢)° +

We will derive a recursion formula for the Fourier coefficients of the
modular function j4. First we need two lemmas.

LeEMMA 5. +(§9)7" T(4) (49) = To(16)
Proof. Straightforward. ) O

LEMMA 6. For N even, if f isonTy(N), thensois% (f|( 10 +f|( 11 ))
Here the meaning off|(ag) is just f((25)-2).

Proof. (1], Lemma 6. 0

PROPOSITION 7. Let ji(z) = =D "m0 bmdl". Then for k > 1,

ba-1 = ( Z bibok—j + b’ + Z ) b;bax—; + ba /2>

0<j<k 2<<2%k—1

bae =2 ) bibyj + b,

0<j<k
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byg1 = ( Z bjbok—j41 + Z (1) bibaj—jsa ‘b2k+12/2)>
0<j<k

2<j<2k

bagro = 2 z b;bok—j+1-

0<j<k

With the initial valuesby = 1, b, = 4 and b, = 8, we are able to determine
all b,,.

Proof. First we consider the identity

= =1/ by Theorem 2-(i).

Then j4 X ]4[( 12) = 1. This implies that 3 -obmgl" ¥ Em>0( 1)™bmgy

— 1. For k > 1, comparing the coefficients of the terms q3¥ and ¢3+2 on

both sides, we get
(3.1) b4k - b1b4k_1 + Z (—'1)jbjb4k_j + b2k2/2 =0

9<j<2k-1
and
(3.2) bag+2 — bibagi1 + Z 1)7b;bag_jez — boksa /2 =
2<j<2k

Now we define
def 1
Jalo, = (Jd(10)+7d(14))

Th ) = -1 + -1 . It follows
en ja|v 2(]4|(40)(10)(400) J4|(40 (11 (4 0)) olio
from Lemma 5 and 6 that js|y, is again on I'(4). And its Fourier expan-
sion is 3,50 bamgy". Here we shall examine the poles of j4|y,. Since jy
has poles only at the cusps equivalent to 0, Ja|u, can have poles only at
(14)7'D(4) - 0 for i = 0, 1. Moreover, we have
(34)7'T(@)-0=27(§5*)I(4)-0
~ (31 (5 7)T(4)-0
~(3DT@ (§7)-0=(3)T(4) - (=20
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Let (2%) be an element in ['(4). Then (§9)(¢})- (~2) = =% in
lowest terms. But ( 7442 ) = (9) mod 4. Hence jy|y, can have poles

only at the cusps equivalent to 0. We note from Theorem 2-(ii) that

03 z 3( 42
@9 ey = a1 = ey < o, +oClol)
Then
Gy =5 (5 49) + 431) (01
1
=3 (s 1)+J4'<4 1))
1
=3 (e g3n) +o
1

=—+0 by (3.3
10 () y (3.3).

On the other hand, 5,2 has poles only at 0 and
2 1
2l 01y = (Jalgo - = — +0(1).
J4 l(? o) (]4|((1) o )) 4qo +0(1)
Hence we get the following identity:
Jalv, = ja°.
After replacing js|y, (resp. ji) by > om0 bgmqf{’ (resp. >0 bmaf), if

we compare the coefficients of the terms ¢2* and ¢2**! on both sides for
k > 1, we obtain '

(3.4) bak =2 Y bibay—; + by
‘ 0<j<k
and
(3.5) bacra =2 > bibo_ji.
0<j<k
By equating (3.1) and (3.4) (resp. (3.2) and (3.5)) we come up with
bgr—1 (resp. bgry1) as desired. O

Let I' be a Fuchsian group of the first kind with £, = {£ (4 )" |n €
Z}. For f € K(X(I')), we call f “normalized” if its ¢ series begins
lh + 0+ a1gy + as2g} + --- . When I' = I'(4), we will construct the
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normalized generator from the modular function j; described in Theorem
4 as follows.

4 4 64(%)
=1 63— 6(3)
_ 1-2gs+2q5 — 203 +2° + - --
B Gt g +g+ -

1
=2t 2¢§ — g — 2¢;" + 3¢;° + 2¢°
4

—4g;7 — 4q) +5¢§" + 8¢ — 8¢ +- -+,

which is in ¢47'Z[[q4]] because g4 +q4 + - ~|—q(2n Vie QZ{[g)]*.

Let N(j) = 34—4; + 2. Then N(j,) is normahzed and unique ([Lemma
10)).

Write N(j1) = ¢;' + 3,1 Hnq?*. We then observe from the series
expansion that H,, = 0 unless m = 3 mod 4. We will explain this
cycle of nonvanishing in the following. Let ¢ be a normalized modular
function. Then for each n > 1 there exists-a unique polynomial X, (t)
in ¢ such that X,(t) = 1¢;” mod ¢,C[[gs]]. In particular, X;(¢t) = ¢.

THEOREM 8. Let t be the normalized generator of K(X(N)) for 2 <
N < 5. If we write Xp(t) = 2q5" + > o1 Hmund, then Hp,, = 0 unless
m=-n mod N.

Proof. Since T'(N) is a normal subgroup of SLy(Z), it follows that
Xn(t)l( 1) is again on I'(V). We investigate the poles of Xn(t)[( 11y

Since X, (t) has poles only at I'(N)oo, Xn(t)l( 11) has poles only at
(1) P(N)oo. But

(A1)'D(N)oo = T(N) (1) " oo = I(N)oo.
At a neighborhood of oo, X (t)l( 1) has the following expansion:

Xn(t)l( 11y = —CN" N +ZHmn v

m>1
Moreover both Xn(t)l( 1) and (" X,(t) have poles only at I'(V)oo and
the same residues at co. Hence Xn(t)|( 11y~ ¢n"Xn(t) has no poles in

$H* so that Xn(t)f( 11y = ¢N"Xn(t). Considering their gy-expansions we
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get

1 - . —n m ,.m 1 -n, —n -7 m

;L‘CN qn +ZHm,n NIN = ECN an +ZCN Hyndy-

m2>1 m>1
This implies that (¥ — (3") X Hnn = 0, from which the assertion
follows. O
REMARK 9. We note that

(3.6) (F9) I (§9) =To(N?).

From the index formulas (p.76, 79 in [16]) we can check that ['(N) =
fg(N) for N = 2,3,4 and T'(5) is a subgroup of index 2 in fg(S). Let
t be the normalized generator of K(X(N)) as in Theorem 8. When
N =2, 3,4, it follows from (3.6) that ¢(/Nz) is the normalized generator
of To(N?). By [2] and [4] it corresponds to the Thompson series of type
4C (resp. 9B, 16B) if N = 2 (resp. 3,4). Hence for N = 2,3,4, the
Fourier coefficients of t(Nz) has the same cycle of nonvanishing as stated
in Theorem 8, that is, if {(Nz) = é—{- > om>1 Hmq™, then Hy, = Hppy =0
unless m = —1 mod N (see: Table 4 in [4]).

4. Application to Thompson series

In this section we shall relate the Fourier coefficients of N(js)(42) to
representations of the monster group, and derive a recursion formula for
the Fourier coefficients.

LEMMA 10. The normalized generator of a genus zero function field
is unique.

Proof. Let T' be a Fuchsian group such that the genus of the curve
'\$H* is zero. Assume that K(X(I')) = C(J;) = C(J2) where J; and
Jo are normalized. We can then write their Fourier expansions as J; =

1 1
21-+0+a1q+a2q2—+---- and J, = — + 0+ bjg + byg®> + --- . Observe
that 1 = [K(X(T)) : C(J)] = w(Ji) = vo(J;) for i = 1,2. Hence, J;

and J, have only one zero and one pole whose orders are simple. We
see that the only poles of J; occur at co. Then, J; — J, has no poles

1
because the two series start with =. So, it should be a constant. Since

Jy — Jy = (a; — by)g + - -, this constant must be zero. This proves the
lemma. ]
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Let § be the set of functions f(z) satisfying the following conditions:

(i) f(z) € K(X(T)) for some discrete subgroup I' of SLy(R) that
contains I'y(N) for some N.
(i) The genus of the curve X(T) is 0 and its function field K(X 8)
is equal to C(f).
(iii) In a neighborhood of co, f(2) is expressed in the form

f(z) = % + Zanq", a, € C.

n=0

We say that a pair (G,®) is a “moonshine” for a finite group G if ¢ is
a function from G to § defined by ¢,(z) = ; + ao(0) + 232, an(0)q"
for ¢ € G and the mapping ¢ — a,(o) from G to C for each n is
a generalized character of G. In particular, ¢, is a class function of G.
Finding or constructing a moonshine (G, ¢) for a given group G, however,
involves some nontrivial work. It is because that for each element ¢ of G,
we have to find a natural number N and a Fuchsian group I containing
T'1(N) in such a way that its function field K (X (I')) is equal to C(¢,) and
the coefficients a,(0) of the expansion of ¢,(z) at co induce generalized
characters for all n > 1.

However, the following theorem conjectured by Thompson and proved
by Borcherds shows that there exists a “moonshine” for the monster
group M whose order is approximately 8 x 10%. Let j be the modular
invariant of I'(1) whose g-series is '

4.7) G=q i HT44+196884 g+ = & q

Then j — 744 is the normalized generator of I'(1). Thompson proposed
that the coefficients in the g-series for j — 744 be replaced by the repre-
sentations of M so that we obtain a formal series

H_1q“1+0+H1q+H2q2+---

in which the H, are certain representations of M called head represen-
tations. H, has degree c, as in (4.7), for example, H_, is the trivial
representation (degree 1), while H, is the sum of this and the degree
196883 representation and H, is the sum of former two and the degree
21296876 representation ([20]).



716 Chang Heon Kim and Ja Kyung Koo

THEOREM 11. The series

1
Tn=_+ 0+ Hy(m)g + Hy(m)g" + - -

is the normalized generator of a genus zero function field arising from
a group between I'o(V) and its normalizer in PSL,(R), where m is an
element of M and H,(m) is the character value of head representation
H, at m ([1], [2]). We call T,, the Thompson series of type m.

By Lemma 5 the map which sends f to f(42) (= f |( 40 )) defines an

isomorphism between the fields K(X(4)) and K (X((16)). Note that the
image of a generator under an isomorphism is again a generator. Hence
N(j4)(42) generates the field K(X,(16)) over C and is still normalized.
Now by Lemma 10, Table 3 and 4 in [4] we have

THEOREM 12. N(3j4)(42) is the normalized generator of K(Xy(16))
which corresponds to the Thompson series of type 16B.

REMARK 13. Let m be the conjugacy class of M of order 16 and type
B in Atlas notation ([3]). Since N(j4)(4z2) is the Thompson series of type
m by Theorem 12, we can write it as ql—f—erl H,(m)q" with H,(m) the
character value of head representation H,. Let x, (r = 1,2,--- ,194)
be the irreducible characters of the monster group M. Since we know
the Fourier coefficients of N(j;)(42) and the character values x,(m) ([3],
p.221) together, we can check the following relations from the decompo-
sition of head character into irreducible characters ([4] Table 1a, [20]):

H_j(m) =xi(m) =1

Hy(m) = x1(m) + x2(m)

Hy(m) = x1(m) + x2(m) + x3(m)

Hj(m) = 2x1(m) + 2x2(m) + x3(m) + xa(m)

Hy(m) = 2x1(m) + 3xa(m) + 2x3(m) + x4(m) + 0 - x5(m) + x6(m)

Hy(m) = 4x1(m) + 5xa(m) + 3xs(m) + 2x4(m) + xs5(m) + x6(m) +
xz7(m), etc.

Let N be a positive integer and S be a set of Hall divisors of NV.
By N + S we mean the subgroup of PSLy(R) generated by I'y(/N) and
all the Atkin-Lehner involutions Wy n for ) € S. We assume that
the genus of the curve X (N + S) is zero. Let t = ¢7' + 3, Hn.q™
be the normalized generator of the function field of X(N + S) as a
completely replicable function. Let ¢? be the normalized generator of
the function field of X(N® + S®)) where N@ = N/(2,N) and S® is
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the set of all Q in S which divide N®. Define t®) to be (t&))®. Write
& =g '+ 3 o Hn ()gm. Using Norton’s idea ([14], also see [2], [4] and
[11]), we can derive a recurs1on formula in terms of the coefficients of ¢
and t®, which is shown in [7] step by step. For the sake of convenience
of the reader, we will state the formula in the following;:

(4.8)

H? — H(2)
Hy, = Hoppq + 5 k4 Z H;Ho_;
1<i<k
Hi + HY  H @
Hypr = Hapyz — HyHyp + =2 5 ey kel 5 kil
+ Z HjHopji2 + Z H§2)H4k—4j+ Z (1Y H;Hy;

1<5<k 1<j<k 1<%

Hypyo = Hopyp + z H;Hy

1<5<k
2
Hp o = Hyl
‘ 2
+ Z H;Hy ji3+ Z H;2)H4k—4j+2+ Z (-1)]HjH4k—j+2‘

1<5<k+1 1<5<k 1<j<2

H4k+3 = H2k+_4 - H2H2k+1 -

From the above formulas, we see that if m = 4 or m > 5 then H,, can
be determined by the coefficients H; and Hi(z) for 1 € i < m, and so if
we know all HY for m = 1,2,3, and 5 together with s = 2! then we can
work out all the coefficients H,,. Now we take N = 16 and S = {1}.
Then t = N(j;)(42), and #®) is the normalized generator of the function
field of X(16/2!) for 1 < I < 3. And for I > 4, @) is the normalized

generator of the function field of Xy(1). We summarize the above as
follows.

THEOREM 14. If we know the 20 coefficients { H” ) |i=1,2,3 and 5,
0 < < 4}, then all the coefficients H,, of the modular functmn N (Ja) (4z)
can be determined.

Observe that we actually know all the coefficients menfioned above,
which would be as follows:

Hy=0,Hy=0, Hy =2, H; =0 by the definition of N(j,)(4z2),
H? =4 HP =0, H? =2, H® = —8 by Table 3 and 4 in [4],
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HY =20, HY =0, HY = —62 HY =216 by [7],

H® =276, H® = —2048, H® = 11202 H® = 184024 by [8),

H' = 196884, H® = 21493760, H{'® = 864299970 H{'® =
333202640600 by [4]. Here, the modular functions 7, » and j; 4 are given
by jia(2) = 02(2)3/64(22)% and ji4(2) = 02(22)%/05(22)*, respectively
for z € §.

5. Application to Class Fields

Let I" be a Fuchsian group of the first kind. Then I'\$* (= X(TI)) is a
compact Riemann surface. Hence, there exists a projective nonsingular
algebraic curve V, defined over C, that is biregularly isomorphic to I'\ §*.
We specify a I'-invariant holomorphic map ¢ of $* to V which gives a
biregular isomorphism of I'\$)* to V. In that situation, we call (V) a
model of I'\$*. Now we assume that the genus of I'\$)* is zero. Then
its function field K(X(I")) is equal to C(J’) for some J' in K(X(T)).

LemMA 15. (PY(C), J’) is a model of T\$H*.
Proof. (7], Lemma 14. O

Let G be the adelization of an algebraic group G = G L, defined over
Q. Put

G, = GLy(Q,) (p : rational prime),
Go = GLy(R),

Goor = {z € Gooldet(z) > 0},

Gq. = {z € GL(Q)| det(z) > 0}.

We define the topology of G, by taking U = [[,GL2(Z,) X Geoy to be
an open subgroup of G5. Let K be an imaginary quadratic field and £
be an embedding of K into M»(Q). We call ¢ normalized if it is defined
by a(%) = &(a)({) for a € K where z is the fixed point of §(K*)
(C Gg,) in $. The embedding £ defines a continuous homomorphism
of K; into G4, which we denote again by &. Here Ga, is the group
GoGs+ with Gy the non-archimedean part of G, and K,* the idele
group of K. Let Z be the set of open subgroups S of G4, containing
Q*G 4 such that S/Q* Gy, is compact. For S € Z, we see that det(S)
is open in Q. Therefore the subgroup Q*-det(S) of Q, corresponds
to a finite abelian extension of QQ, which we write ks. Put I's = SNGq_
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for S € Z. Then it is well known ([17], Proposition 6.27) that I's/Q* is
a Fuchsian group of the first kind commensurable with T'(1)/{£1}. Let
Uv={z=(z,) €U| z,=1 mod N-My(Z,)}. We then have

LEMMA 16. (i) Q*Uy € Z.
(i) ks = Q(Cn), if S =Q"Uy.
(iii) T's = Q*T(N) if S = Q*Uy.

Proof. First, we observe that Q*Uy is an open subgroup of Q*U.
Hence, for (i) it is enough to show that Q*U/Q* G, is compact. But,
we know that Q*U/Q*G s, = [[ GLa(Z,) is compact. Let Vy, = {a =
(o) € Q| @ =1 mod* Npe, o, € Zy for pt N} where py, denotes
the infinite Q-prime. Here @ = 1 mod* Np, means that each a, is
congruent to 1 mod pF'Z, if N = p}*-- .p" and ap, > 0. Asis well
known ([6], Theorem 13-1-4), Q({y) is the class field corresponding to
Q*Viy,,. Now as for (it), it suffices to show that det(Uy) = Vy,,,. For
(z,) € Uy, detz, =1 mod NZ, =1 mod p"Z, when p"||N. Hence,
det Uy C Vip, . Conversely, for (a,) € Vi, take z, = ((1,,,2, ). Since
NZ, = p"Z, and a, =1 mod p"Z, for p"||N, it is clear that (z,) € Uy
and detz, = a,. Finally, if § = Q*Uy, we have I's = Q*Uy N Gq, =
Q*(Uny N Gg,) = Q*T(N). O

REMARK 17. For z € K N §, we consider a normalized embedding
& : K — My(Q) defined by a(§) = £(a)(§) for a € K. Then 2
is the fixed point of &,(K*) in $. Let (Vs,ps) be a model of I's\$*.
By Lemma 16-(iii), s = Q*I'(4) when S = Q*Uy with N = 4. By
Theorem 4 and Lemma 15, we can take ¢g = j4 and Vg = P!. It follows
from the fact ([17], Proposition 6.31-(ii)) that js(2) belongs to P(K?)
where K is the maximal abelian extension of K. Furthermore, it is
true that 6;(z) has no zeros in § for i=2,3,4. Hence, we conclude that
ja(z) in fact sits in K% for z€ KN $.

THEOREM 18. Let K be an imaginary quadratic field and let &, be
the normalized embedding for z € KN $. Then jy(z) € K® and
K(i,54(2)) if i (= vV/=1) ¢ K (or K(ju(2)) if i € K) is a class field of
K corresponding to the subgroup K> -&;Y(Q*Us) of K.

Proof. 1t follows from Lemma 16-(ii) and (iii) that ks = Q({4) = Q(%)
and s = Q*I'(4) when S = Q*Uy with N = 4. Since j, gives a model

of the curve X (4), we can take pg = j;. Then the assertion follows from
[17], Proposition 6.33 and Remark 17. a
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In view of standard results of complex multiplication, it is interesting
to investigate whether the value j;(«) is a generator for a certain full
ray class field if « is the quotient of a basis of an ideal belonging to the
maximal order in an imaginary quadratic field. We first need a result of
complex multiplication.

THEOREM 19. Let §n be the field of modular functions of level N
rational over Q(e*™/N), and let K be an imaginary quadratic field. Let
Ok be the maximal order of K and 2 be an Ok-ideal such that U =
[21,20] and z = 2z /2, € §). Then the field KZn(z) generated over K by
all values f(z) with f € §y and f defined at z, is the ray class field over
K with conductor N.

Proof. [12], Ch. 10 Corollary of Theorem 2. O
LEMMA 20. 34 = Q(2, 74)-

Proof. First, note that §; and C are linearly disjoint over Q(¢). In-
deed, let p1,- - , um be the elements of C which are linearly independent

over Q(i). Assume that >_.p;0; =0 with ¢; inFs Let gi =3 cings”
with ¢;, € Q(2). Then ), p;cin = 0 for every n, which implies ¢;, = 0
for all ¢ and n. Hence gy = --- = g,, = 0. We then have the field tower

C(ja)

N

Q(l Ja)
From the tower ([13], p. 361) we see that §, and C(j,) are linearly disjoint
over Q(¢, j4). Hence, again by Theorem 4

1< [Fa: Q5 41)] < [CFa: Clh)] < [K(X(4)) : K(X(4))] =1
which yields that §4 = Q(4, 7). |
THEOREM 21. Let K and z be as in Theorem 19. Then the field

K3, ja(2)) (or K(ja(2))) described in Theorem 18 is the ray class field
over K with conductor 4.
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Proof. Immediate from Theorem 19 and Lemma 20. O

As its examples, we deal with the two cases when K = Q(i) and
Q(+/—3). To this end we need a lemma.

LEMMA 22. (i) For a positive real z, ji(zi) > 0.
(i) Forz € 9, j4(22)* = 2(]4(2) +J4(z) b,

(ifi) ja(5) = %%%;%ii forn € NU {0}.
(iv) ja(22)" = 5 where A\(2) = gﬂ 8

Proof. First, we observe that from the formula (23), p. 104 in [5]

1 z z
o el eE)-u).
' 1 z z
(5:10) u(2) =5 (6 (3) +:(3))-
It follows from the definition that 63(%) = Znez emHEn? =3 .z =5
0. And by Theorem 2-(ii) and (5.9), 04 (%) =6, (—%) = (__121)7 0, (uz,)
= \/g 5 (65 (£) —04(£)) > 0. This implies (i). For the second, we
readily get that
02 _ 0a(3)° + 03"
04(2)? 205(%) 64(%)
1. AN
= 5 (Ja(2) + Ja(2) h.
Thirdly, for n € NU {0}
(1 Os(5kr)  85(27) o
J4 (2n> S B B2 by Theorem 2-(ii)
03(211 1 )_+_04(2n 1 )
03(2”‘" 'L) - (2" 1 )
_ Ja(2M) +1

3a(22)? = by [15], Theorem 7.1.8

by (5.9) and (5.10)

T is(2M) -1
s . 4 2)! -
Finally, j,(22)* = zzg;l = 03(33(_(32(2)4 = 1—/1\(2)' This completes the

lemma. ‘ O
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PROPOSITION 23. Let K4 denote the ray class field over K with
conductor 4.

(i) If K = Q(i), then K4 = K(V/2).
(ii) If K = Q(v/=3), then K4 = K(V/3).

One can compare these with Exercises 2.13 (a) and 2.14 (a) in [19).

Proof. (i) If K = Q(i), Ok = Zi + Z. Hence by Theorem 21, K4 =
K(ja(%)). In Lemma 22-(iii), let us take n = 0. Then we come up with
js(i) = 14 /2. By Lemma 22-(i), 54(s) > 0 and so j,(i) = 1 + v/2.
Hence K4 = K(V/2).

(ii) If K = Q(v/-3), Ok = Zp + Z where p = /3 = —1 4 3?1 Then
again by Theorem 21,
(5.11) Ky = K(3, j4(p))-

It is well-known ([15], p. 228) that A(p) = —p = {;~'. Using Lemma
22-(iv), we have j4(2p) = £(; or +i(;!. On the other hand,

By(p)  1+23,, €OV CIT) oY | emnt i)
94(/)) B 1 + 2En>1 e1l’i(2n,)2 —l+£Z) _ 22” 7!'2(2n+1)2 —%4—@2)

Ja(2p) =

Here we observe that »_ ., emin) (= 3+ ) st e £r@n)® 404

Do i o R LG 7'
p=1+2 Z e~ éw@n)z and g =2 Z e—ﬁgr@n-{»l)z.
n21 n>1

Then js(2p) = H. We note that p,g > 0 and p—q = &;(?i) >0
which is shown in the proof of Lemma 22-(i). Hence j,(2p) lies in the 4-
th quadrant of complex plane, from which we conclude that js(2p) = (5.

Now taking z = p in Lemma 22-(ii) and substituting j,(2p) with (3!, we

derive
) - _ 3 1
J4(p):Cl2liC61:—\g___%i (“%)

In any cases jy(p) € Q(v/3,i). Then it is easy to see that Q(+/3,i) =
K (i) = K(v/3). Therefore by (5.11) we have Ky = K(V/3), as desired.
a
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