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A Short Note on Superefficiency

Youngjo Lee* and Byeong U. Park®*

ABSTRACT

In Le Cam’s earlier work on superefficiency, it is proved that if an estimate is superefficient
at a given parameter value 0, then there must exist an infinite sequence {6.} of values(conver-
ging to 0;) at which this estimate is worse than M.L.E. for certain classes of loss functions.
For one-dimensional cases, these classes of loss functions include squared error loss. Howe-
ver, for multi-dimensional cases, they do not. This note is to give an example where a
superefficient estimator of a multi-dimensional parameter is not inferior to M.L.E. along
any sequence {o.} converging to the point of superefficiency with respect to the squared error
loss.

1. Introduction

The two main points related to superefficient estimators which have been explored by Le Cam
(1953), are as follows.

1. The set of superefficiency must be of Lebesque measure zero.

2. If an estimate is superefficient at a given parameter value 0o, then there must exist an
infinite sequence {0.} converging to 6, at which this estimate is worse than M.L.E. for
certain classes of loss functions.

Here 2 means that good performance at one point 0, entails certain unpleasant properties of

the risk of the estimators in the neighborhood of 0.

The classes of loss functions considered in 1 and 2 above are broad enough to include every
reasonable loss functions in one-dimensional cases. In particular, we only need to require that
the loss function L(x) satisfies

1) L is bounded below

2) As a function of A

fL(x)exp{——;— cCx—A)¥dx
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has a minimum at A =0 for any positive number ¢ contained in some closed interval.

Remark The squared error loss function L(x)=x" satisfies the above two conditions.

In the case of a multi-dimensional parameter, additional conditions should be imposed on
the loss function to keep 2 valid. One of sufficient conditions which entail 2 is that L(x) depends
only on a linear combination of the coordinates of x(c.f. Le Cam 1953, page 327).

In this paper we give an example which shows that 2 is invalid if we use squared error loss
in the case of a multi-dimensional parameter. In particular, we show that the shrinkage estimator
is superefficient at some point and the limit of its risk(with respect to the squared error loss)
along any sequence of parameter values converging to the point of superefficiency is not greater
than that of M.L.E.

2. Superefficiency of the Shrinkage Estimator

For a p-dimensional parameter 0, a superefficient estimate of 6 is defined as follows{(cf. Le
Cam, 1953).

Definition Let A(T),, T., 0)= lim (R.AT,, 8)—R.(T,, )] where R(T,, 8)=E, L.(T., 6)

and L. is a loss function which may depend on #. An estimate 7, is called superefficient with
respect to {L} if ACT, 8um» 0)<0 for every 6 € ® and A(T, &um 8) <0 for at least one value
9" € @ where & is the M.L.E. of u(@).

In Theorem 14 of Le Cam (1953), it is asserted that for one-dimensional parameters, if T,
is superefficient at a point €, then there must exist an infinite sequence {6.} which converges
to 8, and

Jim [R(T. 8)—R.3,,. 81>0

for certain classes of loss functions. This tells us that the reduction in risk at one point is balanced
by an increase in risk in the neighborfood of that point. However, as indicated in Le Cam(1953),
this result can not be extended to multi-dimensional case in obvious way. In particular, some
severe restrictions should be imposed on the loss functions. In this section, we will see that
for the squared error loss

LT, ©)=nZ (T,~u0)* 2.1

the result is no longer valid for multi-dimensional cases.

First we will introduce some techniques to handle the expectation of functions of noncentral
yx* random variables. This is based on the work by Peixoto(1982). Let X~N,(8, I,). Then
X1 is distributed as a noncentral y* with p degrees of freedom and noncentrality parameter
A =11811%/2.

Define Z to be a poisson random variable with parameter A. The following three lemmas
will be useful to calculate the expected values of some functions of the normal random variable
X through those of the poisson random variable Z. Assume p is greater than two. Proofs of
the following results are given in Peixoto(1982).
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Lemma 2.1
E[fQx1»1=Elg(2)]

where g(2) =EE[f({.) | Z1}.
Therefore, we can have

E1/1X1»=EL1/(p+2Z—2)]
and

ELQ/ W X1)1=AEL1/(p+2Z2—-2)(p+2Z—4)].
1/(p+2Z2—2)(p+2Z—q)].

Lemma 2.2
ElZg(Z)1=AElg(Z+D]1.

Using Lemma 2.1, it is not so hard to get the following lemma.

Lemma 2.3

ELX: X)) 1=6: Elg(Z+ D],

EflX? f( ”)_(“2) ] ZE;LQ(Z‘I' DI+ BFEA[g(Z+ 2],
and for ixj

ELX: X; X110 1=08E.[g(Z+2)].

If A =0, then each 6: is zero. Therefore, the above expectation will become zero. With the
help of the above three lemmas, we can obtain the following formula :

EX/1 X1 =6; EL1/(p+22)], (2.2)

ELX/1X1]=6; EL1/(p+22) (p+2Z—-2)], 2.3
2 2 l/p A =0

ELX/1x={ ELQ+6Z/0)/(p+22)] if Az0, 2.9

. o 1/p(p—2) if A =0
ELX./ Xl ]={EA[(1+932/)\)/(1)+2Z) (p+2Z—2)1  if A0, (2.5)

ELX: X/ 1X17)=0; 6EL[1/(p+2Z+2)], (2.6)

E[X: X/ 1 Xud)=6: 6E[1/(p+22)(p+2Z+2)], @.7
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Here the equations (2.6) and (2.7) hold for i=j. Now let {X,} be a sequence of random variables
such that _

X,~N;(8, L/n).
Then the James-Stein estimator of 8 based on 7_(., is

87X =X, — (p— DX,/ (Xl
where

RIX P~ (P, n1B1%/2)
Let 8 be the i-th coordinate of 8.”. Then

Edn[ 8" X)—6] - n[8" X.)—6]}

=Cov(n"* 8" (X.), n?8; 6'8))

+ELG(p—2n" X,/ XD ] + EL (p~Dn*2 X,/ riX1) 1.
By (2.2) and the fact that

E[V@p+20)1<(@ ) (1—e™)
where Z is poisson random variable with prameter A, we have for 10/°+0

| Eoln"* Xo/ iZaD] | <(20) 7' 1 6,1 (1=e™) =0
as n—~o where AL,=n|0|* /2. Therefore

lim Edn [ 8] X)—6] - "5 X)—0]}

= lim Coo(n**8,) (X.), n*8,] (X.))-

Furthermore since
7 X,/ (1K) = 0,(n72) if 1181%0,
we have

Jim Efn [6” CO—01[86” (X)—01}=I  if 19)%20.

When (18]°=0, n"* 8§") (X,.)’s have the same distribution for all # since n"’X,.“'Np(O, 1) for

each n. For this case note that
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lim E[n*2 5% X1 287 X)1=] 0 if i)
#>o 2/p ifi=j

since

E(n"* Xoi - 0V X0 ) = {2 ii zijj,

E[n" X,. * 1" X0/ 01X 1= {10/1, if z ijj 2.8)
and

En" Xoi * 0" Xoi/ (0 (1 X)) = {10/1,(1,—2) i{ ﬁ zjj 2.9)

Here (2.8) follows from (2.4) and (2.6), and (2.9) from (2.5) and (2.7). Therefore,

— — J/ if 18170
. 12 (n) _ R 1/2 (n) _ ‘= 4 ; I
"gxgEe{n 06" (X.)—01 - n2[5,” (X,)—81'} o/ i 1B17=0.

From the above equation, we can see that the James-Stein estimator is a superefficient estimator
with respect to the squared error loss defined in (2.1) when p>3.

Now consdier any sequence of nonzero p-dimensional vectors {6,} converging to 0. When
n"20,~>c(c#0) or 7 [|6,)1>~>c0, then by similar arguments as in the case of fixed § with 11810,
we can get

JimEfn [5;” (X)—0,1 08" X) —8.1'}=1,. (2.10)

when %2 0,—0, we have

_ _ 0 if ]
mE, {2 [87] &) —0.In"* [ 8 () —0,1}= ii iy : (2.11)

Here d<1 if p>3. The identity for the case i % in (2.11) follows from applying (2.6) and
(2.7). The identity for the case i = follows from the facts

limE, [nX; 1=1,
LmE, X2/ GuXa®) 1=0
and

HmE, X/ iX]= lim B, [(1+26}, Z/ M)/ (p+22)1> im E, [p+2217>0

where A,=n110,1>/2. Thus from (2.10) and (2.11)
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lim [R,(8,”, 8,) —R.(8,,, 8.)1<0

for any sequence {Q,,} converging to 0.
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