• Title/Summary/Keyword: the property of multiplication

Search Result 56, Processing Time 0.023 seconds

A Comparative Analysis of Instructional Methods on the Properties of Multiplication in Elementary Mathematics Textbooks of Korea, Japan, and the US (한국, 일본, 미국의 초등학교 수학교과서에서 범자연수 곱셈의 연산 성질을 지도하는 방안에 대한 비교·분석)

  • Sunwoo, Jin
    • Education of Primary School Mathematics
    • /
    • v.22 no.3
    • /
    • pp.181-203
    • /
    • 2019
  • Even though the properties of operations in multiplication serve a fundamental basis of conceptual understanding the multiplication with whole numbers for elementary students, there has been lack of research in this field. Given this, the purpose of this study was to analyze instructional methods related to the properties of operations in multiplication (i.e., commutative property of multiplication, associative property of multiplication, distributive property of multiplication over addition) in a series of mathematics textbooks of Korea, Japan, and the US. The overall analysis was conducted in the following two aspects: (a) when and how to deal with the properties of multiplication in three instructional context (i.e., introduction, application, generalization), and (b) what models use to represent the properties of multiplication. The results of this showed that overall similarities in introducing the properties of multiplication .in (one digit) ${\times}$ (one digit) as well as emphasizing the divers representation. However, subtle but meaningful differences were analyzed in applying and generalizing the properties of multiplication. Based on these results, this paper closes with some implications on how to teach the properties of operations in multiplication properties in elementary mathematics.

An Analysis of Third Graders' Understanding of the Properties of Multiplication by Elementary Mathematics Instruction (곱셈의 연산 성질을 강조한 초등 수학 수업에 따른 3학년 학생들의 이해 분석)

  • Sunwoo, Jin;Pang, JeongSuk
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.23 no.1
    • /
    • pp.143-168
    • /
    • 2019
  • Along with the significance of algebraic thinking in elementary school, it has been recently emphasized that the properties of number and operations need to be explored in a meaningful way rather than in an implicit way. Given this, the purpose of this study was to analyze how third graders could understand the properties of operations in multiplication after they were taught such properties through a reconstructed unit of multiplication. For this purpose, the students from three classes participated in this study and they completed pre-test and post-test of the properties of operations in multiplication. The results of this study showed that in the post-test most students were able to employ the associative property, commutative property, and distributive property of multiplication in (two digits) × (one digit) and were successful in applying such properties in (two digits) × (two digits). Some students also refined their explanation by generalizing computational properties. This paper closes with some implications on how to teach computational properties in elementary mathematics.

  • PDF

Exploring the Principle of Computation between Two-Digit Number and One-Digit Number: A Case Study of Using Cuisenaire Rods and Array Models ((두 자리 수)×(한 자리 수)의 계산 원리 탐구 - 퀴즈네어 막대와 배열 모델을 활용한 수업 사례 연구 -)

  • Kim, JeongWon;Pang, JeongSuk
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.2
    • /
    • pp.249-267
    • /
    • 2017
  • The unit of multiplication in the mathematics textbook for third graders deals with two-digit number multiplied by one-digit number. Students tend to perform multiplication without necessarily understanding the principle behind the calculation. Against this background, we designed the unit in a way for students to explore the principle of multiplication with cuisenaire rods and array models. The results of this study showed that most students were able to represent the process of multiplication with both cuisenaire rods and array models and to connect such a process with multiplicative expressions. More importantly, the associative property of multiplication and the distributive property of multiplication over addition were meaningfully used in the process of writing expressions. To be sure, some students at first had difficulties in representing the process of multiplication but overcame such difficulties through the whole-class discussion. This study is expected to suggest implications for how to teach multiplication on the basis of the properties of the operation with appropriate instructional tools.

Commutative Property of Multiplication as a priori Knowledge (선험적 지식으로서 곱셈의 교환법칙 교육의 문제)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Instructions for the commutative property of multiplication at elementary schools tend to be based on checking the equality between the quantities of 'a times b 'and b' times a, ' for example, $3{\times}4=12$ and $4{\times}3=12$. This article critically examined the approaches to teach the commutative property of multiplication from Kant's perspective of mathematical knowledge. According to Kant, mathematical knowledge is a priori. Yet, the numeric exploration by checking the equality between the amounts of 'a groups of b' and 'b groups of a' does not reflect the nature of apriority of mathematical knowledge. I suggest we teach the commutative property of multiplication in a way that it helps reveal the operational schema that is necessarily and generally involved in the transformation from the structure of 'a times b' to the structure of 'b times a.' Distributive reasoning is the mental operation that enables children to perform the structural transformation for the commutative property of multiplication by distributing a unit of one quantity across the other quantity. For example, 3 times 4 is transformed into 4 times 3 by distributing each unit of the quantity 3, which results in $3{\times}4=(1+1+1){\times}4=(1{\times}4)+(1{\times}4)+(1{\times}4)+(1{\times}4)=4+4+4=4{\times}3$. It is argued that the distributive reasoning is also critical in learning the subsequent mathematics concepts, such as (a whole number)${\times}10$ or 100 and fraction concept and fraction multiplication.

  • PDF

A NONCOMMUTATIVE BUT INTERNAL MULTIPLICATION ON THE BANACH ALGEBRA $A_t$

  • Ryu, Kun-Sik;Skoug, David
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.11-17
    • /
    • 1989
  • In [1], Johnson and Lapidus introduced a family { $A_{t}$ :t>0} of Banach algebras of functionals on Wiener space and showed that for every F in $A_{t}$ , the analytic operator-valued function space integral $K_{\lambda}$$^{t}$ (F) exists for all nonzero complex numbers .lambda. with nonnegative real part. In [2,3] Johnson and Lapidus introduced a noncommtative multiplication having the property that if F.mem. $A_{t}$ $_{1}$ and G.mem. $A_{t}$ $_{2}$ then $F^{*}$G.mem. A$t_{1}$+$_{t}$ $_{2}$ and (Fig.) Note that for F, G in $A_{t}$ , $F^{*}$G is not in $A_{t}$ but rather is in $A_{2t}$ and so the multiplication * is not internal to the Banach algebra $A_{t}$ . In this paper we introduce an internal noncommutative multiplication on $A_{t}$ having the property that for F, G in $A_{t}$ , F G is in $A_{t}$ and (Fig.) for all nonzero .lambda. with nonnegative real part. Thus is an auxiliary binary operator on $A_{t}$ .TEX> .

  • PDF

Computing the DFT in a Ring of Algebraic Integers (대수적 정수 환에 의한 이산 푸릴에 변환의 계산)

  • 강병희;최시연;김진우;김덕현;백상열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.107-110
    • /
    • 2001
  • In this paper, we propose a multiplication-free DFT kernel computation technique, whose input sequences are approximated into a ring of Algebraic Integers. This paper also gives computational examples for DFT and IDFT. And we proposes an architecture of the DFT using barrel shifts and adds. When the radix is greater than 4, the proposed method has a high Precision property without scaling errors due to twiddle factor multiplication. A possibility of higher radix system assumes that higher performance can be achievable for reducing the DFT stages in FFT.

  • PDF

MULTIPLICATION OPERATORS ON BERGMAN SPACES OVER POLYDISKS ASSOCIATED WITH INTEGER MATRIX

  • Dan, Hui;Huang, Hansong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.41-50
    • /
    • 2018
  • This paper mainly considers a tuple of multiplication operators on Bergman spaces over polydisks which essentially arise from a matrix, their joint reducing subspaces and associated von Neumann algebras. It is shown that there is an interesting link of the non-triviality for such von Neumann algebras with the determinant of the matrix. A complete characterization of their abelian property is given under a more general setting.

The Montgomery Multiplier Using Scalable Carry Save Adder (분할형 CSA를 이용한 Montgomery 곱셈기)

  • 하재철;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.3
    • /
    • pp.77-83
    • /
    • 2000
  • This paper presents a new modular multiplier for Montgomery multiplication using iterative small carry save adder. The proposed multiplier is more flexible and suitable for long bit multiplication due to its scalable property according to design area and required computing time. We describe the word-based Montgomery algorithm and design architecture of the multiplier. Our analysis and simulation show that the proposed multiplier provides area/time tradeoffs in limited design area such as IC cards.

DISTRIBUTIVE PROPERTIES OF ADDITION OVER MULTIPLICATION OF IDEMPOTENT MATRICES

  • Wanicharpichat, Wiwat
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1603-1608
    • /
    • 2011
  • Let R be a ring with identity. If a, b, $c{\in}R$ such that a+b+c = 1, then the distributive laws from addition over multiplication hold in R, that is a+(bc) = (a+b)(a+c) when ab = ba, and (ab)+c = (a+c)(b+c) when ac = ca. An application to obtains, if A,B are idempotent matrices and AB = BA = 0 then there exists an idempotent matrix C such that A + BC = (A + B)(A + C), and also A + BC = (I - C)(I - B). Some other cases and applications are also presented.

A Child's Informal Knowledge of Multiplication ((두 자리 수)${\times}$(두 자리 수) 해결과정에서 나타나는 아동의 비형식적인 지식에 관한 사례연구)

  • Jeon, Hyung-Og;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.4
    • /
    • pp.483-497
    • /
    • 2008
  • This study investigated what kind of informal knowledge is emergent and what role informal knowledge play in process of solving 2-digit by 2-digit multiplication task. The data come from 4 times interviews with a 3th grade student who had not yet received regular school education regarding 2-digit by 2-digit multiplication. And the data involves the student's activity paper, the characteristics of action and the clue of thinking process. Findings from these interviews clarify the child's informal knowledge to modeling strategy, doubling strategy, distributive property, associative property. The child formed informal knowledge to justify and modify her conjecture of the algorithm.

  • PDF