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MULTIPLICATION OPERATORS ON BERGMAN SPACES

OVER POLYDISKS ASSOCIATED WITH INTEGER MATRIX

Hui Dan and Hansong Huang

Abstract. This paper mainly considers a tuple of multiplication oper-

ators on Bergman spaces over polydisks which essentially arise from a
matrix, their joint reducing subspaces and associated von Neumann al-

gebras. It is shown that there is an interesting link of the non-triviality
for such von Neumann algebras with the determinant of the matrix. A

complete characterization of their abelian property is given under a more

general setting.

1. Introduction

Let D denote the unit disk in the complex plane C, and Ω denote a bounded
domain in the complex space Cd. The Bergman space L2

a(Ω) is the Hilbert space
consisting of all holomorphic functions over Ω which are square integrable with
respect to the Lebesgue measure dA in Cd.

For a bounded holomorphic function φ over Ω, let Mφ denote the multipli-
cation operator with the symbol φ on L2

a(Ω), given by

Mφf = φf, f ∈ L2
a(Ω).

In general, for a tuple Φ = {φj : 1 ≤ j ≤ n}, let V∗(Φ,Ω) denote the von
Neumann algebra

{Mφj , M
∗
φj : 1 ≤ j ≤ n}′,

which consists of all bounded operators on L2
a(Ω) commuting with both Mφj

and M∗φj for each j. Also one can define V∗(Φ,Ω) in a similar way if Φ is

a family of bounded holomorphic functions on Ω. It is known that there is
a close connection between orthogonal projections in V∗(Φ,Ω) and all joint
reducing subspaces of {Mφj : 1 ≤ j ≤ n}. Precisely, the range of an orthogonal
projection in V∗(Φ,Ω) is exactly a joint reducing subspace of {Mφj : 1 ≤ j ≤
n}, and vice versa. We say that V∗(Φ,Ω) is trivial if V∗(Φ,Ω) = CI. This is
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equivalent to that the only nonzero joint reducing subspace of {Mφj ,Ω : 1 ≤
j ≤ n} is the whole space L2

a(Ω).
It has been a focus to study commutants and reducing subspaces of analytic

multiplication operators on function spaces, specifically on the Bergman space.
In single-variable case, a lot of remarkable work has been made on the Bergman
space L2

a(D) [1–3, 5–10, 17–19]. It is worthy to note that things are different if
the underlying domain moves from the unit disk D to polygons [13].

However, in multi-variable case not much has been done on this line. On
the Bergman space L2

a(D2) Lu and Zhou [14] characterized all reducing sub-
spaces of a class of multiplication operators defined by monomials. In [4] the
authors of this paper completely describe the reducing subspaces of multipli-
cation operators on L2

a(D2) by the symbol zk1 + zl2 with k, l ∈ Z+. Techniques
and computations in these papers are completely different. This indicates that
the structure of reducing subspaces heavily depends on the symbols of multi-
plication operators. To investigate new symbols, it seems likely that one needs
to develop new techniques. It is worthy to note that the work in [4] was later
generalized in [21], and it is remarkable that Guo and Wang [11] study a wide
class of operators in the setting of abstract operator theory, including the mul-
tiplication operators Mzk1 +zl2

as a special example. In all of these papers, these

authors consider a single multiplication operator. We also call the reader’s
attention to [20] which gives a distinct approach to the study of a tuple of
multiplication operators.

Motivated by the above work, we focus on a tuple of multiplication operators,
rather than a single operator. Precisely, for an index β = (β1, . . . , βd) in Zd+,
define

zβ =

d∏
j=1

z
βj
j , z = (z1, . . . , zd) ∈ Cd.

Let A denote a d×d Z+-entry matrix, and let α1, . . . , αd be d row vectors from
A. Write

ΦA(z) = (zα
1

, . . . , zα
d

), z ∈ Dd.
The following shows that the structure of V∗(ΦA,Dd) has close connection with
properties of integer matrix.

Theorem 1.1. Suppose ΦA is defined as above. Then V∗(ΦA,Dd) is trivial if
and only if A is a unimodular matrix.

Example 1.2. Let

A1 =

 4 3 0
5 4 k
0 0 1

 , (k ∈ Z+), A2 =

 1 0 0
1 1 0
0 1 1

 ,

and

A3 =

 1 0 1
1 1 0
0 1 1

 .
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We have detA1 = detA2 = 1. Note that ΦA1
= (z4

1z
3
2 , z

5
1z

4
2z
k
3 , z3), and

ΦA2
= (z1, z1z2, z2z3), and by Theorem 1.1 we get that both V∗(ΦA1

,D3) and
V∗(ΦA2 ,D3) are trivial.

But detA3 = 2 6= ±1, and ΦA3 = (z1z3, z1z2, z2z3). Theorem 1.1 shows that
V∗(ΦA3

,D3) 6= CI. Note that A3 and A2 have almost same entries.

The following is of interest.

Theorem 1.3. Suppose that Φ is a family of monomials in d-variables. Then
V∗(Φ,Dd) is not abelian if and only if there exist two different integers s1, s2

in {1, . . . , d} and t1, t2 ∈ Z+ such that each monomial in Φ is a function in
zt1s1z

t2
s2 and variables zs(s 6∈ {s1, s2}).

We have the following corollary.

Corollary 1.4. Suppose ΦA and A are defined as in Theorem 1.1. If detA 6= 0,
then V∗(ΦA,Dd) is abelian.

Some comments for Theorem 1.3 are in order. If each monomial in Φ does not
depend on z2, then each can be written as a function of z1(= z1

1z
0
2), z3, . . . , zd.

In this case, by Theorem 1.3 V∗(Φ,Dd) is not abelian.
Here are more examples.

Example 1.5. Write

p1(z) = z1z
3
2 , p2(z) = z2

1z
6
2z3

and
p3(z) = z2

4z5, p4(z) = z3z4.

Since each of p1, . . . , p4 can be written as a function of z1z
3
2 , z3, z4 and z5, by

Theorem 1.3 V∗(p1, p2, p3, p4,D5) is not abelian.
For d ≥ 3, let p(z) = z1 · · · zd and

q(z) = z1z
2
2 · · · zdd .

Applying Theorem 1.3 we have that V∗(p, q,Dd) is abelian.

Let p and q be monomials defined in Example 1.5, and define

Φ = (q, p, p2, . . . , pd−1).

Letting A be the corresponding matrix, we have Φ = ΦA and detA = 0. Since

V∗(ΦA,Dd) = V∗(p, q,Dd),
V∗(ΦA,Dd) is abelian. Then we have the following corollary of Theorem 1.3.

Corollary 1.6. For d ≥ 3, there is a singular matrix A ∈ Md(Z+) such that
V∗(ΦA,Dd) is abelian.

This paper is arranged as follows. Section 2 presents the proof of Theorem
1.1. Also, one will see that V∗(ΦA,D2) is abelian if and only if detA 6= 0. In
Section 3 we mainly characterize the abelian property of V∗(Φ,Dd) for a family
of monomials, and give the proof of Theorem 1.3.
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2. Joint reducing subspaces and unimodular matrice

In this section, we mainly present the proof of Theorem 1.1, which says that
for A ∈ Mn(Z+), the tuple MΦA has no nontrivial joint reducing subspaces if
and only if A is a unimodular matrix.

Proof of Theorem 1.1. To see the “if” part, assume detA = 1 without loss of
generality. Since A is a unimodular matrix, its elementary row transformations
involves two classes [15, Theorem 22.5]:

(i) rows switching;
(ii) multiplying all entries of a row by an integer constant and then adding

to another.

Note that all involved elementary matrices are of determinant 1 or −1. After
finitely many times of elementary row transformations, A becomes an upper-

triangular matrix Ã with integer entries:

p1 ∗ ∗ ∗ ∗
0 p2 · · · ∗ ∗

0 0
. . . ∗ ∗

... 0 · · · pd−1 ∗
0 0 · · · 0 pd

 .

Since either det Ã = detA or det Ã = −detA, we have

p1 · · · pd = ±1.

Since each pj(1 ≤ j ≤ d) is an integer,

pj = ±1, 1 ≤ j ≤ d.

Then by finitely many elementary row transformations as (ii), A becomes a
diagonal matrix whose diagonal entries are 1 or −1. Immediately, for each
integer j(1 ≤ j ≤ d), there are integers {nkj : 1 ≤ j ≤ d} such that

(2.1)
∑

1≤k≤d

nkjα
k = eTj .

Given z = (z1, . . . , zd) ∈ Cd with z1 · · · zd 6= 0, write

(2.2) ΦA(w) = ΦA(z).

Then the only solution w for (2.2) is given by

ws =

d∏
k=1

wn
k
sα

k

=

d∏
k=1

zn
k
sα

k

= zs, 1 ≤ s ≤ d.

Then there is an open ball V in Dd such that

Φ−1
A (ΦA(V )) = V,
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and following the proof of [8, Theorem 2.2] we have that each operator in
V∗(ΦA,Dd) must be a scalar multiple of the identity operator. Therefore,
V∗(ΦA,Dd) is trivial.

To see the inverse direction, assume detA 6= ±1. Before continuing, we
observe that detA = ±1 if and only if there are integers {nkj : 1 ≤ j ≤ d} such
that (2.1) holds. For this, it suffices to prove that if (2.1) holds, then

detA = ±1.

In fact, note that

I =

 eT1
...

eTd

 =


∑d
k=1 n

k
1α

k

...∑d
k=1 n

k
dα

k

 .

By the property of determinant, we have

1 =

d∑
k1=1

nk11 det

 αk1

...∑d
k=1 n

k
dα

k

 =

d∑
k1,...,kd=1

nk11 · · ·n
kd
d det

 αk1

...
αkd

 .

Since for such integers k1, . . . , kd,

det

 αk1

...
αkd

 = ±det

 α1

...
αd

 or 0.

Therefore, 1 equals to an integer multiple of

det

 α1

...
αd

 ,

forcing detA = ±1, as desired.
Since detA 6= ±1, at least one of the equations (2.1) does not hold. There-

fore,

Zα1 + · · ·+ Zαd 6= Zd,

and thus

[Zα1 + · · ·+ Zαd] ∩ Zd+ 6= Zd+.

Write

M = span{zβ : β ∈ [Zα1 + · · ·+ Zαd] ∩ Zd+}.
It is easy to check thatM is a nonzero joint reducing subspace for the tupleMΦA

and M 6= L2
a(Dd). This implies that V∗(ΦA,Dd) is nontrivial. In conclusion,

V∗(ΦA,Dd) is trivial if and only if detA 6= ±1. �
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3. Abelian property of V∗(Φ,Dd)

In this section, we will study the von Neumann algebra V∗(Φ,Dd), where Φ
is a family of monomials.

As follows, we will prove Theorem 1.3, that is restated as follows.

Theorem 3.1. Suppose that Φ is a family of monomials in d-variables. Then
V∗(Φ,Dd) is not abelian if and only if there exist two different integers s1, s2

in {1, . . . , d} and t1, t2 ∈ Z+ such that each monomial in Φ is a function in
zt1s1z

t2
s2 , and variables zs(s 6∈ {s1, s2}).

Proof. To prove “if” part, assume that there exist two different integers s1, s2 in
{1, . . . , d} and t1, t2 ∈ Z+ such that each monomial is a function in zt1s1z

t2
s2 , and

variables zs(s 6∈ {s1, s2}). Then it is direct to check that V∗(Φ,Dd) contains
V∗(zt1s1z

t2
s2 , zs(s ∈ {1, . . . , d} \ {s1, s2}),Dd), and the latter is ∗-isomorphic to

V∗(zt11 z
t2
2 ,D2). Since V∗(zt11 z

t2
2 ,D2) is not abelian [14, 16], V∗(Φ,Dd) is not

abelian.
Recall that

{en(λ) =
√
n+ 1λn, n = 0, 1, . . .}

is an orthonormal basis of L2
a(D). By direct computations we have

Mλken =

√
n+ 1

k + n+ 1
en+k, n ≥ 0,

and

M∗λken =

√
n− k + 1

n+ 1
en−k, n ≥ k.

Thus,

(3.3) M∗λkMλken =
n+ 1

k + n+ 1
en, n ≥ 0.

Note that {zα : α ∈ Zd+} is an orthogonal basis of L2
a(Dd). By (3.3) we have

(3.4) M∗zβMzβz
α =

∏
1≤i≤d

αi + 1

βi + αi + 1
zα.

Next we will prove the “only if” part. For this, assume that the latter
condition on Φ fails, and we must prove that V∗(Φ,Dd) is abelian. Note that
Φ contains at least two monomials. Pick monomials q1, . . . , qt and p from Φ,
and write

p(z) = zβ and q1(z) = zγ
1

, . . . , qt(z) = zγ
t

,

where β and γ1, . . . , γt are in Zd+. Since Φ does not satisfy the condition in
Theorem 3.1, for each i ∈ {1, . . . , d} there is a monomial in Φ depending on zi
and by multiplying finite of such monomials we get zβ . Hence for simplicity we
may assume that zβ ∈ Φ and

β1 · · ·βd 6= 0.
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By reasonable choice of γ1, . . . , γt, one can show that for fixed i with
1 ≤ i ≤ d,

(3.5)
1

βi
(γ1
i , . . . , γ

t
i ) =

1

βl
(γ1
l , . . . , γ

t
l )

only if i = l. To see this, we pick finite members from Φ

zγ
1

, . . . , zγ
t

such that not all of them can be written as functions of zt1s1z
t2
s2 , and variables

zs(s 6∈ {s1, s2}) where s1 < s2, t1, t2 are arbitrary. Assume (3.5) holds, and
then the matrix (

γ1
i , . . . , γti
γ1
l , . . . , γtl

)
is of rank 1. That is, the integer-entry vectors (γ1

i , γ
1
l ), . . . , (γti , γ

t
l ) are constant

tuples of a vector. Then one can show that there is a nonzero vector v = (v1, v2)
in Z2

+ such that all of (γ1
i , γ

1
l ), . . . , (γti , γ

t
l ) can be written as an integer multiple

of v. If i 6= l, this would gives that

zγ
1

, . . . , zγ
t

are functions of zv1i z
v2
l and other variables zs(s 6= i, l), which is a contradiction.

Thus i = l.
Letting j and k1, . . . , kt be integers in Z+, we write k = (k1, . . . , kt),

k · γ =

t∑
m=1

kmγ
m,

and let

Q(z) = zjβ+k·γ .

By (3.4)

M∗QMQz
α = ω(j,k, α)zα,

where

ω(j,k, α) =
∏

1≤i≤d

αi + 1

jβi + (k · γ)i + αi + 1
=

∏
1≤i≤d

αi + 1

jβi +
∑
m kmγ

(m)
i + αi + 1

.

Our idea is to study the spectrum projection of M∗QMQ. Let Pα(j,k) denote
the orthogonal projection onto the closed linear span of

{zI : ω(j,k, α) = ω(j,k, I), I ∈ Zd+}
and Pα be the infimum of Pα(j,k); that is, Pα equals the orthogonal projection
onto the closed linear span of

{zI : ω(j,k, α) = ω(j,k, I), j ∈ Z+,k ∈ Zt+}.

By special choice of γ1, . . . , γt in Φ, we will show that Pα exactly equals the
orthogonal projection onto Czα. Note that by spectral theorem, Pα(j,k) lies
in W∗(Φ,Dd), and so does Pα.
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To continue, we study a necessary condition for

ω(j,k, α) = ω(j,k, α′),

where α, α′ ∈ Zd+. Precisely, define

h(ζ1) = ω(j, ζ1, k2, . . . , kt, α)− ω(j, ζ1, k2, . . . , kt, α
′)

which is a bounded holomorphic function on the right half plane

{ζ1 ∈ C : Re ζ1 > 0}.
Since h(k) = 0 for k = 1, 2, . . . , h is identically zero [12]. That is,∏

1≤i≤d

αi + 1

jβi + ζ1γ1
i +

∑
m≥2 kmγ

(m)
i + αi + 1

=
∏

1≤i≤d

α′i + 1

jβi + ζ1γ1
i +

∑
m≥2 kmγ

(m)
i + α′i + 1

.

Both sides extend throughout the complex plane except for finitely many
points. By similar reasoning, we have∏
1≤i≤d

αi + 1

ζ0βi +
∑

1≤m≤t ζmγ
(m)
i + αi + 1

=
∏

1≤i≤d

α′i + 1

ζ0βi +
∑

1≤m≤t ζmγ
(m)
i + α′i + 1

,

where ζ0, . . . , ζt are complex variables. Hence, as a finite sequence

{ 1

βi
(
∑

1≤m≤t

ζmγ
(m)
i + αi + 1) : 1 ≤ i ≤ d}

is a permutation of

{ 1

βi
(
∑

1≤m≤t

ζmγ
(m)
i + α′i + 1) : 1 ≤ i ≤ d}.

This immediately gives that the sequence of vectors in Cd+1

{ 1

βi
(γ1
i , . . . , γ

t
i , αi + 1) : 1 ≤ i ≤ d}

is a permutation of

{ 1

βi
(γ1
i , . . . , γ

t
i , α
′
i + 1) : 1 ≤ i ≤ d}.

For fixed i with 1 ≤ i ≤ d, the equation (3.5)

1

βi
(γ1
i , . . . , γ

t
i ) =

1

βl
(γ1
l , . . . , γ

t
l )

holds only if i = l. This immediately gives αi = α′i, and by arbitrariness of i,
we have α = α′, forcing Pα to be the orthogonal projection onto Czα.

Since W∗(Φ,Dd) contains all those projections Pα, it follows that each op-
erator T in V∗(Φ,Dd) commutes with all these projections, and hence T is
diagonal with respect to {zα : α ∈ Zd+}. Therefore, we deduce that V∗(Φ,Dd)
is abelian to finish the proof. �
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For the case of dimension d = 2, we have the following characterization for
abelian property of V∗(ΦA,D2).

Corollary 3.2. Suppose A ∈M2(Z+). Then V∗(ΦA,D2) is abelian if and only
if detA 6= 0.
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